/Collapse all
- Overview
 - 1. The Ansys Product Improvement Program
 - 2. Application Interface
 - 2.1. Interface Overview
 - 2.2. Ribbon
 - 2.3. Graphics Toolbar
 - 2.4. Outline
 - 2.5. Details Pane
 - 2.6. Geometry Window
 - 2.7. Status Bar
 - 2.8. Quick Launch
 - 2.9. Help Menu
 - 2.10. Color Theme
 - 2.11. Ribbon Customization Options
 - 2.12. Scoping Recovery following Geometry Update
 - 2.13. Creating User-Defined Buttons
 - 2.14. Windows Management
 - 2.15. Preference Migration
 - 2.16. Resource Prediction
 - 2.17. Print Preview
 - 2.18. Report Preview
 - 2.19. Full Screen Mode
 - 2.20. Contextual Windows
 - 2.21. Group Tree Objects
 - 2.22. Interface Behavior Based on License Levels
 - 2.23. Environment Filtering
 - 2.24. Using Macros
 - 2.25. Setting Variables
 - 2.26. Data Export
 - 2.27. Keyframe Animation
 - 2.28. Graphical Selection and Display
 - 2.28.1. Selecting Geometry
 - 2.28.2. Selecting Nodes
 - 2.28.3. Selecting Elements and Element Faces
 - 2.28.4. Selecting Nodes and Elements by ID
 - 2.28.5. Manipulating the Model in the Geometry Window
 - 2.28.6. Defining Direction
 - 2.28.7. Using Viewports
 - 2.28.8. Accelerated Graphics
 - 2.28.9. Controlling Graphs and Charts
 - 2.28.10. Managing Graphical View Settings
 - 2.28.11. Creating Section Planes
 - 2.28.12. Viewing Annotations
 - 2.28.13. Controlling Lighting
 - 2.28.14. Inserting Comments, Images, and Figures
 
- 2.29. Hotkeys and Keyboard Shortcuts
 - 2.30. Wizards
 
- 3. Application Preferences
 - 3.1. Open the Options Dialog
 - 3.2. Common Settings
 - 3.3. Mechanical Options
 - 3.3.1. Connections
 - 3.3.2. Convergence
 - 3.3.3. Import
 - 3.3.4. Export
 - 3.3.5. Fatigue
 - 3.3.6. Frequency
 - 3.3.7. Geometry
 - 3.3.8. Geometry Import
 - 3.3.9. Meshing
 - 3.3.10. Graphics
 - 3.3.11. Miscellaneous
 - 3.3.12. Messages
 - 3.3.13. Report
 - 3.3.14. Analysis Settings and Solution
 - 3.3.15. Loads and Boundary Conditions
 - 3.3.16. Results
 - 3.3.17. Visibility
 - 3.3.18. Wizard
 - 3.3.19. Commands
 - 3.3.20. UI Options
 
- 4. General Analysis Workflow
 - 4.1. Create or Resume Analysis Systems
 - 4.2. Define Materials
 - 4.3. Attach Geometry/Mesh
 - 4.4. Define Part Behavior
 - 4.5. Create a Simulation Template
 - 4.6. Create a Geometry in Mechanical
 - 4.7. Define Substructures
 - 4.8. Define Connections
 - 4.9. Apply Mesh Controls and Preview Mesh
 - 4.10. Establish Analysis Settings
 - 4.11. Define Initial Conditions
 - 4.12. Apply Pre-Stress Effects for Implicit Analysis
 - 4.13. Apply Boundary Conditions
 - 4.14. Perform Solution
 - 4.15. Review Results
 - 4.16. Create Report (optional)
 
- 5. Analysis Types
 - 5.1. Adaptivity Analyses
 - 5.2. Coupled Field Analysis Types
 - 5.2.1. Coupled Field Harmonic Analysis
 - 5.2.2. Prestressed Coupled Field Harmonic Analysis
 - 5.2.3. Coupled Field Modal Analysis
 - 5.2.4. Prestressed Coupled Field Modal Analysis
 - 5.2.5. Coupled Field Static Analysis
 - 5.2.6. Coupled Field Transient Analysis
 - 5.2.7. Limitations
 - 5.2.8. Application Examples and Background
 
- 5.3. Electric Analysis
 - 5.4. Explicit Dynamics Analysis
 - 5.5. Fracture Analysis
 - 5.5.1. Fracture Analysis Workflows
 - 5.5.2. Limitations of Fracture Analysis
 - 5.5.3. Fracture Meshing
 - 5.5.4. Cracks
 - 5.5.4.1. Crack Overview
 - 5.5.4.2. Defining an Arbitrary Crack
 - 5.5.4.3. Defining a Semi-Elliptical Crack
 - 5.5.4.4. Defining an Elliptical Crack
 - 5.5.4.5. Defining a Ring Crack
 - 5.5.4.6. Defining a Corner Crack
 - 5.5.4.7. Defining an Edge Crack
 - 5.5.4.8. Defining a Through Crack
 - 5.5.4.9. Defining a Cylindrical Crack
 - 5.5.4.10. Defining a Pre-Meshed Crack
 - 5.5.4.11. Special Handling of Named Selections for Crack Objects
 - 5.5.4.12. Initiate a Crack using Crack Initiation
 
- 5.5.5. SMART Crack Growth
 - 5.5.6. Crack Initiation and Propagation using SMART Crack Growth
 - 5.5.7. Interface Delamination and Contact Debonding
 - 5.5.8. Multi-Point Constraint (MPC) Contact for Fracture
 - 5.5.9. Solving a Fracture Analysis
 - 5.5.10. Extracting Fracture Results from a Result File
 
- 5.6. Linear Dynamics Analysis Types
 - 5.6.1. Eigenvalue Buckling Analysis
 - 5.6.2. Harmonic Response Analysis
 - 5.6.3. Harmonic Response (Full) Analysis Using Pre-Stressed Structural System
 - 5.6.4. Harmonic Response Analysis Using Linked Modal Analysis System
 - 5.6.5. Modal Analysis
 - 5.6.6. Random Vibration Analysis
 - 5.6.7. Response Spectrum Analysis
 - 5.6.8. Substructure Generation Analysis
 
- 5.7. Magnetostatic Analysis
 - 5.8. Rigid Dynamics Analysis
 - 5.8.1. Preparing a Rigid Dynamics Analysis
 - 5.8.2. Command Reference for Rigid Dynamics Systems
 - 5.8.3. Using the Variable Load Add-on
 - 5.8.4. Using the Motion Load Transfer Add-on
 - 5.8.5. Multibody Dynamics Theory Guide
 - 5.8.5.1. Rigid Degrees of Freedom
 - 5.8.5.2. Rigid Shape Functions
 - 5.8.5.3. Flexible Shape Functions
 - 5.8.5.4. Equations of Motion
 - 5.8.5.5. Time Integration with Explicit Runge-Kutta
 - 5.8.5.6. Implicit Generalized-α Method
 - 5.8.5.7. Stabilized Implicit Generalized-α Method
 - 5.8.5.8. Moreau-Jean Method
 - 5.8.5.9. Geometric Correction
 - 5.8.5.10. Contact and Stops
 - 5.8.5.11. References
 
- 5.9. Static Structural Analysis
 - 5.10. Steady-State Thermal Analysis
 - 5.11. Thermal-Electric Analysis
 - 5.12. Transient Structural Analysis
 - 5.13. Transient Structural Analysis Using Linked Modal Analysis System
 - 5.14. Transient Thermal Analysis
 - 5.15. Special Analysis Topics
 - 5.15.1. Additive Manufacturing Process Simulation
 - 5.15.2. Composite Analysis
 - 5.15.3. ECAD Analysis using Trace Mapping
 - 5.15.4. Electromagnetics (EM) - Mechanical Data Transfer
 - 5.15.5. External Data
 - 5.15.6. External Study Import
 - 5.15.7. Fluid-Structure Interaction (FSI)
 - 5.15.8. Icepak to Mechanical Data Transfer
 - 5.15.9. Inverse Solving for Nonlinear Static Structural Analyses
 - 5.15.10. Mechanical-Electronics Interaction (Mechatronics) Data Transfer
 - 5.15.11. Polyflow to Mechanical Data Transfer
 - 5.15.12. Reinforcement Specification Using Mesh-Independent Method
 - 5.15.13. Rotordynamics Analysis
 - 5.15.14. Substructure Analysis
 - 5.15.15. Static Analysis From Rigid Dynamics Analysis
 - 5.15.16. Submodeling
 - 5.15.17. System Coupling
 - 5.15.17.1. Supported Capabilities and Limitations
 - 5.15.17.2. Variables Available for System Coupling
 - 5.15.17.3. System Coupling Related Settings in Mechanical
 - 5.15.17.4. Using Higher-Order Meshes for Coupled Analyses
 - 5.15.17.5. One-Way FSI Transfers Using System Coupling in Workbench
 - 5.15.17.6. Coupled Field Co-Simulation Using System Coupling
 - 5.15.17.7. Coupling Thin Surfaces in CFX
 - 5.15.17.8. Restarting Structural Mechanical Analyses as Part of System Coupling
 - 5.15.17.9. Running Mechanical as a Coupling Participant in System Coupling's GUI or CLI
 - 5.15.17.10. Troubleshooting Two-Way Coupling Analysis Problems
 - 5.15.17.11. Product Licensing Considerations when using System Coupling
 
- 5.15.18. Thermal-Stress Analysis
 - 5.15.19. Transferring Hydrodynamic Loads to a Structural System
 - 5.15.20. Twin Builder/Rigid Dynamics Co-Simulation
 - 5.15.21. Welding Toolbox
 
- 6. Geometry
 - 6.1. Geometry Introduction
 - 6.2. Solid Bodies
 - 6.3. Surface Bodies
 - 6.3.1. Preparing Assemblies of Surface Bodies
 - 6.3.2. Using Thickness Mode
 - 6.3.3. Importing Surface Body Models
 - 6.3.4. Importing Surface Body Thickness
 - 6.3.5. Understanding Surface Body Shell Offsets
 - 6.3.6. Specifying Surface Body Thickness
 - 6.3.7. Specifying Surface Body Layered Sections
 - 6.3.8. Specifying Surface Body Reinforcements
 - 6.3.9. Specifying Faces With Multiple Thicknesses and Layers
 
- 6.4. Line Bodies
 - 6.5. Simulation without Geometry
 - 6.6. 2D Analyses
 - 6.7. Construction Geometry
 - 6.8. Body Merge
 - 6.8.1. Body Merge Requirements and Limitations
 - 6.8.2. How Body Merge Affects Body Attributes, Scoping, and Meshing
 - 6.8.3. Merging Bodies with Body Merge
 - 6.8.4. Executing a Body Merge
 - 6.8.5. Body Merge Status and Details
 - 6.8.6. Suppressing and Unsuppressing a Body Merge
 - 6.8.7. Clearing a Body Merge
 - 6.8.8. Deleting a Body Merge
 
- 6.9. Point Mass
 - 6.10. Distributed Mass
 - 6.11. Thermal Point Mass
 - 6.12. Surface Coating
 - 6.13. Models from External Meshes and Model Assemblies
 - 6.13.1. Importing Mesh-Based Geometry
 - 6.13.1.1. Supported External File Types
 - 6.13.1.2. Import Workflow and Interface Options
 - 6.13.1.3. Supported Finite Element Data Types
 - 6.13.1.3.1. Imported Bolt Pretensions and Premeshed Bolt Pretensions
 - 6.13.1.3.2. Imported Boundary Conditions
 - 6.13.1.3.3. Imported Composite Plies
 - 6.13.1.3.4. Imported Constraint Equations or Coupling
 - 6.13.1.3.5. Imported Contacts
 - 6.13.1.3.6. Imported Coordinate Systems
 - 6.13.1.3.7. Imported Cross Sections
 - 6.13.1.3.8. Imported Element Orientations
 - 6.13.1.3.9. Imported Flexible Remote Connectors
 - 6.13.1.3.10. Imported Named Selections
 - 6.13.1.3.11. Imported Nodal Orientations
 - 6.13.1.3.12. Imported Point Mass
 - 6.13.1.3.13. Imported Rigid Bodies
 - 6.13.1.3.14. Imported Rigid Remote Connectors
 - 6.13.1.3.15. Imported Shell Thicknesses
 - 6.13.1.3.16. Imported Spring Connectors
 - 6.13.1.3.17. Imported Initial Stresses
 
- 6.13.1.4. Automatic Material Assignment
 - 6.13.1.5. Reference Node Naming
 - 6.13.1.6. Importing Mesh-Based Databases in Batch
 - 6.13.1.7. External Model Supported Element Types
 - 6.13.1.8. Supported External Model Commands
 - 6.13.1.9. Accessing Imported Mesh-Based Databases through ACT
 - 6.13.1.10. Examples of a Synthesized Mesh using Tolerance Angles
 
- 6.13.2. Assembling External Models and Mechanical Models
 
- 6.14. Element Orientation
 - 6.15. Part Transformations
 - 6.16. Geometry from Deformation Results
 - 6.17. Geometry From Rigid Dynamics Results
 - 6.18. Bolt Tools Add-on
 
- 7. Materials
 - 8. Coordinate Systems
 - 8.1. Creating Coordinate Systems
 - 8.1.1. Initial Creation and Definition
 - 8.1.2. Establishing Origin for Associative and Non-Associative Coordinate Systems
 - 8.1.3. Setting Principal Axis and Orientation
 - 8.1.4. Using Transformations
 - 8.1.5. Creating a Coordinate System Based on a Surface Normal
 - 8.1.6. Creating a Coordinate System Based on the Center of Mass
 - 8.1.7. Setting a Coordinate System Origin at the Center of Mass
 
- 8.2. Importing Coordinate Systems
 - 8.3. Applying Coordinate Systems as Reference Locations
 - 8.4. Using Coordinate Systems to Specify Joint Locations
 - 8.5. Creating Coordinate-Based Section Planes
 - 8.6. Transferring Coordinate Systems to the Mechanical APDL Application
 - 8.7. Setting Up Coordinate Systems in the Mechanical Configure Tool
 
- 9. Connections
 - 9.1. Connections Folder
 - 9.2. Connections Worksheet
 - 9.3. Connection Group
 - 9.4. Connection Features and Operations
 - 9.5. Connections Manager Extension
 - 9.6. Contact
 - 9.6.1. Contact Overview
 - 9.6.2. Contact Formulation Theory
 - 9.6.3. Contact Settings
 - 9.6.4. Supported Contact Types
 - 9.6.5. Setting Contact Conditions Manually
 - 9.6.6. Contact Ease of Use Features
 - 9.6.6.1. Automatically Generate Objects Scoped to Contact Regions
 - 9.6.6.2. Controlling Transparency for Contact Regions
 - 9.6.6.3. Displaying Contact Bodies with Different Colors
 - 9.6.6.4. Displaying Contact Bodies in Separate Windows
 - 9.6.6.5. Hiding Bodies Not Scoped to a Contact Region
 - 9.6.6.6. Renaming Contact Regions Based on Geometry Names
 - 9.6.6.7. Identifying Contact Regions for a Body
 - 9.6.6.8. Create Contact Debonding
 - 9.6.6.9. Flipping Contact and Target Scope Settings
 - 9.6.6.10. Setting Default APDL Names
 - 9.6.6.11. Merging Contact Regions That Share Geometry
 - 9.6.6.12. Saving or Loading Contact Region Settings
 - 9.6.6.13. Resetting Contact Regions to Default Settings
 - 9.6.6.14. Locating Bodies Without Contact
 - 9.6.6.15. Locating Parts Without Contact
 
- 9.6.7. Contact in Rigid Dynamics
 - 9.6.8. Best Practices for Specifying Contact Conditions
 
- 9.7. Joints
 - 9.7.1. Joint Characteristics
 - 9.7.2. Joint Types
 - 9.7.2.1. Fixed Joint
 - 9.7.2.2. Revolute Joint
 - 9.7.2.3. Cylindrical Joint
 - 9.7.2.4. Translational Joint
 - 9.7.2.5. Slot Joint
 - 9.7.2.6. Universal Joint
 - 9.7.2.7. Spherical Joint
 - 9.7.2.8. Planar Joint
 - 9.7.2.9. Bushing Joint
 - 9.7.2.10. Screw Joint
 - 9.7.2.11. Constant Velocity Joint (Homokinetic Joint)
 - 9.7.2.12. Distance Joint
 - 9.7.2.13. General Joint
 - 9.7.2.14. Point on Curve Joint
 - 9.7.2.15. Imperfect Joint Types
 
- 9.7.3. Joint Properties
 - 9.7.4. Modifying Joint Coordinate Systems
 - 9.7.5. Joint Stiffness
 - 9.7.6. Joint Friction
 - 9.7.7. Manual Joint Creation
 - 9.7.8. Automatic Joint Creation
 - 9.7.9. Joint Stops and Locks
 - 9.7.10. Ease of Use Features
 - 9.7.11. Detecting Overconstrained Conditions
 - 9.7.12. Example: Assembling Joints
 - 9.7.13. Example: Configuring Joints
 - 9.7.14. Example: Configuring Bodies
 
- 9.8. Springs
 - 9.9. Beam Connections
 - 9.10. Spot Welds
 - 9.11. End Releases
 - 9.12. Bearings
 
- 10. Meshing Features
 - 11. Named Selections
 - 11.1. Create a Named Selection Object
 - 11.2. Defining Named Selections
 - 11.3. Specifying Criteria for Geometry-Based Named Selections
 - 11.4. Understanding the Named Selections Worksheet
 - 11.5. Applying Named Selections via the Ribbon
 - 11.6. Promoting Scoped Objects to a Named Selection
 - 11.7. Displaying Named Selections
 - 11.8. Displaying Interior Mesh Faces
 - 11.9. Scoping Analysis Objects to Named Selections
 - 11.10. Sending Named Selections to the Solver
 - 11.11. Protecting Named Selections
 - 11.12. Including Named Selections in Program Controlled Inflation
 - 11.13. LS-DYNA Named Selection IDs
 - 11.14. Importing Named Selections
 - 11.15. Exporting Named Selections
 - 11.16. Merging Named Selections
 - 11.17. Converting Named Selection Groups to Mechanical APDL Application Components
 
- 12. Remote Points
 - 13. Analysis Selection for Model-Level Objects
 - 14. Tables
 - 14.1. Table Requirements and Limitations
 - 14.2. Tables in 2D and 3D Models
 - 14.3. Create a Table
 - 14.4. Enter and Edit Data in a Table
 - 14.5. Work with Tables in Free View
 - 14.5.1. Plot Dependent Versus Independent Variables in Free View
 - 14.5.2. Hide Plot in Free View
 - 14.5.3. Sort Data by Column Value or Row Number
 - 14.5.4. Change a Variable for a Column
 - 14.5.5. Add a Column to a Table
 - 14.5.6. Delete a Column from a Table
 - 14.5.7. Add a Row to a Table
 - 14.5.8. Delete a Row from a Table
 
- 14.6. Work With Tables in Unified View
 - 14.7. Display Plotted Variable Values
 - 14.8. View Table Details
 - 14.9. Reimport Table Data
 - 14.10. Reimport Table Data With Different Import Parameters
 - 14.11. Rename a Table
 - 14.12. Delete a Table
 
- 15. Symmetry
 - 15.1. Types of Regions
 - 15.1.1. Symmetry Region Overview
 - 15.1.2. Periodic Region Overview
 - 15.1.3. Cyclic Region Overview
 - 15.1.3.1. Pre-Meshed Cyclic Symmetry
 - 15.1.3.2. Multistage Cyclic Symmetry Analysis
 - 15.1.3.3. Cyclic Symmetry in a Static Structural or Static Acoustics Analysis
 - 15.1.3.4. Cyclic Symmetry in a Harmonic Response or FSI Harmonic Acoustics Analysis
 - 15.1.3.5. Cyclic Symmetry in a Modal or FSI Modal Acoustics Analysis
 - 15.1.3.5.1. Applying Loads and Supports for Cyclic Symmetry in a Modal or FSI Modal Acoustics Analysis
 - 15.1.3.5.2. Analysis Settings for Cyclic Symmetry in a Modal Analysis
 - 15.1.3.5.3. Analysis Settings for Cyclic Symmetry in a FSI Modal Acoustics Analysis
 - 15.1.3.5.4. Reviewing Results for Cyclic Symmetry in a Modal or FSI Modal Acoustics Analysis
 
- 15.1.3.6. Cyclic Symmetry in a Thermal Analysis
 
- 15.1.4. General Axisymmetric Overview
 
- 15.2. Symmetry Workflow in DesignModeler
 - 15.3. Symmetry Workflow in Mechanical
 - 15.4. General Axisymmetric Workflow in Mechanical
 
- 16. Analysis Settings
 - 16.1. Analysis Settings for Most Analysis Types
 - 16.1.1. Step Controls for Static and Transient Analyses
 - 16.1.2. Step Controls for Harmonic Analysis Types
 - 16.1.3. Solver Controls
 - 16.1.4. Restart Analysis
 - 16.1.5. Restart Controls
 - 16.1.6. Adaptivity Remeshing Controls
 - 16.1.7. Creep Controls
 - 16.1.8. Fracture Controls
 - 16.1.9. Cyclic Controls
 - 16.1.10. Radiosity Controls
 - 16.1.11. Options for Analyses
 - 16.1.11.1. Coupled Field Harmonic, Harmonic Acoustics, and Harmonic Response Options
 - 16.1.11.2. Eigenvalue Buckling Analysis Options
 - 16.1.11.3. Modal Acoustics and Modal Analysis Options
 - 16.1.11.4. Random Vibration Options
 - 16.1.11.5. Response Spectrum Options
 - 16.1.11.6. Substructure Generation Options
 - 16.1.11.7. Transient Structural (Linked to Modal) Options
 
- 16.1.12. Scattering Controls
 - 16.1.13. Advanced
 - 16.1.14. Damping Controls
 - 16.1.15. Nonlinear Controls
 - 16.1.16. Output Controls
 - 16.1.17. Analysis Data Management
 - 16.1.18. Rotordynamics Controls
 - 16.1.19. Visibility
 
- 16.2. Steps and Step Controls for Static and Transient Analyses
 
- 17. Boundary Conditions
 - 17.1. Scoping and Applying Boundary Conditions
 - 17.2. Specifying Boundary Condition Magnitude
 - 17.3. Applying Stepped and Ramped Loads
 - 17.4. Spatial Varying Loads and Displacements
 - 17.5. Specifying Loads With Tables
 - 17.6. Types of Boundary Conditions
 - 17.6.1. Inertial Type Boundary Conditions
 - 17.6.2. Load Type Boundary Conditions
 - 17.6.2.1. Pressure
 - 17.6.2.2. Pipe Pressure
 - 17.6.2.3. Pipe Temperature
 - 17.6.2.4. Fluid Penetration Pressure
 - 17.6.2.5. Hydrostatic Pressure
 - 17.6.2.6. Force
 - 17.6.2.7. Remote Force
 - 17.6.2.8. Bearing Load
 - 17.6.2.9. Bolt Pretension
 - 17.6.2.10. Moment
 - 17.6.2.11. Generalized Plane Strain
 - 17.6.2.12. Line Pressure
 - 17.6.2.13. PSD Base Excitation
 - 17.6.2.14. RS Base Excitation
 - 17.6.2.15. Joint Load
 - 17.6.2.16. Thermal Condition
 - 17.6.2.17. Temperature
 - 17.6.2.18. Convection
 - 17.6.2.19. Radiation
 - 17.6.2.20. Heat Flow
 - 17.6.2.21. Heat Flux
 - 17.6.2.22. Internal Heat Generation
 - 17.6.2.23. Mass Flow Rate
 - 17.6.2.24. Electric Charge
 - 17.6.2.25. Voltage
 - 17.6.2.26. Current
 - 17.6.2.27. Voltage (Ground)
 - 17.6.2.28. Electromagnetic Boundary Conditions and Excitations
 - 17.6.2.29. Motion Load
 - 17.6.2.30. Fluid Solid Interface
 - 17.6.2.31. System Coupling Region
 - 17.6.2.32. Rotating Force
 - 17.6.2.33. Imported CFD Pressure
 
- 17.6.3. Support Type Boundary Conditions
 - 17.6.4. Conditions Type Boundary Conditions
 - 17.6.5. Direct FE Type Boundary Conditions
 - 17.6.6. Remote Boundary Conditions
 - 17.6.7. Imported Boundary Conditions
 - 17.6.7.1. Supported Analysis Types and Systems
 - 17.6.7.2. Supported Boundary Conditions
 - 17.6.7.2.1. Imported Body Force Density
 - 17.6.7.2.2. Imported Body Temperature
 - 17.6.7.2.3. Imported Boundary Remote Constraint
 - 17.6.7.2.4. Imported Convection Coefficient
 - 17.6.7.2.5. Imported Cut Boundary Constraint
 - 17.6.7.2.6. Imported Cut Boundary Remote Force
 - 17.6.7.2.7. Imported Displacement
 - 17.6.7.2.8. Imported Force
 - 17.6.7.2.9. Imported Heat Flux
 - 17.6.7.2.10. Imported Heat Generation
 - 17.6.7.2.11. Imported Initial Strain
 - 17.6.7.2.12. Imported Initial Stress
 - 17.6.7.2.13. Imported Pressure
 - 17.6.7.2.14. Imported Remote Loads
 - 17.6.7.2.15. Imported Surface Force Density
 - 17.6.7.2.16. Imported Temperature
 - 17.6.7.2.17. Imported Velocity
 
- 17.6.7.3. Applying Imported Boundary Conditions
 - 17.6.7.4. Load Mapping Workflow Specification
 
- 17.7. Converting Boundary Conditions to Nodal DOF Constraints (Mechanical APDL Solver)
 - 17.8. Resolving Thermal Boundary Condition Conflicts
 
- 18. Solving
 - 18.1. Understanding Interface Options
 - 18.2. Performing the Solution
 - 18.3. Selecting Solve Modes for an Analysis
 - 18.4. Using Solve Process Settings
 - 18.5. Using Solution Restarts
 - 18.6. Understanding Solve Scenarios
 - 18.7. Specifying Solution Information
 - 18.8. Postprocessing During Solve
 - 18.9. Using Result Trackers
 - 18.10. Using Adaptive Convergence
 - 18.11. Saving and Managing Results
 - 18.12. Writing and Reading Solution Data
 - 18.13. Understanding Solving Units
 
- 19. Results
 - 19.1. Introduction to the Use of Results
 - 19.2. Result Outputs
 - 19.2.1. Contour Results
 - 19.2.2. Probes
 - 19.2.3. Chart and Table
 - 19.2.4. Line Chart Results (LS-DYNA Only)
 - 19.2.5. Contribution Graph Results
 - 19.2.6. Coordinate Systems Results
 - 19.2.7. Interpolation of Result Values
 - 19.2.8. Line Body Results
 - 19.2.9. Path Results
 - 19.2.10. Result Set Listing
 - 19.2.11. Surface Results
 - 19.2.12. Solution Summary Worksheet
 - 19.2.13. Vector Plots
 
- 19.3. Result Definitions
 - 19.3.1. Applying Results Based on Geometry
 - 19.3.2. Specifying Result Coordinate Systems
 - 19.3.3. Applying Decibel (dB) Weighting Filters
 - 19.3.4. Defining Result Identifiers
 - 19.3.5. Understanding the Material Properties Used in Postprocessing
 - 19.3.6. Clearing Result Data
 - 19.3.7. Understanding Averaged and Unaveraged Contour Results
 - 19.3.8. Working with Multiple Result Sets
 - 19.3.9. Displaying Surface Body Results (including Layered Shell Results)
 - 19.3.10. Reviewing Unconverged Results
 - 19.3.11. Handling of Degenerate Elements
 - 19.3.12. Understanding Result Data Display Issues
 
- 19.4. Result Scoping
 - 19.5. Structural Results
 - 19.5.1. Deformation
 - 19.5.2. Stress and Strain
 - 19.5.2.1. Equivalent (von Mises)
 - 19.5.2.2. Maximum, Middle, and Minimum Principal
 - 19.5.2.3. Maximum Shear
 - 19.5.2.4. Intensity
 - 19.5.2.5. Vector Principals
 - 19.5.2.6. Error (Structural)
 - 19.5.2.7. Thermal Strain
 - 19.5.2.8. Equivalent Plastic Strain
 - 19.5.2.9. Accumulated Equivalent Plastic Strain
 - 19.5.2.10. Equivalent Creep Strain
 - 19.5.2.11. Equivalent Total Strain
 - 19.5.2.12. Membrane Stress
 - 19.5.2.13. Bending Stress
 
- 19.5.3. Stabilization Energy
 - 19.5.4. Strain Energy
 - 19.5.5. Damage Results
 - 19.5.6. Linearized Stress
 - 19.5.7. Contact Results
 - 19.5.8. Frequency Response
 - 19.5.9. Phase Response
 - 19.5.10. Stress Tools
 - 19.5.11. Fatigue (Fatigue Tool)
 - 19.5.12. Fracture Results (Fracture Tool)
 - 19.5.13. Composite Failure Tool
 - 19.5.14. Composite Sampling Point Tool
 - 19.5.15. Contact Tool
 - 19.5.16. Bolt Tool
 - 19.5.17. Beam Tool
 - 19.5.18. Beam Results
 - 19.5.19. Structural Probes
 - 19.5.19.1. Position
 - 19.5.19.2. Energy
 - 19.5.19.3. Reactions: Forces and Moments
 - 19.5.19.4. Joint Probes
 - 19.5.19.5. Response PSD Probe
 - 19.5.19.6. Spring Probes
 - 19.5.19.7. Bearing Probes
 - 19.5.19.8. Beam Probes
 - 19.5.19.9. Bolt Pretension Probes
 - 19.5.19.10. Generalized Plain Strain Probes
 - 19.5.19.11. Contact Distance Probes
 - 19.5.19.12. Fracture Probes (Fracture Tool)
 
- 19.5.20. Response PSD Tool
 - 19.5.21. Gasket Results
 - 19.5.22. Campbell Diagram Chart Results
 - 19.5.23. Waterfall Diagrams
 - 19.5.24. Contribution Results
 
- 19.6. Line Pressure Result
 - 19.7. Volume Result
 - 19.8. Thermal Results
 - 19.9. Magnetostatic Results
 - 19.9.1. Electric Potential
 - 19.9.2. Total Magnetic Flux Density
 - 19.9.3. Directional Magnetic Flux Density
 - 19.9.4. Total Magnetic Field Intensity
 - 19.9.5. Directional Magnetic Field Intensity
 - 19.9.6. Total Force
 - 19.9.7. Directional Force
 - 19.9.8. Current Density
 - 19.9.9. Inductance
 - 19.9.10. Flux Linkage
 - 19.9.11. Error (Magnetic)
 - 19.9.12. Magnetostatic Probes
 
- 19.10. Electric Results
 - 19.11. Fatigue Results
 - 19.12. Noise, Vibration, and Harshness
 - 19.13. Forced Response
 - 19.14. User Defined Results
 - 19.15. Python Result
 - 19.15.1. Insert the Python Result Object
 - 19.15.2. Understanding Data Processing Framework
 - 19.15.3. Using DPF with the Python Result Feature
 - 19.15.4. Limitations of the Python Result Object
 - 19.15.5. Workflow Examples
 - 19.15.5.1. Display Results for Shared Shell Topologies
 - 19.15.5.2. Total Deformation
 - 19.15.5.3. Von Mises Stress
 - 19.15.5.4. Retrieving Total Deformation from Table/Chart for Time Point
 - 19.15.5.5. Strain Tensors - Named Selection Scoping
 - 19.15.5.6. Total Deformation Scoped on Time Step using Property Provider
 - 19.15.5.7. Total Deformation Scoped on Geometry using Property Provider
 - 19.15.5.8. Migrating to New Python Result
 
- 19.15.6. Animation
 
- 19.16. User Defined Criteria
 - 19.16.1. Define Primary Criterion for the Measures Object
 - 19.16.2. Define Primary Criterion for a Harmonic Response Analysis
 - 19.16.3. Define Primary Criterion for a Modal Analysis
 - 19.16.4. Define Primary Criterion for a Static Structural Analysis
 - 19.16.5. Combine Primary Criterion Objects
 - 19.16.6. Understanding the Criterion Calculations
 
- 19.17. Result Utilities
 - 19.17.1. Automatic Result Creation for All Result Sets
 - 19.17.2. Adaptive Convergence
 - 19.17.3. Animation
 - 19.17.4. Capped IsoSurfaces
 - 19.17.5. Dynamic Legend
 - 19.17.6. Exporting Results
 - 19.17.7. Generating Reports
 - 19.17.8. Local Minimum and Maximum Probes
 - 19.17.9. Renaming Results Based on Definition
 - 19.17.10. Results Legend
 - 19.17.11. Results Tab
 - 19.17.12. Solution Combination
 
- 20. Commands Object
 - 20.1. Command Entry and Mechanical APDL Entry Options
 - 20.2. Commands (APDL) Object Properties
 - 20.3. Commands (APDL) Object Post Processing Specifications
 - 20.4. Commands (APDL) Objects and the Mechanical APDL Solver
 - 20.5. Commands (APDL) Objects and the Rigid Dynamics Solver
 - 20.6. Commands (APDL) Objects and the LS-DYNA Solver
 
- 21. Python Code
 - 22. Parameters
 - 23. Productivity Tools
 - 24. CAD System Information
 - 25. Troubleshooting
 - 25.1. General Product Limitations
 - 25.2. Problem Situations
 - 25.2.1. A Linearized Stress Result Cannot Be Solved.
 - 25.2.2. A Load Transfer Error Has Occurred.
 - 25.2.3. A Master Node is Missing from the Condensed Part
 - 25.2.4. Although the Exported File Was Saved to Disk
 - 25.2.5. Although the Solution Failed to Solve Completely at all Time Points.
 - 25.2.6. An Error Occurred Inside the SOLVER Module: Invalid Material Properties
 - 25.2.7. An Error Occurred While Solving Due To Insufficient Disk Space
 - 25.2.8. An Error Occurred While Starting the Solver Module
 - 25.2.9. An Internal Solution Magnitude Limit Was Exceeded.
 - 25.2.10. An Iterative Solver Was Used for this Analysis
 - 25.2.11. At Least One Body Has Been Found to Have Only 1 Element
 - 25.2.12. At Least One Spring Exists with Incorrectly Defined Nonlinear Stiffness
 - 25.2.13. Animation Does not Export Correctly
 - 25.2.14. Application Not Closing as Expected
 - 25.2.15. Assemblies Missing Parts
 - 25.2.16. Cannot Undo Node Move
 - 25.2.17. CATIA V5 and IGES Surface Bodies
 - 25.2.18. Constraint Equations Were Not Properly Matched
 - 25.2.19. Element n Located in Body (and maybe other elements) Has Become Highly Distorted
 - 25.2.20. Error Inertia tensor is too large
 - 25.2.21. Equivalent Creep Strain Ratio has Exceeded the Specified Limit Value
 - 25.2.22. Failed to Load Microsoft Office Application
 - 25.2.23. Illogical Reaction Results
 - 25.2.24. Large Deformation Effects are Active
 - 25.2.25. Missing fonts for the Docking Pane Buttons (Linux Platform Only)
 - 25.2.26. MPC equations were not built for one or more contact regions or remote boundary conditions
 - 25.2.27. One or More Contact Regions May Not Be In Initial Contact
 - 25.2.28. One or more MPC or Lagrange Multiplier formulation based contact may have conflicts
 - 25.2.29. One or More Parts May Be Underconstrained
 - 25.2.30. One or More Remote Boundary Conditions is Scoped to a Large Number of Elements
 - 25.2.31. Problems Unique to Background (Asynchronous) Solutions
 - 25.2.32. Problems Using Solution
 - 25.2.33. Proxy Server Environment Variable
 - 25.2.34. Remote Points with Overlapping Geometry Selections are not Recommended within a Condensed Part
 - 25.2.35. Running Norton AntiVirusTM Causes the Mechanical Application to Crash
 - 25.2.36. The Correctly Licensed Product Will Not Run
 - 25.2.37. The Deformation is Large Compared to the Model Bounding Box
 - 25.2.38. The Initial Time Increment May Be Too Large for This Problem
 - 25.2.39. The Joint Probe cannot Evaluate Results
 - 25.2.40. The License Manager Server Is Down
 - 25.2.41. Linux Platform - Localized Operating System
 - 25.2.42. The Low/High Boundaries of Cyclic Symmetry
 - 25.2.43. The Remote Boundary Condition object is defined on the Cyclic Axis of Symmetry
 - 25.2.44. The Solution Combination Folder
 - 25.2.45. The Solver Engine was Unable to Converge
 - 25.2.46. The Solver Has Found Conflicting DOF Constraints
 - 25.2.47. Problem with RSM-Mechanical Connection
 - 25.2.48. Unable to Find Requested Modes
 - 25.2.49. You Must Specify Joint Conditions to all Three Rotational DOFs
 - 25.2.50. Fracture Meshing Problems
 - 25.2.51. Lustre Parallel File Systems on Linux
 - 25.2.52. An Error Occurred Inside the SOLVER Module
 
- 25.3. Recommendations
 
- A. Glossary of General Terms
 - B. Data Transfer Mapping and Validation
 - C. Workbench Mechanical Wizard Advanced Programming Topics
 - C.1. Overview
 - C.2. URI Address and Path Considerations
 - C.3. Using Strings and Languages
 - C.4. Guidelines for Editing XML Files
 - C.5. About the TaskML Merge Process
 - C.6. Using the Integrated Wizard Development Kit (WDK)
 - C.7. Using IFRAME Elements
 - C.8. TaskML Reference
 - C.8.1. Overview Map of TaskML
 - C.8.2. Document Element
 - C.8.3. External References
 - C.8.4. Object Grouping
 - C.8.5. Status Definitions
 - C.8.6. Language and Text
 - C.8.7. Tasks and Events
 - C.8.8. Wizard Content
 - C.8.9. Rules
 - C.8.9.1. Statements
 - C.8.9.2. Conditions
 - C.8.9.3. Actions
 - C.8.9.3.1. click-button
 - C.8.9.3.2. display-details-callout
 - C.8.9.3.3. display-help-topic
 - C.8.9.3.4. display-outline-callout
 - C.8.9.3.5. display-status-callout
 - C.8.9.3.6. display-tab-callout
 - C.8.9.3.7. display-task-callout
 - C.8.9.3.8. display-toolbar-callout
 - C.8.9.3.9. open-url
 - C.8.9.3.10. select-all-objects
 - C.8.9.3.11. select-field
 - C.8.9.3.12. select-first-object
 - C.8.9.3.13. select-first-parameter-field
 - C.8.9.3.14. select-first-undefined-field
 - C.8.9.3.15. select-zero-thickness-sheets
 - C.8.9.3.16. select-enclosures
 - C.8.9.3.17. send-mail
 - C.8.9.3.18. set-caption
 - C.8.9.3.19. set-icon
 - C.8.9.3.20. set-status
 
- C.8.10. Scripting
 
- C.9. Standard Object Groups Reference
 - C.10. Tutorials
 - C.11. Wizard Development Kit (WDK) Groups
 
- Index