Expand/Collapse all
Overview
1. The Ansys Product Improvement Program
2. Application Interface
2.1. Interface Overview
2.2. Ribbon
2.2.1. File Tab
2.2.2. Home Tab
2.2.3. Context Tabs
2.2.4. Display Tab
2.2.5. Selection Tab
2.2.6. Automation Tab
2.2.7. Learning and Support Tab
2.3. Graphics Toolbar
2.3.1. Clipboard Menu
2.4. Outline
2.4.1. Understanding the Tree Outline
2.4.2. Correlating Tree Outline Objects with Model Characteristics
2.4.3. Suppressing Objects
2.4.4. Filtering the Tree
2.4.5. Searching the Tree
2.5. Details Pane
2.5.1. Parameterizing a Variable
2.6. Geometry Window
2.7. Status Bar
2.8. Quick Launch
2.9. Help Menu
2.10. Color Theme
2.11. Ribbon Customization Options
2.12. Scoping Recovery following Geometry Update
2.13. Creating User-Defined Buttons
2.14. Windows Management
2.15. Preference Migration
2.16. Resource Prediction
2.17. Print Preview
2.18. Report Preview
2.18.1. Publishing the Report
2.18.2. Sending the Report
2.18.3. Comparing Databases
2.18.4. Customizing Report Content
2.19. Full Screen Mode
2.20. Contextual Windows
2.20.1. Selection Information Window
2.20.1.1. Activating the Selection Information Window
2.20.1.2. Understanding the Selection Modes
2.20.1.3. Using the Selection Information Window
2.20.1.4. Selecting, Exporting, and Sorting Data
2.20.2. Worksheet Window
2.20.3. Graph and Tabular Data Windows
2.20.4. Messages Window
2.20.5. Graphics Annotations Window
2.20.6. Section Planes Window
2.20.7. Mechanical Wizard Window
2.21. Group Tree Objects
2.22. Interface Behavior Based on License Levels
2.23. Environment Filtering
2.24. Using Macros
2.25. Setting Variables
2.26. Data Export
2.27. Keyframe Animation
2.28. Graphical Selection and Display
2.28.1. Selecting Geometry
2.28.2. Selecting Nodes
2.28.2.1. Creating a Coordinate System by Direct Node Selection
2.28.2.2. Specifying Named Selections by Direct Node Selection
2.28.3. Selecting Elements and Element Faces
2.28.4. Selecting Nodes and Elements by ID
2.28.5. Manipulating the Model in the Geometry Window
2.28.6. Defining Direction
2.28.7. Using Viewports
2.28.8. Accelerated Graphics
2.28.9. Controlling Graphs and Charts
2.28.10. Managing Graphical View Settings
2.28.10.1. Creating a View
2.28.10.2. Applying a View
2.28.10.3. Renaming a View
2.28.10.4. Deleting a View
2.28.10.5. Replacing a Saved View
2.28.10.6. Exporting a Saved View List
2.28.10.7. Importing a Saved View List
2.28.10.8. Copying a View to Mechanical APDL
2.28.11. Creating Section Planes
2.28.11.1. Understanding Section Plane Display Differences
2.28.11.2. Working with Section Plane Results
2.28.12. Viewing Annotations
2.28.12.1. Specifying Annotation Preferences
2.28.13. Controlling Lighting
2.28.14. Inserting Comments, Images, and Figures
2.29. Hotkeys and Keyboard Shortcuts
2.30. Wizards
2.30.1. Mechanical Wizard
3. Application Preferences
3.1. Open the Options Dialog
3.2. Common Settings
3.2.1. Graphics Style
3.2.2. Graphics Interaction
3.2.3. User Interface
3.2.4. Geometry Import
3.2.5. Parallel Processing
3.2.6. SpaceClaim Preferences
3.3. Mechanical Options
3.3.1. Connections
3.3.2. Convergence
3.3.3. Import
3.3.4. Export
3.3.5. Fatigue
3.3.6. Frequency
3.3.7. Geometry
3.3.8. Geometry Import
3.3.9. Meshing
3.3.10. Graphics
3.3.11. Miscellaneous
3.3.12. Messages
3.3.13. Report
3.3.14. Analysis Settings and Solution
3.3.15. Loads and Boundary Conditions
3.3.16. Results
3.3.17. Visibility
3.3.18. Wizard
3.3.19. Commands
3.3.20. UI Options
4. General Analysis Workflow
4.1. Create or Resume Analysis Systems
4.2. Define Materials
4.3. Attach Geometry/Mesh
4.3.1. Importing Geometry or Mesh from Workbench
4.3.2. Importing Geometries or Mesh from Mechanical
4.3.3. Updating Geometry from Within the Mechanical Application
4.3.4. CAD Interface Terminology
4.4. Define Part Behavior
4.5. Create a Simulation Template
4.6. Create a Geometry in Mechanical
4.7. Define Substructures
4.8. Define Connections
4.9. Apply Mesh Controls and Preview Mesh
4.10. Establish Analysis Settings
4.11. Define Initial Conditions
4.12. Apply Pre-Stress Effects for Implicit Analysis
4.13. Apply Boundary Conditions
4.14. Perform Solution
4.15. Review Results
4.16. Create Report (optional)
5. Analysis Types
5.1. Adaptivity Analyses
5.1.1. Nonlinear Adaptive Region
5.1.2. Geometry Based Adaptivity
5.2. Coupled Field Analysis Types
5.2.1. Coupled Field Harmonic Analysis
5.2.2. Prestressed Coupled Field Harmonic Analysis
5.2.3. Coupled Field Modal Analysis
5.2.4. Prestressed Coupled Field Modal Analysis
5.2.5. Coupled Field Static Analysis
5.2.6. Coupled Field Transient Analysis
5.2.7. Limitations
5.2.8. Application Examples and Background
5.3. Electric Analysis
5.4. Explicit Dynamics Analysis
5.5. Fracture Analysis
5.5.1. Fracture Analysis Workflows
5.5.2. Limitations of Fracture Analysis
5.5.3. Fracture Meshing
5.5.4. Cracks
5.5.4.1. Crack Overview
5.5.4.2. Defining an Arbitrary Crack
5.5.4.3. Defining a Semi-Elliptical Crack
5.5.4.4. Defining an Elliptical Crack
5.5.4.5. Defining a Ring Crack
5.5.4.6. Defining a Corner Crack
5.5.4.7. Defining an Edge Crack
5.5.4.8. Defining a Through Crack
5.5.4.9. Defining a Cylindrical Crack
5.5.4.10. Defining a Pre-Meshed Crack
5.5.4.11. Special Handling of Named Selections for Crack Objects
5.5.4.12. Initiate a Crack using Crack Initiation
5.5.5. SMART Crack Growth
5.5.5.1. SMART Crack Growth Application
5.5.5.2. SMART Crack-Growth Assumptions and Limitations
5.5.6. Crack Initiation and Propagation using SMART Crack Growth
5.5.7. Interface Delamination and Contact Debonding
5.5.7.1. Interface Delamination Application
5.5.7.2. Contact Debonding Application
5.5.7.3. Interface Delamination and Ansys Composite PrepPost (ACP)
5.5.8. Multi-Point Constraint (MPC) Contact for Fracture
5.5.9. Solving a Fracture Analysis
5.5.10. Extracting Fracture Results from a Result File
5.6. Linear Dynamics Analysis Types
5.6.1. Eigenvalue Buckling Analysis
5.6.2. Harmonic Response Analysis
5.6.2.1. Amplitude Calculation in Harmonic Analysis
5.6.3. Harmonic Response (Full) Analysis Using Pre-Stressed Structural System
5.6.4. Harmonic Response Analysis Using Linked Modal Analysis System
5.6.5. Modal Analysis
5.6.6. Random Vibration Analysis
5.6.7. Response Spectrum Analysis
5.6.8. Substructure Generation Analysis
5.7. Magnetostatic Analysis
5.8. Rigid Dynamics Analysis
5.8.1. Preparing a Rigid Dynamics Analysis
5.8.2. Command Reference for Rigid Dynamics Systems
5.8.2.1. IronPython References
5.8.2.2. The Rigid Dynamics Object Model
5.8.2.3. Rigid Dynamics Command Objects Library
5.8.2.4. Command Use Examples
5.8.2.4.1. Constraint Equation
5.8.2.4.2. Joint Condition: Initial Velocity
5.8.2.4.3. Joint Condition: Control Using Linear Feedback
5.8.2.4.4. Non-Linear Spring Damper
5.8.2.4.5. Spherical Stop
5.8.2.4.6. Export of Joint Forces
5.8.2.4.7. Breakable Joint
5.8.2.5. Debugging RBD Commands with Visual Studio
5.8.2.6. Using RBD Commands with Excel
5.8.2.7. Using RBD Commands from the IronPython Console
5.8.3. Using the Variable Load Add-on
5.8.3.1. How to Load the Add-on
5.8.3.2. Creating Measures
5.8.3.2.1. Body Measures
5.8.3.2.2. Joint Measures
5.8.3.2.3. Derived Measures
5.8.3.3. Defining Joint Loads Dependent on one or more Measures
5.8.3.4. Defining Force Loads Dependent on one or more Measures
5.8.3.5. Known Issues and Limitations
5.8.4. Using the Motion Load Transfer Add-on
5.8.4.1. How to Load the Add-on
5.8.4.2. Setting up the Motion Loads Transfer
5.8.4.3. Transferring the Motion Loads
5.8.5. Multibody Dynamics Theory Guide
5.8.5.1. Rigid Degrees of Freedom
5.8.5.2. Rigid Shape Functions
5.8.5.3. Flexible Shape Functions
5.8.5.4. Equations of Motion
5.8.5.5. Time Integration with Explicit Runge-Kutta
5.8.5.6. Implicit Generalized-α Method
5.8.5.7. Stabilized Implicit Generalized-α Method
5.8.5.8. Moreau-Jean Method
5.8.5.9. Geometric Correction
5.8.5.10. Contact and Stops
5.8.5.11. References
5.9. Static Structural Analysis
5.10. Steady-State Thermal Analysis
5.11. Thermal-Electric Analysis
5.12. Transient Structural Analysis
5.13. Transient Structural Analysis Using Linked Modal Analysis System
5.14. Transient Thermal Analysis
5.15. Special Analysis Topics
5.15.1. Additive Manufacturing Process Simulation
5.15.2. Composite Analysis
5.15.3. ECAD Analysis using Trace Mapping
5.15.3.1. Trace Mapping
5.15.3.2. ECAD Import Pane (Windows Only)
5.15.4. Electromagnetics (EM) - Mechanical Data Transfer
5.15.4.1. Importing Data into Coupled Field (Static or Transient), Thermal, and Structural (Static or Transient) Analyses
5.15.4.2. Importing Data into Harmonic Analyses
5.15.4.2.1. Importing Forces and Moments
5.15.4.2.2. Importing Surface Force Density
5.15.4.3. Exporting Results from Thermal or Structural Analyses
5.15.4.4. Electric Machines NVH Analyses (with Waterfall Diagram)
5.15.5. External Data
5.15.5.1. Importing Data from Workbench
5.15.5.2. Importing Data from Mechanical
5.15.5.3. Importing Thickness
5.15.5.4. Importing Loads
5.15.5.5. Exporting Data
5.15.6. External Study Import
5.15.7. Fluid-Structure Interaction (FSI)
5.15.7.1. One-Way Transfer FSI
5.15.7.2. Two-Way Transfer FSI
5.15.7.3. Using Imported Loads for One-Way FSI
5.15.7.3.1. Face Forces at Fluid-Structure Interface
5.15.7.3.2. Face Temperatures and Convections at Fluid-Structure Interface
5.15.7.3.3. Volumetric Temperature Transfer
5.15.7.3.4. CFD Results Mapping
5.15.8. Icepak to Mechanical Data Transfer
5.15.9. Inverse Solving for Nonlinear Static Structural Analyses
5.15.10. Mechanical-Electronics Interaction (Mechatronics) Data Transfer
5.15.10.1. Overall Workflow for Mechatronics Analysis
5.15.10.2. Set up the Mechanical Application for Export to Twin Builder
5.15.11. Polyflow to Mechanical Data Transfer
5.15.12. Reinforcement Specification Using Mesh-Independent Method
5.15.13. Rotordynamics Analysis
5.15.13.1. Rotordynamics Extension
5.15.13.2. Loading the Rotordynamics Extension
5.15.13.3. Rotordynamics Capabilities
5.15.13.4. Critical Speed Maps
5.15.13.5. Orbital Plots
5.15.13.6. Harmonic Separation Margin
5.15.14. Substructure Analysis
5.15.14.1. Condensed Part Overview
5.15.14.2. Condensed Part Application
5.15.14.3. Condensed Part Worksheet
5.15.14.4. Exporting Condensed Parts
5.15.14.5. Imported Condensed Parts
5.15.14.6. Expansion Pass
5.15.14.7. Limitations
5.15.14.8. Best Practices
5.15.15. Static Analysis From Rigid Dynamics Analysis
5.15.16. Submodeling
5.15.16.1. Structural Submodeling Workflow
5.15.16.1.1. Beam-to-Solid/Shell Submodels
5.15.16.2. Thermal Submodeling Workflow
5.15.16.3. Shell-to-Solid Submodels
5.15.17. System Coupling
5.15.17.1. Supported Capabilities and Limitations
5.15.17.2. Variables Available for System Coupling
5.15.17.3. System Coupling Related Settings in Mechanical
5.15.17.4. Using Higher-Order Meshes for Coupled Analyses
5.15.17.5. One-Way FSI Transfers Using System Coupling in Workbench
5.15.17.6. Coupled Field Co-Simulation Using System Coupling
5.15.17.7. Coupling Thin Surfaces in CFX
5.15.17.8. Restarting Structural Mechanical Analyses as Part of System Coupling
5.15.17.8.1. Generating Mechanical Restart Files
5.15.17.8.2. Specifying a Restart Point in Mechanical
5.15.17.8.3. Making Setup Changes Before Restarting
5.15.17.8.4. Recovering the Mechanical Restart Point after a Workbench Crash
5.15.17.8.5. Restarting a Thermal-Structural Coupled Analysis
5.15.17.9. Running Mechanical as a Coupling Participant in System Coupling's GUI or CLI
5.15.17.10. Troubleshooting Two-Way Coupling Analysis Problems
5.15.17.11. Product Licensing Considerations when using System Coupling
5.15.18. Thermal-Stress Analysis
5.15.19. Transferring Hydrodynamic Loads to a Structural System
5.15.20. Twin Builder/Rigid Dynamics Co-Simulation
5.15.20.1. Co-Simulation Pins
5.15.20.2. Limitations
5.15.21. Welding Toolbox
5.15.21.1. Enabling the Welding Toolbox Extension
5.15.21.2. Using the Welding Toolbox Extension
5.15.21.3. Weld Worksheet Operations
5.15.21.4. Weld Setup Properties
5.15.21.5. Understanding Behavior in Terms of Solver Inputs
6. Geometry
6.1. Geometry Introduction
6.1.1. Parts and Bodies
6.1.2. Multibody Behavior and Associativity
6.1.3. Geometry Conditions and Requirements
6.1.4. Stiffness Behavior
6.1.4.1. Flexible Bodies
6.1.4.2. Rigid Bodies
6.1.4.3. Gasket Bodies
6.1.4.4. Stiff Beam
6.1.5. Integration Schemes
6.1.6. Common Geometry Display Features
6.2. Solid Bodies
6.3. Surface Bodies
6.3.1. Preparing Assemblies of Surface Bodies
6.3.2. Using Thickness Mode
6.3.3. Importing Surface Body Models
6.3.4. Importing Surface Body Thickness
6.3.5. Understanding Surface Body Shell Offsets
6.3.6. Specifying Surface Body Thickness
6.3.7. Specifying Surface Body Layered Sections
6.3.7.1. Defining and Applying a Layered Section
6.3.7.2. Viewing Individual Layers
6.3.7.3. Layered Section Properties
6.3.7.4. Notes on Layered Section Behavior
6.3.8. Specifying Surface Body Reinforcements
6.3.9. Specifying Faces With Multiple Thicknesses and Layers
6.4. Line Bodies
6.5. Simulation without Geometry
6.6. 2D Analyses
6.6.1. Using Generalized Plane Strain
6.7. Construction Geometry
6.7.1. Path
6.7.2. Surface
6.7.3. Solid
6.7.4. STL
6.7.5. Construction Line
6.8. Body Merge
6.8.1. Body Merge Requirements and Limitations
6.8.2. How Body Merge Affects Body Attributes, Scoping, and Meshing
6.8.3. Merging Bodies with Body Merge
6.8.4. Executing a Body Merge
6.8.5. Body Merge Status and Details
6.8.6. Suppressing and Unsuppressing a Body Merge
6.8.7. Clearing a Body Merge
6.8.8. Deleting a Body Merge
6.9. Point Mass
6.10. Distributed Mass
6.11. Thermal Point Mass
6.12. Surface Coating
6.13. Models from External Meshes and Model Assemblies
6.13.1. Importing Mesh-Based Geometry
6.13.1.1. Supported External File Types
6.13.1.2. Import Workflow and Interface Options
6.13.1.3. Supported Finite Element Data Types
6.13.1.3.1. Imported Bolt Pretensions and Premeshed Bolt Pretensions
6.13.1.3.2. Imported Boundary Conditions
6.13.1.3.3. Imported Composite Plies
6.13.1.3.4. Imported Constraint Equations or Coupling
6.13.1.3.5. Imported Contacts
6.13.1.3.6. Imported Coordinate Systems
6.13.1.3.7. Imported Cross Sections
6.13.1.3.8. Imported Element Orientations
6.13.1.3.9. Imported Flexible Remote Connectors
6.13.1.3.10. Imported Named Selections
6.13.1.3.11. Imported Nodal Orientations
6.13.1.3.12. Imported Point Mass
6.13.1.3.13. Imported Rigid Bodies
6.13.1.3.14. Imported Rigid Remote Connectors
6.13.1.3.15. Imported Shell Thicknesses
6.13.1.3.16. Imported Spring Connectors
6.13.1.3.17. Imported Initial Stresses
6.13.1.4. Automatic Material Assignment
6.13.1.5. Reference Node Naming
6.13.1.6. Importing Mesh-Based Databases in Batch
6.13.1.7. External Model Supported Element Types
6.13.1.8. Supported External Model Commands
6.13.1.8.1. External Model CDB Commands
6.13.1.8.2. External Model NASTRAN Commands
6.13.1.8.3. External Model ABAQUS Commands
6.13.1.8.4. External Model FE Commands Repository
6.13.1.9. Accessing Imported Mesh-Based Databases through ACT
6.13.1.10. Examples of a Synthesized Mesh using Tolerance Angles
6.13.2. Assembling External Models and Mechanical Models
6.13.2.1. Assembly Examples
6.13.2.2. Model Assembly Specification
6.13.2.3. Model Alignment
6.13.2.4. Object Renaming
6.13.2.5. Associativity of Properties
6.13.2.6. Contact Detection
6.13.2.7. Mesh Modification
6.13.2.8. Using Legacy Databases
6.13.2.9. Limitations and Restrictions for Model Assembly
6.14. Element Orientation
6.15. Part Transformations
6.16. Geometry from Deformation Results
6.17. Geometry From Rigid Dynamics Results
6.18. Bolt Tools Add-on
7. Materials
7.1. Material Assignment
7.2. Engineering Data Material View
7.2.1. Engineering Data Material View Access and Layout
7.2.2. Adding Materials to a Project
7.2.3. Viewing Material Data
7.2.4. Searching and Filtering Materials
7.2.5. Comparing Materials
7.3. Engineering Data Materials Dialog
7.3.1. Engineering Data Material Card
7.3.2. Engineering Data Materials Settings Dialog
7.4. Material Plot
7.5. Material Combination
7.6. Imported Material Fields
7.7. Refresh Materials
7.8. Unique Material-Based MAPDL Commands
8. Coordinate Systems
8.1. Creating Coordinate Systems
8.1.1. Initial Creation and Definition
8.1.2. Establishing Origin for Associative and Non-Associative Coordinate Systems
8.1.3. Setting Principal Axis and Orientation
8.1.4. Using Transformations
8.1.5. Creating a Coordinate System Based on a Surface Normal
8.1.6. Creating a Coordinate System Based on the Center of Mass
8.1.7. Setting a Coordinate System Origin at the Center of Mass
8.2. Importing Coordinate Systems
8.3. Applying Coordinate Systems as Reference Locations
8.4. Using Coordinate Systems to Specify Joint Locations
8.5. Creating Coordinate-Based Section Planes
8.6. Transferring Coordinate Systems to the Mechanical APDL Application
8.7. Setting Up Coordinate Systems in the Mechanical Configure Tool
9. Connections
9.1. Connections Folder
9.2. Connections Worksheet
9.3. Connection Group
9.4. Connection Features and Operations
9.5. Connections Manager Extension
9.5.1. Loading the Connections Manager Extension
9.5.2. Details Pane Properties
9.5.3. RMB Menu Options
9.5.4. Worksheet Window Options
9.6. Contact
9.6.1. Contact Overview
9.6.2. Contact Formulation Theory
9.6.3. Contact Settings
9.6.3.1. Scope Settings
9.6.3.2. Definition Settings
9.6.3.3. Advanced Settings
9.6.3.4. Display
9.6.3.5. Geometric Modification
9.6.4. Supported Contact Types
9.6.5. Setting Contact Conditions Manually
9.6.6. Contact Ease of Use Features
9.6.6.1. Automatically Generate Objects Scoped to Contact Regions
9.6.6.2. Controlling Transparency for Contact Regions
9.6.6.3. Displaying Contact Bodies with Different Colors
9.6.6.4. Displaying Contact Bodies in Separate Windows
9.6.6.5. Hiding Bodies Not Scoped to a Contact Region
9.6.6.6. Renaming Contact Regions Based on Geometry Names
9.6.6.7. Identifying Contact Regions for a Body
9.6.6.8. Create Contact Debonding
9.6.6.9. Flipping Contact and Target Scope Settings
9.6.6.10. Setting Default APDL Names
9.6.6.11. Merging Contact Regions That Share Geometry
9.6.6.12. Saving or Loading Contact Region Settings
9.6.6.13. Resetting Contact Regions to Default Settings
9.6.6.14. Locating Bodies Without Contact
9.6.6.15. Locating Parts Without Contact
9.6.7. Contact in Rigid Dynamics
9.6.7.1. Best Practices for Contact in Rigid Body Analyses
9.6.8. Best Practices for Specifying Contact Conditions
9.6.8.1. Contact Setup and Verification
9.6.8.2. Solver Preparation
9.6.8.3. Addressing Non-Convergence
9.7. Joints
9.7.1. Joint Characteristics
9.7.2. Joint Types
9.7.2.1. Fixed Joint
9.7.2.2. Revolute Joint
9.7.2.3. Cylindrical Joint
9.7.2.4. Translational Joint
9.7.2.5. Slot Joint
9.7.2.6. Universal Joint
9.7.2.7. Spherical Joint
9.7.2.8. Planar Joint
9.7.2.9. Bushing Joint
9.7.2.10. Screw Joint
9.7.2.11. Constant Velocity Joint (Homokinetic Joint)
9.7.2.12. Distance Joint
9.7.2.13. General Joint
9.7.2.14. Point on Curve Joint
9.7.2.15. Imperfect Joint Types
9.7.2.15.1. In-Plane Radial Gap
9.7.2.15.2. Spherical Gap
9.7.2.15.3. Radial Gap
9.7.3. Joint Properties
9.7.4. Modifying Joint Coordinate Systems
9.7.5. Joint Stiffness
9.7.6. Joint Friction
9.7.6.1. Joint Friction Definitions
9.7.6.2. Joint Types
9.7.6.3. Joint Friction Type
9.7.6.4. Notes
9.7.7. Manual Joint Creation
9.7.8. Automatic Joint Creation
9.7.9. Joint Stops and Locks
9.7.10. Ease of Use Features
9.7.11. Detecting Overconstrained Conditions
9.7.12. Example: Assembling Joints
9.7.13. Example: Configuring Joints
9.7.14. Example: Configuring Bodies
9.8. Springs
9.9. Beam Connections
9.10. Spot Welds
9.11. End Releases
9.12. Bearings
10. Meshing Features
10.1. Performing Feature Detection
10.2. Specifying Mesh Numbering
10.3. Creating Mesh Extrusions
10.4. Associating Named Selections To Pull Geometries
10.5. Mesh Workflows
11. Named Selections
11.1. Create a Named Selection Object
11.2. Defining Named Selections
11.2.1. Specifying Named Selections by Geometry Type
11.2.2. Specifying Named Selections using Worksheet Criteria
11.3. Specifying Criteria for Geometry-Based Named Selections
11.4. Understanding the Named Selections Worksheet
11.5. Applying Named Selections via the Ribbon
11.6. Promoting Scoped Objects to a Named Selection
11.7. Displaying Named Selections
11.8. Displaying Interior Mesh Faces
11.9. Scoping Analysis Objects to Named Selections
11.10. Sending Named Selections to the Solver
11.11. Protecting Named Selections
11.12. Including Named Selections in Program Controlled Inflation
11.13. LS-DYNA Named Selection IDs
11.14. Importing Named Selections
11.15. Exporting Named Selections
11.16. Merging Named Selections
11.17. Converting Named Selection Groups to Mechanical APDL Application Components
12. Remote Points
12.1. Remote Point Application
12.2. Geometry Behaviors
12.3. Support Specifications
12.4. Remote Point Features
13. Analysis Selection for Model-Level Objects
14. Tables
14.1. Table Requirements and Limitations
14.2. Tables in 2D and 3D Models
14.3. Create a Table
14.3.1. Import a Table from a Data File
14.3.2. Manually Enter a Table
14.3.3. Add a Table While Defining a Boundary Condition
14.4. Enter and Edit Data in a Table
14.5. Work with Tables in Free View
14.5.1. Plot Dependent Versus Independent Variables in Free View
14.5.2. Hide Plot in Free View
14.5.3. Sort Data by Column Value or Row Number
14.5.4. Change a Variable for a Column
14.5.5. Add a Column to a Table
14.5.6. Delete a Column from a Table
14.5.7. Add a Row to a Table
14.5.8. Delete a Row from a Table
14.6. Work With Tables in Unified View
14.6.1. Enter and Edit Data in Unified View
14.6.2. Plot and Display Variables
14.6.3. Select Active Dependent Variable
14.6.4. Hide Unified View Plot
14.7. Display Plotted Variable Values
14.8. View Table Details
14.9. Reimport Table Data
14.10. Reimport Table Data With Different Import Parameters
14.11. Rename a Table
14.12. Delete a Table
15. Symmetry
15.1. Types of Regions
15.1.1. Symmetry Region Overview
15.1.2. Periodic Region Overview
15.1.2.1. Electromagnetic Periodic Symmetry
15.1.2.1.1. Periodicity Example
15.1.3. Cyclic Region Overview
15.1.3.1. Pre-Meshed Cyclic Symmetry
15.1.3.2. Multistage Cyclic Symmetry Analysis
15.1.3.3. Cyclic Symmetry in a Static Structural or Static Acoustics Analysis
15.1.3.3.1. Applying Loads and Supports for Cyclic Symmetry in a Static Structural or Static Acoustics Analysis
15.1.3.3.2. Reviewing Results for Cyclic Symmetry in a Static Structural or Static Acoustics Analysis
15.1.3.4. Cyclic Symmetry in a Harmonic Response or FSI Harmonic Acoustics Analysis
15.1.3.4.1. Applying Loads and Supports for Cyclic Symmetry in a Harmonic Response or FSI Harmonic Acoustics Analysis
15.1.3.4.1.1. Non-Cyclic Loading
15.1.3.4.2. Reviewing Results for Cyclic Symmetry in a Harmonic Response or FSI Harmonic Acoustics Analysis
15.1.3.5. Cyclic Symmetry in a Modal or FSI Modal Acoustics Analysis
15.1.3.5.1. Applying Loads and Supports for Cyclic Symmetry in a Modal or FSI Modal Acoustics Analysis
15.1.3.5.2. Analysis Settings for Cyclic Symmetry in a Modal Analysis
15.1.3.5.3. Analysis Settings for Cyclic Symmetry in a FSI Modal Acoustics Analysis
15.1.3.5.4. Reviewing Results for Cyclic Symmetry in a Modal or FSI Modal Acoustics Analysis
15.1.3.6. Cyclic Symmetry in a Thermal Analysis
15.1.3.6.1. Applying Loads for Cyclic Symmetry in a Thermal Analysis
15.1.3.6.2. Reviewing Results for Cyclic Symmetry in a Thermal Analysis
15.1.4. General Axisymmetric Overview
15.2. Symmetry Workflow in DesignModeler
15.3. Symmetry Workflow in Mechanical
15.4. General Axisymmetric Workflow in Mechanical
16. Analysis Settings
16.1. Analysis Settings for Most Analysis Types
16.1.1. Step Controls for Static and Transient Analyses
16.1.2. Step Controls for Harmonic Analysis Types
16.1.3. Solver Controls
16.1.4. Restart Analysis
16.1.5. Restart Controls
16.1.6. Adaptivity Remeshing Controls
16.1.7. Creep Controls
16.1.8. Fracture Controls
16.1.9. Cyclic Controls
16.1.10. Radiosity Controls
16.1.11. Options for Analyses
16.1.11.1. Coupled Field Harmonic, Harmonic Acoustics, and Harmonic Response Options
16.1.11.2. Eigenvalue Buckling Analysis Options
16.1.11.3. Modal Acoustics and Modal Analysis Options
16.1.11.4. Random Vibration Options
16.1.11.5. Response Spectrum Options
16.1.11.6. Substructure Generation Options
16.1.11.7. Transient Structural (Linked to Modal) Options
16.1.12. Scattering Controls
16.1.13. Advanced
16.1.14. Damping Controls
16.1.15. Nonlinear Controls
16.1.15.1. Nonlinear Controls for Steady-State, Static, and Transient Analyses
16.1.15.2. Nonlinear Controls for Transient Thermal Analyses
16.1.15.3. Nonlinear Controls for Rigid Dynamics Analyses
16.1.16. Output Controls
16.1.17. Analysis Data Management
16.1.18. Rotordynamics Controls
16.1.19. Visibility
16.2. Steps and Step Controls for Static and Transient Analyses
16.2.1. Role of Time in Tracking
16.2.2. Steps, Substeps, and Equilibrium Iterations
16.2.3. Automatic Time Stepping
16.2.4. Guidelines for Integration Step Size
17. Boundary Conditions
17.1. Scoping and Applying Boundary Conditions
17.2. Specifying Boundary Condition Magnitude
17.2.1. Constant Numeric Values and Expressions
17.2.2. Tabular Loads
17.2.3. Mathematical Function Loads
17.2.4. Spatial Varying Displacements
17.2.5. Specifying Direction for Loads
17.2.6. Importing and Exporting Load Histories
17.3. Applying Stepped and Ramped Loads
17.4. Spatial Varying Loads and Displacements
17.5. Specifying Loads With Tables
17.5.1. Specify Pressure Loads with Tables
17.5.2. Specify Thermal Condition Loads with Tables
17.5.3. Specify Temperature Loads with Tables
17.6. Types of Boundary Conditions
17.6.1. Inertial Type Boundary Conditions
17.6.1.1. Acceleration
17.6.1.2. Standard Earth Gravity
17.6.1.3. Rotational Velocity
17.6.1.4. Rotational Acceleration
17.6.2. Load Type Boundary Conditions
17.6.2.1. Pressure
17.6.2.2. Pipe Pressure
17.6.2.3. Pipe Temperature
17.6.2.4. Fluid Penetration Pressure
17.6.2.5. Hydrostatic Pressure
17.6.2.6. Force
17.6.2.7. Remote Force
17.6.2.8. Bearing Load
17.6.2.9. Bolt Pretension
17.6.2.10. Moment
17.6.2.11. Generalized Plane Strain
17.6.2.12. Line Pressure
17.6.2.13. PSD Base Excitation
17.6.2.14. RS Base Excitation
17.6.2.15. Joint Load
17.6.2.16. Thermal Condition
17.6.2.17. Temperature
17.6.2.18. Convection
17.6.2.19. Radiation
17.6.2.20. Heat Flow
17.6.2.21. Heat Flux
17.6.2.22. Internal Heat Generation
17.6.2.23. Mass Flow Rate
17.6.2.24. Electric Charge
17.6.2.25. Voltage
17.6.2.26. Current
17.6.2.27. Voltage (Ground)
17.6.2.28. Electromagnetic Boundary Conditions and Excitations
17.6.2.28.1. Magnetic Flux Boundary Conditions
17.6.2.28.2. Conductor
17.6.2.28.2.1. Solid Source Conductor Body
17.6.2.28.2.2. Voltage Excitation for Solid Source Conductors
17.6.2.28.2.3. Current Excitation for Solid Source Conductors
17.6.2.28.2.4. Stranded Source Conductor Body
17.6.2.28.2.5. Current Excitation for Stranded Source Conductors
17.6.2.29. Motion Load
17.6.2.30. Fluid Solid Interface
17.6.2.31. System Coupling Region
17.6.2.32. Rotating Force
17.6.2.33. Imported CFD Pressure
17.6.3. Support Type Boundary Conditions
17.6.3.1. Fixed Support
17.6.3.2. Displacement
17.6.3.3. Remote Displacement
17.6.3.4. Velocity
17.6.3.5. Frictionless Support
17.6.3.6. Compression Only Support
17.6.3.7. Cylindrical Support
17.6.3.8. Simply Supported
17.6.3.9. Fixed Rotation
17.6.3.10. Elastic Support
17.6.4. Conditions Type Boundary Conditions
17.6.4.1. Coupling
17.6.4.2. Voltage Coupling
17.6.4.3. Constraint Equation
17.6.4.4. Pipe Idealization
17.6.4.5. Nonlinear Adaptive Region
17.6.4.6. Geometry Based Adaptivity
17.6.4.7. Element Birth and Death
17.6.4.8. Contact Step Control
17.6.4.9. Plastic Heating
17.6.4.10. Viscoelastic Heating
17.6.5. Direct FE Type Boundary Conditions
17.6.5.1. Nodal Orientation
17.6.5.2. Nodal Force
17.6.5.3. Nodal Pressure
17.6.5.4. Nodal Displacement
17.6.5.5. Nodal Rotation
17.6.5.6. EM (Electro-Mechanical) Transducer
17.6.6. Remote Boundary Conditions
17.6.7. Imported Boundary Conditions
17.6.7.1. Supported Analysis Types and Systems
17.6.7.2. Supported Boundary Conditions
17.6.7.2.1. Imported Body Force Density
17.6.7.2.2. Imported Body Temperature
17.6.7.2.3. Imported Boundary Remote Constraint
17.6.7.2.4. Imported Convection Coefficient
17.6.7.2.5. Imported Cut Boundary Constraint
17.6.7.2.6. Imported Cut Boundary Remote Force
17.6.7.2.7. Imported Displacement
17.6.7.2.8. Imported Force
17.6.7.2.9. Imported Heat Flux
17.6.7.2.10. Imported Heat Generation
17.6.7.2.11. Imported Initial Strain
17.6.7.2.12. Imported Initial Stress
17.6.7.2.12.1. Recommendations and Guidelines for Mapping of Initial Stress and Strain Data
17.6.7.2.13. Imported Pressure
17.6.7.2.14. Imported Remote Loads
17.6.7.2.15. Imported Surface Force Density
17.6.7.2.16. Imported Temperature
17.6.7.2.17. Imported Velocity
17.6.7.3. Applying Imported Boundary Conditions
17.6.7.4. Load Mapping Workflow Specification
17.7. Converting Boundary Conditions to Nodal DOF Constraints (Mechanical APDL Solver)
17.8. Resolving Thermal Boundary Condition Conflicts
18. Solving
18.1. Understanding Interface Options
18.2. Performing the Solution
18.2.1. Using HPC Platform Services to Solve Linked Analyses
18.2.2. Understanding HPC Platform Services (HPS) Limitations
18.3. Selecting Solve Modes for an Analysis
18.4. Using Solve Process Settings
18.4.1. Memory Tuning the Samcef Solver
18.4.2. Memory Tuning the ABAQUS Solver
18.5. Using Solution Restarts
18.6. Understanding Solve Scenarios
18.7. Specifying Solution Information
18.8. Postprocessing During Solve
18.9. Using Result Trackers
18.9.1. Structural Result Trackers
18.9.2. Thermal Result Trackers
18.10. Using Adaptive Convergence
18.11. Saving and Managing Results
18.12. Writing and Reading Solution Data
18.12.1. Writing and Reading the Mechanical APDL Application Files
18.12.2. Writing and Reading the LS-DYNA Application Files
18.12.3. Writing Ansys Rigid Dynamics Files
18.12.4. Writing NASTRAN Files
18.12.4.1. NASTRAN Export Supported Features
18.12.4.2. NASTRAN Export Limitations
18.13. Understanding Solving Units
19. Results
19.1. Introduction to the Use of Results
19.2. Result Outputs
19.2.1. Contour Results
19.2.2. Probes
19.2.2.1. Probe Types and Application Overview
19.2.2.2. Probe Details View
19.2.3. Chart and Table
19.2.4. Line Chart Results (LS-DYNA Only)
19.2.5. Contribution Graph Results
19.2.5.1. Panel Contribution
19.2.5.2. Order Contribution
19.2.5.3. Mode Contribution
19.2.5.4. Energy Contribution
19.2.6. Coordinate Systems Results
19.2.6.1. Nodal Coordinate Systems Results
19.2.6.2. Elemental Coordinate Systems Results
19.2.6.3. Rotational Order of Coordinate System Results
19.2.7. Interpolation of Result Values
19.2.8. Line Body Results
19.2.9. Path Results
19.2.10. Result Set Listing
19.2.11. Surface Results
19.2.12. Solution Summary Worksheet
19.2.13. Vector Plots
19.3. Result Definitions
19.3.1. Applying Results Based on Geometry
19.3.2. Specifying Result Coordinate Systems
19.3.2.1. Solution Coordinate System
19.3.3. Applying Decibel (dB) Weighting Filters
19.3.4. Defining Result Identifiers
19.3.5. Understanding the Material Properties Used in Postprocessing
19.3.6. Clearing Result Data
19.3.7. Understanding Averaged and Unaveraged Contour Results
19.3.8. Working with Multiple Result Sets
19.3.9. Displaying Surface Body Results (including Layered Shell Results)
19.3.10. Reviewing Unconverged Results
19.3.11. Handling of Degenerate Elements
19.3.12. Understanding Result Data Display Issues
19.4. Result Scoping
19.4.1. Geometry and Mesh
19.4.2. Path Construction Geometry
19.4.3. Surface Construction Geometry
19.4.4. Result File Items
19.4.5. Surface Coatings
19.4.6. Composite Analysis
19.4.7. Imported Condensed Parts
19.5. Structural Results
19.5.1. Deformation
19.5.2. Stress and Strain
19.5.2.1. Equivalent (von Mises)
19.5.2.2. Maximum, Middle, and Minimum Principal
19.5.2.3. Maximum Shear
19.5.2.4. Intensity
19.5.2.5. Vector Principals
19.5.2.6. Error (Structural)
19.5.2.7. Thermal Strain
19.5.2.8. Equivalent Plastic Strain
19.5.2.9. Accumulated Equivalent Plastic Strain
19.5.2.10. Equivalent Creep Strain
19.5.2.11. Equivalent Total Strain
19.5.2.12. Membrane Stress
19.5.2.13. Bending Stress
19.5.3. Stabilization Energy
19.5.4. Strain Energy
19.5.5. Damage Results
19.5.6. Linearized Stress
19.5.7. Contact Results
19.5.8. Frequency Response
19.5.9. Phase Response
19.5.10. Stress Tools
19.5.10.1. Maximum Equivalent Stress Safety Tool
19.5.10.2. Maximum Shear Stress Safety Tool
19.5.10.3. Mohr-Coulomb Stress Safety Tool
19.5.10.4. Maximum Tensile Stress Safety Tool
19.5.11. Fatigue (Fatigue Tool)
19.5.12. Fracture Results (Fracture Tool)
19.5.13. Composite Failure Tool
19.5.14. Composite Sampling Point Tool
19.5.15. Contact Tool
19.5.15.1. Contact Tool Initial Information
19.5.16. Bolt Tool
19.5.17. Beam Tool
19.5.18. Beam Results
19.5.18.1. Shear-Moment Diagram
19.5.19. Structural Probes
19.5.19.1. Position
19.5.19.2. Energy
19.5.19.3. Reactions: Forces and Moments
19.5.19.4. Joint Probes
19.5.19.5. Response PSD Probe
19.5.19.6. Spring Probes
19.5.19.7. Bearing Probes
19.5.19.8. Beam Probes
19.5.19.9. Bolt Pretension Probes
19.5.19.10. Generalized Plain Strain Probes
19.5.19.11. Contact Distance Probes
19.5.19.12. Fracture Probes (Fracture Tool)
19.5.20. Response PSD Tool
19.5.21. Gasket Results
19.5.22. Campbell Diagram Chart Results
19.5.23. Waterfall Diagrams
19.5.24. Contribution Results
19.6. Line Pressure Result
19.7. Volume Result
19.7.1. Volume Probe
19.8. Thermal Results
19.8.1. Temperature
19.8.2. Heat Flux
19.8.3. Heat Reaction
19.8.4. Error (Thermal)
19.8.5. Thermal Flow Results
19.8.6. Thermal Probes
19.8.7. Thermal Contact Results
19.9. Magnetostatic Results
19.9.1. Electric Potential
19.9.2. Total Magnetic Flux Density
19.9.3. Directional Magnetic Flux Density
19.9.4. Total Magnetic Field Intensity
19.9.5. Directional Magnetic Field Intensity
19.9.6. Total Force
19.9.7. Directional Force
19.9.8. Current Density
19.9.9. Inductance
19.9.10. Flux Linkage
19.9.11. Error (Magnetic)
19.9.12. Magnetostatic Probes
19.10. Electric Results
19.10.1. Electric Probes
19.10.2. Frequency Response for Electric Results
19.11. Fatigue Results
19.11.1. Fatigue Material Properties
19.11.2. Fatigue Stress Life versus Strain Life
19.11.3. Frequency-Based Fatigue
19.11.3.1. Fatigue Material Properties for Random Vibration (Spectral) Fatigue
19.11.3.2. Fatigue Result Methods for Random Vibration (Spectral) Fatigue
19.11.3.3. Fatigue Result Methods for Harmonic Fatigue
19.11.4. Fatigue Analysis Application
19.11.5. Fatigue Results
19.11.6. Fatigue Combination
19.11.7. Mechanical Embedded DesignLife UI
19.12. Noise, Vibration, and Harshness
19.13. Forced Response
19.14. User Defined Results
19.14.1. Overview
19.14.2. Characteristics
19.14.3. Application
19.14.4. Node-Based Scoping
19.14.5. User Defined Result Expressions
19.14.6. Unit Description
19.14.7. User Defined Results for the Mechanical APDL Solver
19.14.8. User Defined Results for the Ansys Rigid Dynamics Solver
19.15. Python Result
19.15.1. Insert the Python Result Object
19.15.2. Understanding Data Processing Framework
19.15.3. Using DPF with the Python Result Feature
19.15.4. Limitations of the Python Result Object
19.15.5. Workflow Examples
19.15.5.1. Display Results for Shared Shell Topologies
19.15.5.2. Total Deformation
19.15.5.3. Von Mises Stress
19.15.5.4. Retrieving Total Deformation from Table/Chart for Time Point
19.15.5.5. Strain Tensors - Named Selection Scoping
19.15.5.6. Total Deformation Scoped on Time Step using Property Provider
19.15.5.7. Total Deformation Scoped on Geometry using Property Provider
19.15.5.8. Migrating to New Python Result
19.15.6. Animation
19.16. User Defined Criteria
19.16.1. Define Primary Criterion for the Measures Object
19.16.2. Define Primary Criterion for a Harmonic Response Analysis
19.16.3. Define Primary Criterion for a Modal Analysis
19.16.4. Define Primary Criterion for a Static Structural Analysis
19.16.5. Combine Primary Criterion Objects
19.16.6. Understanding the Criterion Calculations
19.17. Result Utilities
19.17.1. Automatic Result Creation for All Result Sets
19.17.2. Adaptive Convergence
19.17.3. Animation
19.17.3.1. Animation Options
19.17.3.2. Animation Behaviors
19.17.3.3. Animation with Attached Camera
19.17.3.4. Accelerated Animation
19.17.4. Capped IsoSurfaces
19.17.5. Dynamic Legend
19.17.6. Exporting Results
19.17.7. Generating Reports
19.17.8. Local Minimum and Maximum Probes
19.17.9. Renaming Results Based on Definition
19.17.10. Results Legend
19.17.11. Results Tab
19.17.12. Solution Combination
19.17.12.1. Solution Combination Process Requirements and Conditions
20. Commands Object
20.1. Command Entry and Mechanical APDL Entry Options
20.2. Commands (APDL) Object Properties
20.3. Commands (APDL) Object Post Processing Specifications
20.4. Commands (APDL) Objects and the Mechanical APDL Solver
20.5. Commands (APDL) Objects and the Rigid Dynamics Solver
20.6. Commands (APDL) Objects and the LS-DYNA Solver
21. Python Code
21.1. Using Python Code for MAPDL Solver Input
21.2. Using Python Code for Event Based Code Execution
21.3. Resuming Databases with Python Code Objects
21.4. Sharing Scope
21.5. Working with the Property Provider
22. Parameters
22.1. Specifying Parameters
22.2. CAD Parameters
23. Productivity Tools
23.1. Generating Multiple Objects from a Template Object
23.2. Tagging Objects
23.2.1. Creating Tags
23.2.2. Applying Tags to Objects
23.2.3. Deleting a Tag
23.2.4. Renaming a Tag
23.2.5. Highlighting Tagged Tree Objects
24. CAD System Information
24.1. General Information
25. Troubleshooting
25.1. General Product Limitations
25.2. Problem Situations
25.2.1. A Linearized Stress Result Cannot Be Solved.
25.2.2. A Load Transfer Error Has Occurred.
25.2.3. A Master Node is Missing from the Condensed Part
25.2.4. Although the Exported File Was Saved to Disk
25.2.5. Although the Solution Failed to Solve Completely at all Time Points.
25.2.6. An Error Occurred Inside the SOLVER Module: Invalid Material Properties
25.2.7. An Error Occurred While Solving Due To Insufficient Disk Space
25.2.8. An Error Occurred While Starting the Solver Module
25.2.9. An Internal Solution Magnitude Limit Was Exceeded.
25.2.10. An Iterative Solver Was Used for this Analysis
25.2.11. At Least One Body Has Been Found to Have Only 1 Element
25.2.12. At Least One Spring Exists with Incorrectly Defined Nonlinear Stiffness
25.2.13. Animation Does not Export Correctly
25.2.14. Application Not Closing as Expected
25.2.15. Assemblies Missing Parts
25.2.16. Cannot Undo Node Move
25.2.17. CATIA V5 and IGES Surface Bodies
25.2.18. Constraint Equations Were Not Properly Matched
25.2.19. Element n Located in Body (and maybe other elements) Has Become Highly Distorted
25.2.20. Error Inertia tensor is too large
25.2.21. Equivalent Creep Strain Ratio has Exceeded the Specified Limit Value
25.2.22. Failed to Load Microsoft Office Application
25.2.23. Illogical Reaction Results
25.2.24. Large Deformation Effects are Active
25.2.25. Missing fonts for the Docking Pane Buttons (Linux Platform Only)
25.2.26. MPC equations were not built for one or more contact regions or remote boundary conditions
25.2.27. One or More Contact Regions May Not Be In Initial Contact
25.2.28. One or more MPC or Lagrange Multiplier formulation based contact may have conflicts
25.2.29. One or More Parts May Be Underconstrained
25.2.30. One or More Remote Boundary Conditions is Scoped to a Large Number of Elements
25.2.31. Problems Unique to Background (Asynchronous) Solutions
25.2.32. Problems Using Solution
25.2.33. Proxy Server Environment Variable
25.2.34. Remote Points with Overlapping Geometry Selections are not Recommended within a Condensed Part
25.2.35. Running Norton AntiVirusTM Causes the Mechanical Application to Crash
25.2.36. The Correctly Licensed Product Will Not Run
25.2.37. The Deformation is Large Compared to the Model Bounding Box
25.2.38. The Initial Time Increment May Be Too Large for This Problem
25.2.39. The Joint Probe cannot Evaluate Results
25.2.40. The License Manager Server Is Down
25.2.41. Linux Platform - Localized Operating System
25.2.42. The Low/High Boundaries of Cyclic Symmetry
25.2.43. The Remote Boundary Condition object is defined on the Cyclic Axis of Symmetry
25.2.44. The Solution Combination Folder
25.2.45. The Solver Engine was Unable to Converge
25.2.46. The Solver Has Found Conflicting DOF Constraints
25.2.47. Problem with RSM-Mechanical Connection
25.2.48. Unable to Find Requested Modes
25.2.49. You Must Specify Joint Conditions to all Three Rotational DOFs
25.2.50. Fracture Meshing Problems
25.2.51. Lustre Parallel File Systems on Linux
25.2.52. An Error Occurred Inside the SOLVER Module
25.3. Recommendations
A. Glossary of General Terms
B. Data Transfer Mapping and Validation
B.1. Data Transfer Mesh Mapping
B.2. Mapping Validation
C. Workbench Mechanical Wizard Advanced Programming Topics
C.1. Overview
C.2. URI Address and Path Considerations
C.3. Using Strings and Languages
C.4. Guidelines for Editing XML Files
C.5. About the TaskML Merge Process
C.6. Using the Integrated Wizard Development Kit (WDK)
C.7. Using IFRAME Elements
C.8. TaskML Reference
C.8.1. Overview Map of TaskML
C.8.2. Document Element
C.8.2.1. simulation-wizard
C.8.3. External References
C.8.3.1. Merge
C.8.3.2. Script
C.8.4. Object Grouping
C.8.4.1. object-group
C.8.4.2. object-groups
C.8.4.3. object-type
C.8.5. Status Definitions
C.8.5.1. status
C.8.5.2. statuses
C.8.6. Language and Text
C.8.6.1. data
C.8.6.2. language
C.8.6.3. string
C.8.6.4. strings
C.8.7. Tasks and Events
C.8.7.1. activate-event
C.8.7.2. task
C.8.7.3. tasks
C.8.7.4. update-event
C.8.8. Wizard Content
C.8.8.1. body
C.8.8.2. group
C.8.8.3. iframe
C.8.8.4. taskref
C.8.9. Rules
C.8.9.1. Statements
C.8.9.1.1. and
C.8.9.1.2. debug
C.8.9.1.3. if then else stop
C.8.9.1.4. not
C.8.9.1.5. or
C.8.9.1.6. update
C.8.9.2. Conditions
C.8.9.2.1. assembly-geometry
C.8.9.2.2. changeable-length-unit
C.8.9.2.3. geometry-includes-sheets
C.8.9.2.4. level
C.8.9.2.5. object
C.8.9.2.6. zero-thickness-sheet
C.8.9.2.7. valid-emag-geometry
C.8.9.2.8. enclosure-exists
C.8.9.3. Actions
C.8.9.3.1. click-button
C.8.9.3.2. display-details-callout
C.8.9.3.3. display-help-topic
C.8.9.3.4. display-outline-callout
C.8.9.3.5. display-status-callout
C.8.9.3.6. display-tab-callout
C.8.9.3.7. display-task-callout
C.8.9.3.8. display-toolbar-callout
C.8.9.3.9. open-url
C.8.9.3.10. select-all-objects
C.8.9.3.11. select-field
C.8.9.3.12. select-first-object
C.8.9.3.13. select-first-parameter-field
C.8.9.3.14. select-first-undefined-field
C.8.9.3.15. select-zero-thickness-sheets
C.8.9.3.16. select-enclosures
C.8.9.3.17. send-mail
C.8.9.3.18. set-caption
C.8.9.3.19. set-icon
C.8.9.3.20. set-status
C.8.10. Scripting
C.8.10.1. eval
C.9. Standard Object Groups Reference
C.10. Tutorials
C.10.1. Tutorial: Adding a Link
C.10.2. Tutorial: Creating a Custom Task
C.10.3. Tutorial: Creating a Custom Wizard
C.10.4. Tutorial: Adding a Web Search IFRAME
C.10.5. Completed TaskML Files
C.10.5.1. Links.xml
C.10.5.2. Insert100psi.xml
C.10.5.3. CustomWizard.xml
C.10.5.4. Search.htm
C.10.5.5. CustomWizardSearch.xml
C.11. Wizard Development Kit (WDK) Groups
C.11.1. WDK: Tools Group
C.11.2. WDK: Commands Group
C.11.3. WDK Tests: Actions
C.11.4. WDK Tests: Flags (Conditions)
Index