Collapse all
/- I. Getting Started
- 1. Introduction to Ansys Fluent
- 2. Basic Steps for CFD Analysis using Ansys Fluent
- 3. Guide to a Successful Simulation Using Ansys Fluent
- 4. Starting and Executing Ansys Fluent
- 4.1. Starting Ansys Fluent
- 4.1.1. Selecting the Licensing Level
- 4.1.2. Starting Ansys Fluent Using Fluent Launcher
- 4.1.2.1. Setting General Options in Fluent Launcher
- 4.1.2.2. Single-Precision and Double-Precision Solvers
- 4.1.2.3. Setting Parallel Options in Fluent Launcher
- 4.1.2.4. Setting Remote Options in Fluent Launcher
- 4.1.2.5. Setting Scheduler Options in Fluent Launcher
- 4.1.2.6. Setting Environment Options in Fluent Launcher
- 4.1.3. Starting Ansys Fluent on a Windows System
- 4.1.4. Starting Ansys Fluent on a Linux System
- 4.1.5. Command Line Startup Options
- 4.1.5.1. ACT Option
- 4.1.5.2. Application Option
- 4.1.5.3. Application Script Option
- 4.1.5.4. Graphics and Files Options
- 4.1.5.5. Meshing Mode Option
- 4.1.5.6. Performance Options
- 4.1.5.7. Parallel Options
- 4.1.5.8. Postprocessing Option
- 4.1.5.9. Remote Visualization Options
- 4.1.5.10. Scheduler Options
- 4.1.5.11. Text Command Option
- 4.1.5.12. Version, Release Options, and Environment Variables
- 4.1.5.13. System Coupling Options
- 4.1.5.14. Other Startup Options
- 4.1.6. Aborting During Startup
- 4.2. Running Ansys Fluent in Batch Mode
- 4.3. Switching Between Meshing and Solution Modes
- 4.4. Checkpointing an Ansys Fluent Simulation
- 4.5. Cleaning Up Processes From an Ansys Fluent Simulation
- 4.6. Exiting Ansys Fluent
- Glossary of Terms
- II. Meshing Mode
- 1. Introduction to Meshing Mode in Fluent
- 1.1. Meshing Approach
- 1.2. Meshing Mode Capabilities
- 1.3. Starting Fluent in Meshing Mode
- 1.4. Graphical User Interface
- 1.4.1. User Interface Components
- 1.4.2. Customizing the User Interface
- 1.4.3. Setting User Preferences/Options
- 1.4.4. Using the Help System
- 1.5. Text User Interface
- 1.6. Reading and Writing Files
- 1.6.1. Shortcuts for Reading and Writing Files
- 1.6.2. Mesh Files
- 1.6.3. Case Files
- 1.6.4. Reading and Writing Size-Field Files
- 1.6.5. Reading Scheme Source Files
- 1.6.6. Creating and Reading Journal Files
- 1.6.7. Creating Transcript Files
- 1.6.8. Reading and Writing Domain Files
- 1.6.9. Importing Files
- 1.6.10. Saving Picture Files
- 2. Getting Started with the Fluent Guided Workflows
- 2.1. Prerequisites for the Fluent Guided Workflows
- 2.2. Limitations of the Fluent Guided Workflows
- 2.3. Customizing Workflows
- 2.4. Understanding Task States
- 2.5. Operating on Tasks
- 2.6. Grouping Tasks
- 2.7. Editing Tasks
- 2.8. Monitoring Task Updates
- 2.9. Accessing Advanced Options
- 2.10. Filtering Lists and Using Wildcards
- 2.11. Saving and Loading Workflows
- 2.12. Setting Preferences for Workflows
- 2.13. Getting Help for Workflow Tasks
- 3. Using the Watertight Geometry Meshing Guided Workflows
- 3.1. Watertight Geometry Workflow Limitations
- 3.2. Importing Geometries
- 3.3. Importing Body of Influence Geometries
- 3.4. Adding Local Sizing
- 3.5. Generating the Surface Mesh
- 3.6. Setting Up Periodic Boundaries
- 3.7. Describing the Geometry
- 3.8. Applying Share Topology
- 3.9. Enclosing Fluid Regions
- 3.10. Creating Regions
- 3.11. Updating Regions
- 3.12. Adding Thin Volume Meshing Controls
- 3.13. Adding Boundary Layers
- 3.14. Adding Multizone Controls
- 3.15. Generating the Multizone Mesh
- 3.16. Generating the Volume Mesh
- 3.17. Updating Boundaries
- 3.18. Improving the Surface Mesh
- 3.19. Adding Boundary Types
- 3.20. Improving the Volume Mesh
- 3.21. Transforming the Volume Mesh
- 3.22. Extruding the Volume Mesh
- 3.23. Adding Linear Mesh Patterns
- 3.24. Managing Zones
- 3.25. Modifying Mesh Refinement
- 3.26. Creating Local Refinement Regions
- 3.27. Running Custom Journal Commands
- 4. Using the Fault-tolerant Meshing Workflow
- 4.1. Fault-tolerant Meshing Workflow Limitations
- 4.2. Importing CAD Geometries and Managing CAD Parts
- 4.2.1. Appending CAD Files
- 4.2.2. Working with the CAD Model Tree
- 4.2.3. Working with the Meshing Model Tree
- 4.2.4. Setting Properties for Meshing Model Objects
- 4.2.5. Performing Operations on Meshing Model Objects
- 4.2.6. Faceting Considerations
- 4.2.7. Setting Display Options for CAD Model and Meshing Objects
- 4.2.8. Using Hot Key Shortcuts in the Model Trees and the Graphics Window
- 4.3. Describing the Geometry and the Flow
- 4.4. Enclosing Fluid Regions
- 4.5. Creating External Flow Boundaries
- 4.6. Creating Local Refinement Regions
- 4.7. Identifying Construction Surfaces
- 4.8. Extracting Edge Features
- 4.9. Adding Thickness to Your Geometry
- 4.10. Creating Porous Regions
- 4.11. Identifying Regions
- 4.12. Defining Leakage Thresholds
- 4.13. Updating Your Region Settings
- 4.14. Choosing Mesh Control Options
- 4.15. Adding Local Size Controls
- 4.16. Creating Contact Patches
- 4.17. Creating Gap Covers
- 4.18. Generating the Surface Mesh
- 4.19. Updating Boundaries
- 4.20. Describing Overset Features
- 4.21. Adding Boundary Layers
- 4.22. Identifying Deviated Faces
- 4.23. Generating the Volume Mesh
- 4.24. Creating Overset Mesh Interfaces
- 4.25. Identifying Orphans
- 4.26. Transforming the Volume Mesh
- 4.27. Extruding the Volume Mesh
- 4.28. Managing Zones
- 4.29. Separating Contacts
- 4.30. Choosing Part Replacement Options
- 5. Using the 2D Meshing Guided Workflow
- 6. Improving and Examining the Mesh and its Quality
- 6.1. Improving the Mesh
- 6.1.1. Smoothing Nodes
- 6.1.2. Swapping
- 6.1.3. Improving the Mesh
- 6.1.4. Removing Slivers from a Tetrahedral Mesh
- 6.1.5. Modifying Cells
- 6.1.6. Moving Nodes
- 6.1.7. Cavity Remeshing
- 6.1.8. Manipulating Cell Zones
- 6.1.9. Separating Cell Zones
- 6.1.10. Manipulating Cell Zone Conditions
- 6.1.11. Using Domains to Group and Mesh Boundary Faces
- 6.1.12. Checking the Mesh
- 6.1.13. Selectively Checking the Volume Mesh
- 6.1.14. Checking the Mesh Quality
- 6.1.15. Clearing the Mesh
- 6.2. Examining the Mesh
- 6.3. Determining Mesh Statistics and Quality
- 7. Advanced Meshing Topics
- 7.1. CAD Assemblies
- 7.2. Size Functions and Scoped Sizing
- 7.3. Objects and Material Points
- 7.3.1. Objects
- 7.3.1.1. Object Attributes
- 7.3.1.2. Object Entities
- 7.3.1.3. Managing Objects
- 7.3.1.3.1. Using hotkeys and onscreen tools
- 7.3.1.3.1.1. Creating Objects for CAD Entities
- 7.3.1.3.1.2. Creating Objects for Unreferenced Zones
- 7.3.1.3.1.3. Creating Multiple Objects
- 7.3.1.3.1.4. Easy Object Creation and Modification
- 7.3.1.3.1.5. Changing Object Properties
- 7.3.1.3.1.6. Automatic Alignment of Objects
- 7.3.1.3.1.7. Remeshing Geometry Objects
- 7.3.1.3.1.8. Creating Edge Zones
- 7.3.1.3.2. Using the Manage Objects Dialog Box
- 7.3.2. Material Points
- 7.4. Object-Based Surface Meshing
- 7.5. Object-Based Volume Meshing
- 7.6. Manipulating the Boundary Mesh
- 7.6.1. Manipulating Boundary Nodes
- 7.6.2. Intersecting Boundary Zones
- 7.6.3. Modifying the Boundary Mesh
- 7.6.4. Improving Boundary Surfaces
- 7.6.5. Refining the Boundary Mesh
- 7.6.6. Creating and Modifying Features
- 7.6.7. Remeshing Boundary Zones
- 7.6.8. Faceted Stitching of Boundary Zones
- 7.6.9. Triangulating Boundary Zones
- 7.6.10. Separating Boundary Zones
- 7.6.11. Projecting Boundary Zones
- 7.6.12. Creating Groups
- 7.6.13. Manipulating Boundary Zones
- 7.6.14. Manipulating Boundary Conditions
- 7.6.15. Creating Surfaces
- 7.6.16. Removing Gaps Between Boundary Zones
- 7.6.17. Using the Loop Selection Tool
- 7.7. Wrapping Objects
- 7.8. Creating a Mesh
- 7.9. Generating Prisms
- 7.9.1. The Prism Generation Process
- 7.9.2. Procedure for Creating Zone-based Prisms
- 7.9.3. Prism Meshing Options for Zone-Specific Prisms
- 7.9.4. Prism Meshing Options for Scoped Prisms
- 7.9.5. Prism Meshing Problems
- 7.10. Generating Tetrahedral Meshes
- 7.11. Generating the Hexcore Mesh
- 7.12. Generating Polyhedral Meshes
- 7.13. Generating Poly-Hexcore Meshes
- 7.14. Generating the CutCell Mesh
- 7.15. Generating Rapid Octree Meshes
- A. Importing Boundary and Volume Meshes
- B. Mesh File Format
- C. Shortcut Keys
- Bibliography
- III. Solution Mode
- Using This Manual
- 1. Graphical User Interface (GUI)
- 1.1. GUI Components
- 1.1.1. The Ribbon
- 1.1.2. The Outline View
- 1.1.3. Graphics Windows
- 1.1.4. Quick Search
- 1.1.5. Toolbars
- 1.1.6. Task Pages
- 1.1.7. The Console
- 1.1.8. Dialog Boxes
- 1.1.8.1. Input Controls
- 1.1.8.1.1. Tabs
- 1.1.8.1.2. Buttons
- 1.1.8.1.3. Check Boxes
- 1.1.8.1.4. Radio Buttons
- 1.1.8.1.5. Text Entry Boxes
- 1.1.8.1.6. Integer Number Entry Boxes
- 1.1.8.1.7. Real Number Entry Boxes
- 1.1.8.1.8. Filter Text Entry Boxes
- 1.1.8.1.9. Single-Selection Lists
- 1.1.8.1.10. Multiple-Selection Lists
- 1.1.8.1.11. Drop-Down Lists
- 1.1.8.1.12. Scales
- 1.1.8.2. Types of Dialog Boxes
- 1.1.9. Quick Property Editor for Boundaries
- 1.2. Customizing the Graphical User Interface
- 1.3. Setting User Preferences/Options
- 1.4. Fluent Graphical User Interface Other Languages
- 1.5. Having the Session Close After Sitting Idle
- 1.6. Using the Help System
- 2. Text User Interface (TUI)
- 3. Reading and Writing Files
- 3.1. Shortcuts for Reading and Writing Files
- 3.2. Reading Mesh Files
- 3.3. Reading and Writing Case and Data Files
- 3.4. Reading Settings Only for Mesh or Case Files with Large Cell Counts
- 3.5. Reading Fluent/UNS and RAMPANT Case and Data Files
- 3.6. Reading and Writing Profile Files
- 3.7. Reading Files in Tabular Format
- 3.8. Reading and Writing Boundary Conditions
- 3.9. Writing a Boundary Mesh
- 3.10. Reading Scheme Source Files
- 3.11. Creating and Reading Journal Files
- 3.12. Creating Transcript Files
- 3.13. Importing Files
- 3.14. Exporting Solution Data
- 3.15. Exporting Solution Data after a Calculation
- 3.15.1. ABAQUS Files
- 3.15.2. Mechanical APDL Input Files
- 3.15.3. ASCII Files
- 3.15.4. CDAT for CFD-Post and EnSight
- 3.15.5. CGNS Files
- 3.15.6. Common Fluids Format - Post Files
- 3.15.7. EnSight Case Gold Files
- 3.15.8. EnSight DVS
- 3.15.9. FAST Files
- 3.15.10. FAST Solution Files
- 3.15.11. FieldView Unstructured Files
- 3.15.12. NASTRAN Files
- 3.15.13. TAITherm Files
- 3.15.14. Tecplot Files
- 3.16. Exporting Steady-State Particle History Data
- 3.17. Exporting Data During a Transient Calculation
- 3.18. Exporting to Ansys CFD-Post
- 3.19. Parallel Exporting to Ansys EnSight
- 3.20. Managing Solution Files
- 3.21. Mesh-to-Mesh Solution Interpolation
- 3.22. Mapping Data for Fluid-Structure Interaction (FSI) Applications
- 3.23. Saving Picture Files
- 3.24. Setting Data File Quantities
- 3.25. The .fluent File
- 3.26. Coupled Simulations in Ansys Fluent with Functional Mock-up Unit (FMU) Files
- 4. Unit Systems
- 5. Fluent Expressions Language
- 5.1. Introduction to Expressions
- 5.2. Expression Sources
- 5.3. Creating and Using Expressions
- 5.4. Expression Examples
- 5.5. Appendix: Supported Field Variables
- 6. Reading and Manipulating Meshes
- 6.1. Mesh Topologies
- 6.1.1. Examples of Acceptable Mesh Topologies
- 6.1.2. Face-Node Connectivity in Ansys Fluent
- 6.1.2.1. Face-Node Connectivity for Triangular Cells
- 6.1.2.2. Face-Node Connectivity for Quadrilateral Cells
- 6.1.2.3. Face-Node Connectivity for Tetrahedral Cells
- 6.1.2.4. Face-Node Connectivity for Wedge Cells
- 6.1.2.5. Face-Node Connectivity for Pyramidal Cells
- 6.1.2.6. Face-Node Connectivity for Hex Cells
- 6.1.2.7. Face-Node Connectivity for Polyhedral Cells
- 6.1.3. Choosing the Appropriate Mesh Type
- 6.2. Mesh Requirements and Considerations
- 6.3. Mesh Sources
- 6.3.1. Ansys Meshing Mesh Files
- 6.3.2. Fluent Meshing Mode Mesh Files
- 6.3.3. Fluent Meshing Mesh Files
- 6.3.4. GAMBIT Mesh Files
- 6.3.5. GeoMesh Mesh Files
- 6.3.6. NASTRAN Files
- 6.3.7. CFX Files
- 6.3.8. Using the fe2ram Filter to Convert Files
- 6.3.9. Removing Hanging Nodes / Edges
- 6.3.10. Fluent/UNS and RAMPANT Case Files
- 6.3.11. Ansys FIDAP Neutral Files
- 6.3.12. Reading Multiple Mesh/Case/Data Files
- 6.3.13. Reading Surface Mesh Files
- 6.4. Reference Frames
- 6.5. Curvilinear Coordinate Systems
- 6.6. Non-Conformal Meshes
- 6.6.1. Non-Conformal Mesh Calculations
- 6.6.2. Non-Conformal Interface Algorithm
- 6.6.3. Requirements and Limitations of Non-Conformal Meshes
- 6.6.4. Using a Non-Conformal Mesh in Ansys Fluent
- 6.7. Overset Meshes
- 6.7.1. Introduction
- 6.7.2. Overset Topologies
- 6.7.3. Overset Domain Connectivity
- 6.7.4. Diagnosing Overset Interface Issues
- 6.7.5. Overset Mesh Adaption
- 6.7.6. Overset Meshing Best Practices
- 6.7.7. Overset Meshing Limitations and Compatibilities
- 6.7.8. Setting up an Overset Interface
- 6.7.9. Postprocessing Overset Meshes
- 6.7.10. Writing and Reading Overset Files
- 6.8. Controlling Flow in Narrow Gaps for Valves and Pumps
- 6.9. Checking the Mesh
- 6.10. Reporting Mesh Statistics
- 6.11. Converting the Mesh to a Polyhedral Mesh
- 6.12. Modifying the Mesh
- 6.12.1. Merging Zones
- 6.12.2. Separating Zones
- 6.12.3. Fusing Face Zones
- 6.12.4. Creating Periodic Zones and Interfaces
- 6.12.5. Decoupling Periodic Zones
- 6.12.6. Slitting Face Zones
- 6.12.7. Orienting Face Zones
- 6.12.8. Extruding Face Zones
- 6.12.9. Replacing, Deleting, Deactivating, and Activating Zones
- 6.12.10. Copying Cell Zones
- 6.12.11. Replacing the Mesh
- 6.12.12. Managing Adjacent Zones
- 6.12.13. Reordering the Domain
- 6.12.14. Scaling the Mesh
- 6.12.15. Translating the Mesh
- 6.12.16. Rotating the Mesh
- 6.12.17. Improving the Mesh by Smoothing and Swapping
- 6.12.18. Boundary Layer Redistribution
- 6.12.19. Deleting Cells
- 7. Cell Zone and Boundary Conditions
- 7.1. Overview
- 7.1.1. Available Cell Zone and Boundary Types
- 7.1.2. The Cell Zone and Boundary Conditions Task Pages
- 7.1.3. Changing Cell and Boundary Zone Types
- 7.1.4. Setting Cell Zone and Boundary Conditions
- 7.1.5. Copying Cell Zone and Boundary Conditions
- 7.1.6. Exporting Boundary Zones in CSV Format
- 7.1.7. Changing Cell or Boundary Zone Names
- 7.1.8. Defining Non-Uniform Cell Zone and Boundary Conditions
- 7.1.9. Defining and Viewing Parameters
- 7.1.10. Selecting Cell or Boundary Zones in the Graphics Display
- 7.1.11. Operating and Periodic Conditions
- 7.1.12. Saving and Reusing Cell Zone and Boundary Conditions
- 7.2. Cell Zone Conditions
- 7.2.1. Fluid Conditions
- 7.2.2. Solid Conditions
- 7.2.3. Porous Media Conditions
- 7.2.3.1. Limitations and Assumptions of the Porous Media Model
- 7.2.3.2. Momentum Equations for Porous Media
- 7.2.3.3. Relative Viscosity in Porous Media
- 7.2.3.4. Treatment of the Energy Equation in Porous Media
- 7.2.3.5. Treatment of Turbulence in Porous Media
- 7.2.3.6. Effect of Porosity on Transient Scalar Equations
- 7.2.3.7. Modeling Porous Media Based on Physical Velocity
- 7.2.3.8. User Inputs for Porous Media
- 7.2.3.8.1. Defining the Porous Zone
- 7.2.3.8.2. Defining the Porous Velocity Formulation
- 7.2.3.8.3. Defining the Fluid Passing Through the Porous Medium
- 7.2.3.8.4. Enabling Reactions in a Porous Zone
- 7.2.3.8.5. Including the Relative Velocity Resistance Formulation
- 7.2.3.8.6. Defining the Viscous and Inertial Resistance Coefficients
- 7.2.3.8.7. Deriving Porous Media Inputs Based on Superficial Velocity, Using a Known Pressure Loss
- 7.2.3.8.8. Using the Ergun Equation to Derive Porous Media Inputs for a Packed Bed
- 7.2.3.8.9. Using an Empirical Equation to Derive Porous Media Inputs for Turbulent Flow Through a Perforated Plate
- 7.2.3.8.10. Using Tabulated Data to Derive Porous Media Inputs for Laminar Flow Through a Fibrous Mat
- 7.2.3.8.11. Deriving the Porous Coefficients Based on Experimental Pressure and Velocity Data
- 7.2.3.8.12. Using the Power-Law Model
- 7.2.3.8.13. Defining Porosity
- 7.2.3.8.14. Specifying the Heat Transfer Settings
- 7.2.3.8.15. Specifying the Relative Viscosity
- 7.2.3.8.16. Specifying the Relative Permeability
- 7.2.3.8.17. Specifying the Capillary Pressure
- 7.2.3.8.18. Defining Sources
- 7.2.3.8.19. Defining Fixed Values
- 7.2.3.8.20. Suppressing the Turbulent Viscosity in the Porous Region
- 7.2.3.8.21. Specifying the Rotation Axis and Defining Zone Motion
- 7.2.3.9. Solution Strategies for Porous Media
- 7.2.3.10. Postprocessing for Porous Media
- 7.2.4. 3D Fan Zones
- 7.2.5. Fixing the Values of Variables
- 7.2.6. Locking the Temperature for Solid and Shell Zones
- 7.2.7. Defining Mass, Momentum, Energy, and Other Sources
- 7.2.7.1. Sign Conventions and Units
- 7.2.7.2. Procedure for Defining Sources
- 7.2.7.2.1. Mass Sources
- 7.2.7.2.2. Momentum Sources
- 7.2.7.2.3. Energy Sources
- 7.2.7.2.4. Turbulence Sources
- 7.2.7.2.5. Mean Mixture Fraction and Variance Sources
- 7.2.7.2.6. P-1 Radiation Sources
- 7.2.7.2.7. Progress Variable Sources
- 7.2.7.2.8. NO, HCN, and NH3 Sources for the NOx Model
- 7.2.7.2.9. Discrete Bin Fraction Sources for the Population Balance Model
- 7.2.7.2.10. User-Defined Scalar (UDS) Sources
- 7.3. Operating Conditions
- 7.3.1. Buoyancy-Driven Flows and Natural Convection
- 7.3.1.1. Modeling Natural Convection in a Closed Domain
- 7.3.1.2. The Boussinesq Model
- 7.3.1.3. Limitations of the Boussinesq Model
- 7.3.1.4. Steps in Solving Buoyancy-Driven Flow Problems
- 7.3.1.5. If you are using the incompressible ideal gas law, check the Operating Density
- 7.3.1.6. Solution Strategies for Buoyancy-Driven Flows
- 7.4. Boundary Conditions
- 7.4.1. Flow Inlet and Exit Boundary Conditions
- 7.4.2. Using Flow Boundary Conditions
- 7.4.2.1. Determining Turbulence Parameters
- 7.4.2.1.1. Specification of Turbulence Quantities Using Profiles
- 7.4.2.1.2. Uniform Specification of Turbulence Quantities
- 7.4.2.1.3. Turbulence Intensity
- 7.4.2.1.4. Turbulence Length Scale and Hydraulic Diameter
- 7.4.2.1.5. Turbulent Viscosity Ratio
- 7.4.2.1.6. Relationships for Deriving Turbulence Quantities
- 7.4.2.1.7. Estimating Modified Turbulent Viscosity from Turbulence Intensity and Length Scale
- 7.4.2.1.8. Estimating Turbulent Kinetic Energy from Turbulence Intensity
- 7.4.2.1.9. Estimating Turbulent Dissipation Rate from a Length Scale
- 7.4.2.1.10. Estimating Turbulent Dissipation Rate from Turbulent Viscosity Ratio
- 7.4.2.1.11. Estimating Turbulent Dissipation Rate for Decaying Turbulence
- 7.4.2.1.12. Estimating Specific Dissipation Rate from a Length Scale
- 7.4.2.1.13. Estimating Specific Dissipation Rate from Turbulent Viscosity Ratio
- 7.4.2.1.14. Estimating Reynolds Stress Components from Turbulent Kinetic Energy
- 7.4.2.1.15. Specifying Inlet Turbulence for Scale Resolving Simulations
- 7.4.3. Pressure Inlet Boundary Conditions
- 7.4.3.1. Inputs at Pressure Inlet Boundaries
- 7.4.3.1.1. Summary
- 7.4.3.1.1.1. Pressure Inputs and Hydrostatic Head
- 7.4.3.1.1.2. Defining Total Pressure and Temperature
- 7.4.3.1.1.3. Defining the Flow Direction
- 7.4.3.1.1.4. Defining Static Pressure
- 7.4.3.1.1.5. Prevent Reverse Flow
- 7.4.3.1.1.6. Defining Turbulence Parameters
- 7.4.3.1.1.7. Defining Radiation Parameters
- 7.4.3.1.1.8. Defining Species Mass or Mole Fractions
- 7.4.3.1.1.9. Defining Non-Premixed Combustion Parameters
- 7.4.3.1.1.10. Defining Premixed Combustion Boundary Conditions
- 7.4.3.1.1.11. Defining Discrete Phase Boundary Conditions
- 7.4.3.1.1.12. Defining Multiphase Boundary Conditions
- 7.4.3.1.1.13. Defining Open Channel Boundary Conditions
- 7.4.3.2. Default Settings at Pressure Inlet Boundaries
- 7.4.3.3. Calculation Procedure at Pressure Inlet Boundaries
- 7.4.4. Velocity Inlet Boundary Conditions
- 7.4.4.1. Inputs at Velocity Inlet Boundaries
- 7.4.4.1.1. Summary
- 7.4.4.1.2. Defining the Velocity
- 7.4.4.1.3. Setting the Velocity Magnitude and Direction
- 7.4.4.1.4. Setting the Velocity Magnitude Normal to the Boundary
- 7.4.4.1.5. Setting the Velocity Components
- 7.4.4.1.6. Setting the Angular Velocity
- 7.4.4.1.7. Defining Static Pressure
- 7.4.4.1.8. Defining the Temperature
- 7.4.4.1.9. Defining Outflow Gauge Pressure
- 7.4.4.1.10. Defining Turbulence Parameters
- 7.4.4.1.11. Defining Radiation Parameters
- 7.4.4.1.12. Defining Species Mass or Mole Fractions
- 7.4.4.1.13. Defining Non-Premixed Combustion Parameters
- 7.4.4.1.14. Defining Premixed Combustion Boundary Conditions
- 7.4.4.1.15. Defining Discrete Phase Boundary Conditions
- 7.4.4.1.16. Defining Multiphase Boundary Conditions
- 7.4.4.2. Default Settings at Velocity Inlet Boundaries
- 7.4.4.3. Calculation Procedure at Velocity Inlet Boundaries
- 7.4.5. Mass-Flow Inlet Boundary Conditions
- 7.4.5.1. Limitations and Special Considerations
- 7.4.5.2. Inputs at Mass-Flow Inlet Boundaries
- 7.4.5.2.1. Summary
- 7.4.5.2.2. Selecting the Reference Frame
- 7.4.5.2.3. Defining the Mass Flow Rate or Mass Flux
- 7.4.5.2.4. More About Mass Flux and Average Mass Flux
- 7.4.5.2.5. Defining the Total Temperature
- 7.4.5.2.6. Defining Static Pressure
- 7.4.5.2.7. Defining the Flow Direction
- 7.4.5.2.8. Defining Turbulence Parameters
- 7.4.5.2.9. Defining Radiation Parameters
- 7.4.5.2.10. Defining Species Mass or Mole Fractions
- 7.4.5.2.11. Defining Non-Premixed Combustion Parameters
- 7.4.5.2.12. Defining Premixed Combustion Boundary Conditions
- 7.4.5.2.13. Defining Discrete Phase Boundary Conditions
- 7.4.5.2.14. Defining Open Channel Boundary Conditions
- 7.4.5.3. Default Settings at Mass-Flow Inlet Boundaries
- 7.4.5.4. Calculation Procedure at Mass-Flow Inlet Boundaries
- 7.4.6. Mass-Flow Outlet Boundary Conditions
- 7.4.7. Inlet Vent Boundary Conditions
- 7.4.8. Intake Fan Boundary Conditions
- 7.4.9. Pressure Outlet Boundary Conditions
- 7.4.10. Pressure Far-Field Boundary Conditions
- 7.4.10.1. Limitations
- 7.4.10.2. Inputs at Pressure Far-Field Boundaries
- 7.4.10.3. Defining Discrete Phase Boundary Conditions
- 7.4.10.4. Default Settings at Pressure Far-Field Boundaries
- 7.4.10.5. Calculation Procedure at Pressure Far-Field Boundaries
- 7.4.10.6. Flux-based Pressure Far-Field
- 7.4.10.7. Tangency Correction
- 7.4.11. Outflow Boundary Conditions
- 7.4.12. Outlet Vent Boundary Conditions
- 7.4.13. Exhaust Fan Boundary Conditions
- 7.4.14. Degassing Boundary Conditions
- 7.4.15. Wall Boundary Conditions
- 7.4.15.1. Inputs at Wall Boundaries
- 7.4.15.2. Stationary Wall
- 7.4.15.3. Wall Roughness Effects in Turbulent Wall-Bounded Flows
- 7.4.15.4. Wall Motion
- 7.4.15.5. Thermal Boundary Conditions at Walls
- 7.4.15.5.1. Heat Flux Boundary Conditions
- 7.4.15.5.2. Temperature Boundary Conditions
- 7.4.15.5.3. Convective Heat Transfer Boundary Conditions
- 7.4.15.5.4. External Radiation Boundary Conditions
- 7.4.15.5.5. Combined Convection and External Radiation Boundary Conditions
- 7.4.15.5.6. Augmented Heat Transfer
- 7.4.15.5.7. Thin-Wall Thermal Resistance Parameters
- 7.4.15.5.8. Thermal Conditions for Two-Sided Walls
- 7.4.15.5.9. Boundary Advection for Solid Motion
- 7.4.15.5.10. Shell Conduction
- 7.4.15.5.11. Heat Transfer Boundary Conditions Through System Coupling
- 7.4.15.5.12. Heat Transfer Boundary Conditions Across a Mapped Interface
- 7.4.15.5.13. Temperature Jump for Rarefied Gases
- 7.4.15.6. Species Boundary Conditions for Walls
- 7.4.15.7. Radiation Boundary Conditions for Walls
- 7.4.15.8. Discrete Phase Model (DPM) Boundary Conditions for Walls
- 7.4.15.9. User-Defined Scalar (UDS) Boundary Conditions for Walls
- 7.4.15.10. Wall Film Conditions for Walls
- 7.4.15.11. Structural Model Conditions for Walls
- 7.4.15.12. Default Settings at Wall Boundaries
- 7.4.15.13. Shear-Stress Calculation Procedure at Wall Boundaries
- 7.4.15.14. Heat Transfer Calculations at Wall Boundaries
- 7.4.15.14.1. Temperature Boundary Conditions
- 7.4.15.14.2. Heat Flux Boundary Conditions
- 7.4.15.14.3. Convective Heat Transfer Boundary Conditions
- 7.4.15.14.4. External Radiation Boundary Conditions
- 7.4.15.14.5. Combined External Convection and Radiation Boundary Conditions
- 7.4.15.14.6. Calculation of the Fluid-Side Heat Transfer Coefficient
- 7.4.16. Perforated Wall Boundary Conditions
- 7.4.17. Symmetry Boundary Conditions
- 7.4.18. Periodic Boundary Conditions
- 7.4.19. Axis Boundary Conditions
- 7.4.20. Fan Boundary Conditions
- 7.4.20.1. Limitations of Fan Boundary Conditions
- 7.4.20.2. Fan Equations
- 7.4.20.3. User Inputs for Fans
- 7.4.20.4. Postprocessing for Fans
- 7.4.21. Radiator Boundary Conditions
- 7.4.21.1. Radiator Equations
- 7.4.21.2. User Inputs for Radiators
- 7.4.21.3. Postprocessing for Radiators
- 7.4.22. Porous Jump Boundary Conditions
- 7.5. Editing Multiple Boundary Conditions at Once
- 7.6. Transient Cell Zone and Boundary Conditions
- 7.7. Boundary Acoustic Wave Models
- 7.7.1. Turbo-Specific Non-Reflecting Boundary Conditions
- 7.7.2. General Non-Reflecting Boundary Conditions
- 7.7.3. Impedance Boundary Conditions
- 7.7.4. Transparent Flow Forcing Boundary Conditions
- 7.8. User-Defined Fan Model
- 7.9. Profiles
- 7.10. Coupling Boundary Conditions with GT-POWER
- 7.11. Coupling Boundary Conditions with WAVE
- 8. Physical Properties
- 8.1. Defining Materials
- 8.1.1. Physical Properties for Solid Materials
- 8.1.2. Material Types and Databases
- 8.1.3. Using the Create/Edit Materials Dialog Box
- 8.1.3.1. Modifying Properties of an Existing Material
- 8.1.3.2. Renaming an Existing Material
- 8.1.3.3. Copying Materials from the Ansys Fluent Database
- 8.1.3.4. Copying Materials from the Ansys GRANTA MDS Database
- 8.1.3.5. Creating a New Material
- 8.1.3.6. Saving Materials and Properties
- 8.1.3.7. Deleting a Material
- 8.1.3.8. Changing the Order of the Materials List
- 8.1.4. Using a User-Defined Materials Database
- 8.1.4.1. Opening a User-Defined Database
- 8.1.4.2. Viewing Materials in a User-Defined Database
- 8.1.4.3. Copying Materials from a User-Defined Database
- 8.1.4.4. Copying Materials from the Case to a User-Defined Database
- 8.1.4.5. Modifying Properties of an Existing Material
- 8.1.4.6. Creating a New Materials Database and Materials
- 8.1.4.7. Deleting Materials from a Database
- 8.2. Defining Properties Using Temperature-Dependent Functions
- 8.3. Density
- 8.3.1. Defining Density for Various Flow Regimes
- 8.3.2. Input of Constant Density
- 8.3.3. Inputs for the Boussinesq Approximation
- 8.3.4. Compressible Liquid Density Method
- 8.3.5. Density as a Profile Function of Temperature
- 8.3.6. Incompressible Ideal Gas Law
- 8.3.7. Ideal Gas Law for Compressible Flows
- 8.3.8. Composition-Dependent Density for Multicomponent Mixtures
- 8.4. Viscosity
- 8.4.1. Input of Constant Viscosity
- 8.4.2. Viscosity as a Function of Temperature
- 8.4.3. Defining the Viscosity Using Kinetic Theory
- 8.4.4. Defining Viscosity Using Gupta Curve Fits
- 8.4.5. Composition-Dependent Viscosity for Multicomponent Mixtures
- 8.4.6. Viscosity for Non-Newtonian Fluids
- 8.5. Thermal Conductivity
- 8.5.1. Constant Thermal Conductivity
- 8.5.2. Thermal Conductivity as a Function of Temperature
- 8.5.3. Thermal Conductivity Using Kinetic Theory
- 8.5.4. Defining Thermal Conductivity Using Gupta Curve Fits
- 8.5.5. Composition-Dependent Thermal Conductivity for Multicomponent Mixtures
- 8.5.6. Anisotropic Thermal Conductivity for Solids
- 8.6. User-Defined Scalar (UDS) Diffusivity
- 8.7. Specific Heat Capacity
- 8.8. Radiation Properties
- 8.9. Mass Diffusion Coefficients
- 8.10. Standard State Enthalpies
- 8.11. Standard State Entropies
- 8.12. Unburnt Thermal Diffusivity
- 8.13. Kinetic Theory Parameters
- 8.14. Operating Pressure
- 8.15. Using a Reference Pressure to Adjust the Gauge Pressure Field
- 8.16. Real Gas Models
- 8.16.1. Introduction
- 8.16.2. Choosing a Real Gas Model
- 8.16.3. Cubic Equation of State Models
- 8.16.3.1. Overview and Limitations
- 8.16.3.2. Equation of State
- 8.16.3.3. Enthalpy, Entropy, and Specific Heat Calculations
- 8.16.3.4. Critical Constants for Pure Components
- 8.16.3.5. Calculations for Mixtures
- 8.16.3.5.1. Using the Cubic Equation of State Real Gas Models
- 8.16.3.5.2. Solution Strategies and Considerations for Cubic Equations of State Real Gas Models
- 8.16.3.5.3. Using the Cubic Equation of State Models with the Lagrangian Dispersed Phase Models
- 8.16.3.5.4. Postprocessing the Cubic Equations of State Real Gas Model
- 8.16.4. The NIST Real Gas Models
- 8.16.5. The User-Defined Real Gas Model
- 8.16.6. Using Real Gas Property (RGP) Table Files
- 9. Modeling Basic Fluid Flow
- 9.1. User-Defined Scalar (UDS) Transport Equations
- 9.2. Periodic Flows
- 9.3. Swirling and Rotating Flows
- 9.3.1. Overview of Swirling and Rotating Flows
- 9.3.2. Turbulence Modeling in Swirling Flows
- 9.3.3. Mesh Setup for Swirling and Rotating Flows
- 9.3.4. Modeling Axisymmetric Flows with Swirl or Rotation
- 9.4. Compressible Flows
- 9.5. Inviscid Flows
- 10. Modeling Flows with Moving Reference Frames
- 10.1. Introduction
- 10.2. Flow in Single Moving Reference Frames (SRF)
- 10.3. Flow in Multiple Moving Reference Frames
- 11. Managing Motion Definitions
- 12. Managing Auxiliary Geometry Definitions
- 13. Modeling Flows Using Sliding and Dynamic Meshes
- 13.1. Introduction
- 13.2. Sliding Mesh Examples
- 13.3. The Sliding Mesh Technique
- 13.4. Sliding Mesh Interface Shapes
- 13.5. Using Sliding Meshes
- 13.6. Using Dynamic Meshes
- 13.6.1. Setting Dynamic Mesh Modeling Parameters
- 13.6.2. Dynamic Mesh Update Methods
- 13.6.2.1. Smoothing Methods
- 13.6.2.2. Dynamic Layering
- 13.6.2.3. Remeshing
- 13.6.2.4. Volume Mesh Update Procedure
- 13.6.2.5. Transient Considerations for Remeshing and Layering
- 13.6.3. Feature Detection
- 13.6.4. In-Cylinder Settings
- 13.6.5. Six DOF Solver Settings
- 13.6.6. Implicit Update Settings
- 13.6.7. Contact Detection Settings
- 13.6.8. Defining Dynamic Mesh Events
- 13.6.8.1. Procedure for Defining Events
- 13.6.8.2. Defining Events for In-Cylinder Applications
- 13.6.8.2.1. Events
- 13.6.8.2.2. Changing the Zone Type
- 13.6.8.2.3. Copying Zone Boundary Conditions
- 13.6.8.2.4. Activating a Cell Zone
- 13.6.8.2.5. Deactivating a Cell Zone
- 13.6.8.2.6. Creating a Sliding Interface
- 13.6.8.2.7. Deleting a Sliding Interface
- 13.6.8.2.8. Changing the Motion Attribute of a Dynamic Zone
- 13.6.8.2.9. Changing the Time Step Size
- 13.6.8.2.10. Changing the Under-Relaxation Factor
- 13.6.8.2.11. Inserting a Boundary Zone Layer
- 13.6.8.2.12. Removing a Boundary Zone Layer
- 13.6.8.2.13. Inserting an Interior Zone Layer
- 13.6.8.2.14. Removing an Interior Zone Layer
- 13.6.8.2.15. Inserting a Cell Layer
- 13.6.8.2.16. Removing a Cell Layer
- 13.6.8.2.17. Executing a Command
- 13.6.8.2.18. Replacing the Mesh
- 13.6.8.2.19. Resetting Inert EGR
- 13.6.8.2.20. Diesel Unsteady Flamelet Reset
- 13.6.8.3. Exporting and Importing Events
- 13.6.9. Specifying the Motion of Dynamic Zones
- 13.6.10. Previewing the Dynamic Mesh
- 13.6.11. Steady-State Dynamic Mesh Applications
- 14. Modeling Turbomachinery Flows
- 14.1. Using the Turbomachinery Guided Workflow
- 14.1.1. Describing the Components of the Turbo Machine
- 14.1.2. Defining Your Blade Row Scope
- 14.1.3. Importing Your Mesh
- 14.1.4. Associating Your Mesh
- 14.1.5. Mapping Your Regions
- 14.1.6. Creating the CFD Model
- 14.1.7. Defining the Turbomachinery Physics
- 14.1.8. Defining the Turbomachinery Regions and Zones
- 14.1.9. Defining the Turbomachinery Topology
- 14.1.10. Defining Turbomachinery Surfaces
- 14.1.11. Creating Turbomachinery Report Definitions and Monitors
- 14.1.12. Text Command List for the Turbo Workflow
- 14.1.13. Editing Tasks in the Turbo Workflow
- 14.1.14. Saving and Loading Turbo Workflows
- 14.1.15. Applying Preferences to the Turbo Workflow
- 14.2. Frozen Gust / Inlet Disturbance Flow Modeling
- 14.3. Blade Row Interaction Modeling
- 14.4. Aerodynamic Damping (Blade Flutter Analysis)
- 14.5. Phase-lag Method
- 14.5.1. Phase-lag Theory
- 14.5.2. Phase-lag Capabilities and Limitations
- 14.5.3. Using the Phase-lag Method
- 14.6. Non-equilibrium Wet Steam Model for Steam Turbines
- 14.7. Blade Film Cooling for Gas Turbines
- 14.8. Turbomachinery Description
- 14.9. Turbomachinery-Specific Numerics
- 14.10. Turbomachinery Postprocessing
- 14.10.1. Defining the Turbomachinery Topology
- 14.10.2. Contours and Vectors Visualization for Turbomachinery
- 14.10.3. General Fourier Coefficient Postprocessing for Turbomachinery Cases
- 14.10.4. Circumferential-Averaged Profile Extraction
- 14.10.5. Turbo Post
- 14.10.5.1. Generating Reports of Turbomachinery Data
- 14.10.5.1.1. Computing Turbomachinery Quantities
- 14.10.5.1.1.1. Mass Flow
- 14.10.5.1.1.2. Swirl Number
- 14.10.5.1.1.3. Average Total Pressure
- 14.10.5.1.1.4. Average Total Temperature
- 14.10.5.1.1.5. Average Flow Angles
- 14.10.5.1.1.6. Passage Loss Coefficient
- 14.10.5.1.1.7. Axial Force
- 14.10.5.1.1.8. Torque
- 14.10.5.1.1.9. Efficiencies for Pumps and Compressors
- 14.10.5.1.1.10. Efficiencies for Turbines
- 14.10.5.2. Displaying Turbomachinery Averaged Contours
- 14.10.5.3. Displaying Turbomachinery 2D Contours
- 14.10.5.4. Generating Averaged XY Plots of Turbomachinery Solution Data
- 14.10.5.5. Globally Setting the Turbomachinery Topology
- 14.10.6. Calculating Turbomachine Performance
- 15. Modeling Turbulence
- 15.1. Introduction
- 15.2. Choosing a Turbulence Model
- 15.2.1. Reynolds Averaged Navier-Stokes (RANS) Turbulence Models
- 15.2.1.1. Spalart-Allmaras One-Equation Model
- 15.2.1.2. k-ε Models
- 15.2.1.3. k-ω Models
- 15.2.1.4. Generalized k-ω (GEKO) Model
- 15.2.1.5. Reynold Stress Models
- 15.2.1.6. Laminar-Turbulent Transition Models
- 15.2.1.7. Curvature Correction for the Spalart-Allmaras and Two-Equation Models
- 15.2.1.8. Corner Flow Correction
- 15.2.1.9. Production Limiters for Two-Equation Models
- 15.2.1.10. Model Enhancements
- 15.2.1.11. Wall Treatment for RANS Models
- 15.2.1.12. Grid Resolution for RANS Models
- 15.2.2. Scale-Resolving Simulation (SRS) Models
- 15.2.3. Grid Resolution SRS Models
- 15.2.4. Numerics Settings for SRS Models
- 15.2.5. Model Hierarchy
- 15.3. Steps in Using a Turbulence Model
- 15.4. Setting Up the Spalart-Allmaras Model
- 15.5. Setting Up the k-ε Model
- 15.6. Setting Up the k-ω Model
- 15.7. Setting Up the Transition k-kl-ω Model
- 15.8. Setting Up the Transition SST Model
- 15.9. Setting Up the Algebraic or Intermittency Transition Model
- 15.10. Setting Up the Reynolds Stress Model
- 15.11. Setting Up Scale-Adaptive Simulation (SAS) Modeling
- 15.12. Setting Up the Detached Eddy Simulation Model
- 15.13. Setting Up the Large Eddy Simulation Model
- 15.14. Model Constants
- 15.15. Setting Up the Embedded Large Eddy Simulation (ELES) Model
- 15.16. Setup Options for All Turbulence Modeling
- 15.16.1. Including the Viscous Heating Effects
- 15.16.2. Including Buoyancy Effects on Turbulence
- 15.16.3. Including the Curvature Correction for the Spalart-Allmaras and Two-Equation Turbulence Models
- 15.16.4. Including Corner Flow Correction
- 15.16.5. Including the Compressibility Effects Option
- 15.16.6. Including Production Limiters for Two-Equation Models
- 15.16.7. Vorticity- and Strain/Vorticity-Based Production
- 15.16.8. Delayed Detached Eddy Simulation (DDES)
- 15.16.9. Differential Viscosity Modification
- 15.16.10. Swirl Modification
- 15.16.11. Low-Re Corrections
- 15.16.12. Shear Flow Corrections
- 15.16.13. Turbulence Damping
- 15.16.14. Including Pressure Gradient Effects
- 15.16.15. Including Thermal Effects
- 15.16.16. Including the Wall Reflection Term
- 15.16.17. Solving the k Equation to Obtain Wall Boundary Conditions
- 15.16.18. Quadratic Pressure-Strain Model
- 15.16.19. Stress-Omega and Stress-BSL Models
- 15.16.20. Subgrid-Scale Model
- 15.16.21. Customizing the Turbulent Viscosity
- 15.16.22. Customizing the Turbulent Prandtl and Schmidt Numbers
- 15.16.23. Modeling Turbulence with Non-Newtonian Fluids
- 15.16.24. Including Scale-Adaptive Simulation with ω-Based URANS Models
- 15.16.25. Including Detached Eddy Simulation with the Transition SST Model
- 15.16.26. Including the SDES or SBES Model with RANS Models
- 15.16.27. Shielding Functions for the BSL / SST / Transition SST Detached Eddy Simulation Model
- 15.17. Defining Turbulence Boundary Conditions
- 15.18. Providing an Initial Guess for k and ε (or k and ω)
- 15.19. Solution Strategies for Turbulent Flow Simulations
- 15.20. Postprocessing for Turbulent Flows
- 16. Modeling Thermal Energy
- 16.1. Introduction
- 16.2. Modeling Conductive and Convective Heat Transfer
- 16.2.1. Solving Heat Transfer Problems
- 16.2.2. Solution Strategies for Heat Transfer Modeling
- 16.2.3. Postprocessing Heat Transfer Quantities
- 16.2.3.1. Available Variables for Postprocessing
- 16.2.3.2. Definition of Enthalpy and Energy in Reports and Displays
- 16.2.3.3. Reporting Heat Transfer Through Boundaries
- 16.2.3.4. Reporting Heat Transfer Through a Surface
- 16.2.3.5. Reporting Averaged Heat Transfer Coefficients
- 16.2.3.6. Exporting Heat Flux Data
- 16.2.4. Natural Convection
- 16.2.5. Shell Conduction
- 16.2.6. Anisotropic Thermal Conductivity with Curvilinear Coordinate System (CCS)
- 16.3. Modeling Radiation
- 16.3.1. Using the Radiation Models
- 16.3.2. Setting Up the P-1 Model with Non-Gray Radiation
- 16.3.3. Setting Up the DTRM
- 16.3.4. Setting Up the S2S Model
- 16.3.5. Setting Up the DO Model
- 16.3.6. Setting Up the MC Model
- 16.3.7. Defining Material Properties for Radiation
- 16.3.8. Defining Boundary Conditions for Radiation
- 16.3.8.1. Inlet and Outlet Boundary Conditions
- 16.3.8.2. Wall Boundary Conditions for the DTRM, P-1, S2S, and Rosseland Models
- 16.3.8.3. Wall Boundary Conditions for the DO Model
- 16.3.8.4. Wall Boundary Conditions for the MC Model
- 16.3.8.5. Solid Cell Zones Conditions for the DO or MC Models
- 16.3.8.6. Thermal Boundary Conditions
- 16.3.9. Solution Strategies for Radiation Modeling
- 16.3.10. Postprocessing Radiation Quantities
- 16.3.11. Solar Load Model
- 16.3.11.1. Introduction
- 16.3.11.2. Solar Ray Tracing
- 16.3.11.3. Solar Irradiation
- 16.3.11.4. Solar Calculator
- 16.3.11.5. Using the Solar Load Model
- 16.3.11.5.1. User-Defined Functions (UDFs) for Solar Load
- 16.3.11.5.2. Setting Up the Solar Load Model
- 16.3.11.5.3. Setting Boundary Conditions for Solar Loading
- 16.3.11.5.4. Solar Ray Tracing
- 16.3.11.5.5. Solar Irradiation
- 16.3.11.5.6. Text Interface-Only Commands
- 16.3.11.5.6.1. Automatically Saving Solar Ray Tracing Data
- 16.3.11.5.6.2. Automatically Reading Solar Data
- 16.3.11.5.6.3. Aligning the Camera Direction With the Position of the Sun
- 16.3.11.5.6.4. Specifying the Scattering Fraction
- 16.3.11.5.6.5. Applying the Solar Load on Adjacent Fluid Cells
- 16.3.11.5.6.6. Specifying Quad Tree Refinement Factor
- 16.3.11.5.6.7. Specifying Ground Reflectivity
- 16.3.11.5.6.8. Reverting to Single Band Implementation of DO Model
- 16.3.11.5.6.9. Additional Text Interface Commands
- 16.3.11.6. Postprocessing Solar Load Quantities
- 16.4. Modeling Periodic Heat Transfer
- 16.5. Modeling Heat Exchangers
- 16.5.1. Choosing a Heat Exchanger Model
- 16.5.2. The Dual Cell Model
- 16.5.3. The Macro Heat Exchanger Models
- 16.5.3.1. Restrictions
- 16.5.3.2. Using the Ungrouped Macro Heat Exchanger Model
- 16.5.3.2.1. Selecting the Zone for the Heat Exchanger
- 16.5.3.2.2. Specifying Heat Exchanger Performance Data
- 16.5.3.2.3. Specifying the Auxiliary Fluid Inlet and Pass-to-Pass Directions
- 16.5.3.2.4. Defining the Macros
- 16.5.3.2.5. Specifying the Auxiliary Fluid Properties and Conditions
- 16.5.3.2.6. Setting the Pressure-Drop Parameters and Effectiveness
- 16.5.3.3. Using the Grouped Macro Heat Exchanger Model
- 16.5.3.3.1. Selecting the Fluid Zones for the Heat Exchanger Group
- 16.5.3.3.2. Selecting the Upstream Heat Exchanger Group
- 16.5.3.3.3. Specifying the Auxiliary Fluid Inlet and Pass-to-Pass Directions
- 16.5.3.3.4. Specifying the Auxiliary Fluid Properties
- 16.5.3.3.5. Specifying Supplementary Auxiliary Fluid Streams
- 16.5.3.3.6. Initializing the Auxiliary Fluid Temperature
- 16.5.4. Postprocessing for the Heat Exchanger Model
- 16.5.5. Useful Reporting TUI Commands
- 16.6. Thermal Analysis of Printed Circuit Boards
- 17. Modeling Hypersonic Flow
- 17.1. Introduction to Hypersonic Flows
- 17.2. High Speed Numerics
- 17.3. Modeling Non-Equilibrium Gas Dissociation Using Finite Rate Chemistry
- 17.4. Modeling Transport Properties Using Gupta Curve Fits
- 17.5. Modeling Hypersonic Flows Using the Two-Temperature Model
- 17.6. Partial Slip for Rarefied Gases
- 17.7. Temperature Jump for Rarefied Gases
- 17.8. Partial Catalytic Boundary Condition for Walls
- 17.9. The Ablation Condition at Wall Boundaries
- 17.10. Best Practices
- 18. Fluent’s Virtual Blade Model
- 19. Modelling with Finite-Rate Chemistry
- 19.1. Modeling Species Transport and Finite-Rate Chemistry
- 19.1.1. Volumetric Reactions
- 19.1.1.1. Overview of User Inputs for Modeling Species Transport and Reactions
- 19.1.1.2. Enabling Species Transport and Reactions and Choosing the Mixture Material
- 19.1.1.3. Importing a Volumetric Kinetic Mechanism in CHEMKIN Format
- 19.1.1.4. Defining Properties for the Mixture and Its Constituent Species
- 19.1.1.5. Setting up Coal Simulations with the Coal Calculator Dialog Box
- 19.1.1.6. Defining Cell Zone and Boundary Conditions for Species
- 19.1.1.7. Defining Other Sources of Chemical Species
- 19.1.1.8. Solution Procedures for Chemical Mixing and Finite-Rate Chemistry
- 19.1.1.8.1. Stability and Convergence in Reacting Flows
- 19.1.1.8.2. Two-Step Solution Procedure (Steady-state Only)
- 19.1.1.8.3. Density Under-Relaxation
- 19.1.1.8.4. Ignition in Steady-State Combustion Simulations
- 19.1.1.8.5. Solution of Stiff Chemistry Systems
- 19.1.1.8.6. Eddy-Dissipation Concept Model Solution Procedure
- 19.1.1.9. Postprocessing for Species Calculations
- 19.1.2. Wall Surface Reactions and Chemical Vapor Deposition
- 19.1.2.1. Overview of Surface Species and Wall Surface Reactions
- 19.1.2.2. Importing a Surface Kinetic Mechanism in CHEMKIN Format
- 19.1.2.3. Manual Inputs for Wall Surface Reactions
- 19.1.2.4. Including Mass Transfer To Surfaces in the Continuity Equation
- 19.1.2.5. Wall Surface Mass Transfer Effects in the Energy Equation
- 19.1.2.6. Modeling the Heat Release Due to Wall Surface Reactions
- 19.1.2.7. Solution Procedures for Wall Surface Reactions
- 19.1.2.8. Postprocessing for Surface Reactions
- 19.1.3. Particle Reactions
- 19.1.4. Electrochemical Reactions
- 19.1.4.1. Overview and Limitation of Electrochemical Reactions
- 19.1.4.2. User Inputs for Electrochemical Reactions
- 19.1.4.3. Electrochemical Reaction Effects in the Energy Equation
- 19.1.4.4. Electrochemical Reaction Effects in the Species Transport Equation
- 19.1.4.5. Including Mass Transfer in Continuity
- 19.1.4.6. Solution Procedures for Electrochemical Reactions
- 19.1.4.7. Modeling Corrosion with the Water Corrosion Pre Tool
- 19.1.5. Species Transport Without Reactions
- 19.1.6. Reacting Channel Model
- 19.1.7. Reactor Network Model
- 19.2. Modeling a Composition PDF Transport Problem
- 19.2.1. Limitation
- 19.2.2. Steps for Using the Composition PDF Transport Model
- 19.2.3. Enabling the Lagrangian Composition PDF Transport Model
- 19.2.4. Enabling the Eulerian Composition PDF Transport Model
- 19.2.5. Initializing the Solution
- 19.2.6. Monitoring the Solution
- 19.2.7. Postprocessing for Lagrangian PDF Transport Calculations
- 19.2.8. Postprocessing for Eulerian PDF Transport Calculations
- 19.3. Using Chemistry Acceleration
- 20. Modelling of Turbulent Combustion With Reduced Order
- 20.1. Modeling Non-Premixed Combustion
- 20.1.1. Steps in Using the Non-Premixed Model
- 20.1.2. Setting Up the Equilibrium Chemistry Model
- 20.1.3. Setting Up the Steady and Unsteady Diffusion Flamelet Models
- 20.1.3.1. Choosing Adiabatic or Non-Adiabatic Options
- 20.1.3.2. Specifying the Operating Pressure for the System
- 20.1.3.3. Specifying a Chemical Mechanism File for Flamelet Generation
- 20.1.3.4. Importing a Flamelet
- 20.1.3.5. Using the Unsteady Diffusion Flamelet Model
- 20.1.3.6. Using the Diesel Unsteady Laminar Flamelet Model
- 20.1.3.7. Resetting Diesel Unsteady Flamelets
- 20.1.4. Defining the Stream Compositions
- 20.1.5. Setting Up Control Parameters
- 20.1.6. Calculating the Flamelets
- 20.1.7. Calculating the Look-Up Tables
- 20.1.8. Standard Files for Diffusion Flamelet Modeling
- 20.1.9. Setting Up the Inert Model
- 20.1.10. Defining Non-Premixed Boundary Conditions
- 20.1.11. Defining Non-Premixed Physical Properties
- 20.1.12. Solution Strategies for Non-Premixed Modeling
- 20.1.13. Enabling Robust Numerics for Combustion with a PDF Table
- 20.1.14. Postprocessing the Non-Premixed Model Results
- 20.2. Modeling Premixed Combustion
- 20.2.1. Limitations of the Premixed Combustion Model
- 20.2.2. Using the Premixed Combustion Model
- 20.2.3. Setting Up the C-Equation and G-Equation Models
- 20.2.3.1. Modifying the Constants for the Zimont Flame Speed Model
- 20.2.3.2. Modifying the Constants for the Peters Flame Speed Model
- 20.2.3.3. Additional Options for the G-Equation Model
- 20.2.3.4. Defining Physical Properties for the Unburnt Mixture
- 20.2.3.5. Setting Boundary Conditions for the Progress Variable
- 20.2.3.6. Initializing the Progress Variable
- 20.2.4. Postprocessing for Premixed Combustion Calculations
- 20.3. Modeling Partially Premixed Combustion
- 20.3.1. Limitations
- 20.3.2. Using the Partially Premixed Combustion Model
- 20.3.2.1. Setup and Solution Procedure
- 20.3.2.2. Importing a Flamelet
- 20.3.2.3. Flamelet Generated Manifold
- 20.3.2.4. Calculating the Look-Up Tables
- 20.3.2.5. Standard Files for Flamelet Generated Manifold Modeling
- 20.3.2.6. Setting Premix Flame Propagation Parameters
- 20.3.2.7. Modifying the Unburnt Mixture Property Polynomials
- 20.3.2.8. Modeling Strained Laminar Flame Speed
- 20.3.2.9. Modeling In Cylinder Combustion
- 20.3.2.10. Postprocessing for FGM Scalar Transport Calculations
- 21. Modeling Engine Ignition
- 22. Modeling Pollutant Formation
- 22.1. NOx Formation
- 22.1.1. Using the NOx Model
- 22.1.1.1. Decoupled Analysis: Overview
- 22.1.1.2. Enabling the NOx Models
- 22.1.1.3. Defining the Fuel Streams
- 22.1.1.4. Specifying a User-Defined Function for the NOx Rate
- 22.1.1.5. Setting Thermal NOx Parameters
- 22.1.1.6. Setting Prompt NOx Parameters
- 22.1.1.7. Setting Fuel NOx Parameters
- 22.1.1.8. Setting N2O Pathway Parameters
- 22.1.1.9. Setting Parameters for NOx Reburn
- 22.1.1.10. Setting SNCR Parameters
- 22.1.1.11. Setting Turbulence Parameters
- 22.1.1.12. Defining Boundary Conditions for the NOx Model
- 22.1.2. Solution Strategies
- 22.1.3. Postprocessing
- 22.2. Soot Formation
- 22.2.1. Using the Soot Models
- 22.3. Using the Decoupled Detailed Chemistry Model
- 23. Predicting Aerodynamically Generated Noise
- 23.1. Overview
- 23.2. Using the Ffowcs Williams and Hawkings Acoustics Model
- 23.3. Using the Acoustics Wave Equation Model
- 23.4. Using the Broadband Noise Source Models
- 23.5. Sponge Layers
- 24. Modeling Discrete Phase
- 24.1. Introduction
- 24.1.1. Concepts
- 24.1.2. Limitations
- 24.1.2.1. Limitation on the Particle Volume Fraction
- 24.1.2.2. Limitation on the Particle Knudsen Number
- 24.1.2.3. Limitation on Modeling Continuous Suspensions of Particles
- 24.1.2.4. Limitations on Modeling Particle Rotation
- 24.1.2.5. Limitations on Using the Discrete Phase Model with Other Ansys Fluent Models
- 24.1.2.6. Limitations on Using the Hybrid Parallel Method
- 24.2. Steps for Using the Discrete Phase Models
- 24.2.1. Options for Interaction with the Continuous Phase
- 24.2.2. Steady/Transient Treatment of Particles
- 24.2.3. Tracking Settings for the Discrete Phase Model
- 24.2.4. Drag Laws
- 24.2.5. Physical Models for the Discrete Phase Model
- 24.2.5.1. Including Radiation Heat Transfer Effects on the Particles
- 24.2.5.2. Including Thermophoretic Force Effects on the Particles
- 24.2.5.3. Including Saffman Lift Force Effects on the Particles
- 24.2.5.4. Including the Virtual Mass Force and Pressure Gradient Effects on Particles
- 24.2.5.5. Monitoring Erosion/Accretion of Particles at Walls
- 24.2.5.6. Pressure Options for Vaporization Models
- 24.2.5.7. Considering Pressure Dependence in Boiling
- 24.2.5.8. Including the Effect of Droplet Temperature on Latent Heat
- 24.2.5.9. Including the Effect of Particles on Turbulent Quantities
- 24.2.5.10. Including Collision and Droplet Coalescence
- 24.2.5.11. Including the DEM Collision Model
- 24.2.5.12. Including Droplet Breakup
- 24.2.5.13. Modeling Collision Using the DEM Model
- 24.2.5.14. Including the Volume Displacement of Particles
- 24.2.6. User-Defined Functions
- 24.2.7. Numerics of the Discrete Phase Model
- 24.2.7.1. Numerics for Tracking of the Particles
- 24.2.7.2. Including Coupled Heat-Mass Solution Effects on the Particles
- 24.2.7.3. Tracking in a Reference Frame
- 24.2.7.4. Node Based Averaging of Particle Data
- 24.2.7.5. Linearized Source Terms
- 24.2.7.6. Using the Dynamic Interaction Range
- 24.2.7.7. Staggering of Particles in Space and Time
- 24.2.7.8. Packing Limit
- 24.2.7.9. Under-Relaxing Lagrangian Wall Film Height
- 24.3. Setting Initial Conditions for the Discrete Phase
- 24.3.1. Injection Types
- 24.3.2. Particle Types
- 24.3.3. Point Properties for Single Injections
- 24.3.4. Point Properties for Group Injections
- 24.3.5. Point Properties for Cone Injections
- 24.3.6. Point Properties for Surface Injections
- 24.3.7. Point Properties for Volume Injections
- 24.3.8. Point Properties for Plain-Orifice Atomizer Injections
- 24.3.9. Point Properties for Pressure-Swirl Atomizer Injections
- 24.3.10. Point Properties for Air-Blast/Air-Assist Atomizer Injections
- 24.3.11. Point Properties for Flat-Fan Atomizer Injections
- 24.3.12. Point Properties for Effervescent Atomizer Injections
- 24.3.13. Point Properties for File Injections
- 24.3.14. Point Properties for Condensate Injections
- 24.3.15. Using the Rosin-Rammler Diameter Distribution Method
- 24.3.16. Using the Tabulated (Discrete) Diameter Distribution
- 24.3.17. Creating and Modifying Injections
- 24.3.18. Defining Injection Properties
- 24.3.19. Specifying Injection-Specific Physical Models
- 24.3.20. Specifying Turbulent Dispersion of Particles
- 24.3.21. Custom Particle Laws
- 24.3.22. Defining Properties Common to More than One Injection
- 24.3.23. Point Properties for Transient Injections
- 24.4. Setting Boundary Conditions for the Discrete Phase
- 24.4.1. Discrete Phase Boundary Condition Types
- 24.4.1.1. The reflect Boundary Condition
- 24.4.1.2. The trap Boundary Condition
- 24.4.1.3. The escape Boundary Condition
- 24.4.1.4. The wall-jet Boundary Condition
- 24.4.1.5. The wall-film Boundary Condition
- 24.4.1.6. The interior Boundary Condition
- 24.4.1.7. The reinject Boundary Condition
- 24.4.1.8. The user-defined Boundary Condition
- 24.4.2. Default Discrete Phase Boundary Conditions
- 24.4.3. Coefficients of Restitution
- 24.4.4. Friction Coefficient
- 24.4.5. Particle-Wall Impingement Heat Transfer
- 24.4.6. Setting Particle Erosion and Accretion Parameters
- 24.5. Particle Erosion Coupled with Dynamic Meshes
- 24.6. Modeling Lagrangian Wall Films
- 24.7. Setting Material Properties for the Discrete Phase
- 24.8. Solution Strategies for the Discrete Phase
- 24.9. Postprocessing for the Discrete Phase
- 24.9.1. Displaying of Trajectories
- 24.9.2. Particle Tracking Statistics
- 24.9.3. Summary Reports
- 24.9.3.1. Trajectory Fates
- 24.9.3.2. Elapsed Time
- 24.9.3.3. Mass Transfer Summary
- 24.9.3.4. Energy Transfer Summary
- 24.9.3.5. Heat Rate and Energy Reporting
- 24.9.3.6. Combusting Particles
- 24.9.3.7. Combusting Particles with the Multiple Surface Reaction Model
- 24.9.3.8. Multicomponent Particles
- 24.9.3.9. Reinjected Particles
- 24.9.3.10. Evaporated Mass
- 24.9.4. Step-by-Step Reporting of Trajectories
- 24.9.5. Reporting of Current Positions for Unsteady Tracking
- 24.9.6. Reporting of Interphase Exchange Terms (Discrete Phase Sources)
- 24.9.7. Reporting of Particle Variables
- 24.9.8. Reporting of Discrete Phase Variables
- 24.9.9. Reporting of Unsteady DPM Statistics
- 24.9.10. Sampling of Trajectories
- 24.9.11. Histogram Reporting of Samples
- 24.9.12. Contour Plots of DPM Particle Sampling Results on a Planar Surface
- 24.9.13. Summary Reporting of Current Particles
- 24.9.14. Postprocessing of Erosion/Accretion Rates
- 24.9.15. Assessing the Risk for Solids Deposit Formation During Selective Catalytic Reduction Process
- 24.10. Parallel Processing for the Discrete Phase Model
- 25. Modeling Macroscopic Particles
- 25.1. Overview and Limitations
- 25.2. Loading the MPM add-on Module
- 25.3. Setting up Macroscopic Particle Model Simulations
- 25.4. Modeling Macroscopic Particles
- 26. Modeling Multiphase Flows
- 26.1. Introduction
- 26.2. Steps for Using a Multiphase Model
- 26.2.1. Enabling the Multiphase Model
- 26.2.2. Choosing Volume Fraction Formulation
- 26.2.3. Solving a Homogeneous Multiphase Flow
- 26.2.4. Modeling Buoyancy-Driven Multiphase Flow
- 26.2.5. Modeling Compressible Flows
- 26.2.6. Defining the Phases
- 26.2.7. Including Body Forces
- 26.2.8. Modeling Multiphase Species Transport
- 26.2.9. Specifying Heterogeneous Reactions
- 26.2.10. Including Mass Transfer Effects
- 26.2.11. Defining Multiphase Cell Zone and Boundary Conditions
- 26.2.12. Setting Initial Conditions
- 26.3. Setting Up the VOF Model
- 26.3.1. Solving Steady-State VOF Problems
- 26.3.2. Guidelines for Using the Multiphase Pseudo Time Method
- 26.3.3. Including Coupled Level Set with the VOF Model
- 26.3.4. Mesh Adaption with the VOF Model
- 26.3.5. Modeling Open Channel Flows
- 26.3.5.1. Defining Inlet Groups
- 26.3.5.2. Defining Outlet Groups
- 26.3.5.3. Setting the Inlet Group
- 26.3.5.4. Setting the Outlet Group
- 26.3.5.5. Determining the Free Surface Level
- 26.3.5.6. Determining the Bottom Level
- 26.3.5.7. Specifying the Total Height
- 26.3.5.8. Determining the Velocity Magnitude
- 26.3.5.9. Determining the Secondary Phase for the Inlet
- 26.3.5.10. Determining the Secondary Phase for the Outlet
- 26.3.5.11. Choosing the Pressure Specification Method
- 26.3.5.12. Choosing the Density Interpolation Method
- 26.3.5.13. Open Channel Flow Compatibility with Velocity Inlet
- 26.3.5.14. Limitations
- 26.3.5.15. Recommendations for Setting Up an Open Channel Flow Problem
- 26.3.6. Modeling Open Channel Wave Boundary Conditions
- 26.3.7. Recommendations for Open Channel Initialization
- 26.3.8. Numerical Beach Treatment for Open Channels
- 26.3.9. Defining the Phases for the VOF Model
- 26.3.10. Defining Phase Interaction Terms
- 26.3.11. Setting Time-Dependent Parameters for the Explicit Volume Fraction Formulation
- 26.3.12. Modeling Solidification/Melting
- 26.3.13. Using the VOF-to-DPM Model Transition for Dispersion of Liquid in Gas
- 26.3.14. Using the DPM-to-VOF Model Transition
- 26.4. Setting Up the Mixture Model
- 26.4.1. Defining the Phases for the Mixture Model
- 26.4.1.1. Defining the Primary Phase
- 26.4.1.2. Defining a Non-Granular Secondary Phase
- 26.4.1.3. Defining a Granular Secondary Phase
- 26.4.1.4. Defining the Interfacial Area Concentration via the Transport Equation
- 26.4.1.5. Defining the Algebraic Interfacial Area Concentration
- 26.4.1.6. Defining Drag Between Phases
- 26.4.1.7. Defining the Slip Velocity
- 26.4.1.8. Including Surface Tension and Wall Adhesion Effects
- 26.4.2. Including Mixture Drift Force
- 26.4.3. Using the Flow Regime Modeling
- 26.4.4. Using the Singhal et al. Expert Cavitation Model
- 26.4.5. Including Semi-Mechanistic Boiling
- 26.5. Setting Up the Eulerian Model
- 26.5.1. Additional Guidelines for Eulerian Multiphase Simulations
- 26.5.2. Defining the Phases for the Eulerian Model
- 26.5.2.1. Defining the Primary Phase
- 26.5.2.2. Defining a Non-Granular Secondary Phase
- 26.5.2.3. Defining a Granular Secondary Phase
- 26.5.2.4. Defining the Interfacial Area Concentration
- 26.5.2.5. Defining the Interaction Between Phases
- 26.5.2.5.1. Specifying the Drag Function
- 26.5.2.5.2. Specifying the Restitution Coefficients (Granular Flow Only)
- 26.5.2.5.3. Including the Lift Force
- 26.5.2.5.4. Including the Lift Correlation
- 26.5.2.5.5. Including the Wall Lubrication Force
- 26.5.2.5.6. Including the Turbulent Dispersion Force
- 26.5.2.5.7. Including Surface Tension and Wall Adhesion Effects
- 26.5.2.5.8. Including the Virtual Mass Force
- 26.5.3. Modeling Turbulence
- 26.5.4. Including Heat Transfer Effects
- 26.5.5. Using an Algebraic Interfacial Area Model
- 26.5.6. Using the Algebraic Interfacial Area Density (AIAD) Model
- 26.5.7. Using the Generalized Two Phase Flow (GENTOP) Model
- 26.5.8. Including the Dense Discrete Phase Model
- 26.5.9. Including the Boiling Model
- 26.5.10. Setting Up Polydisperse Boiling
- 26.5.11. Including the Multi-Fluid VOF Model
- 26.6. Population Balance Model
- 26.6.1. Population Balance Model Setup
- 26.6.1.1. Enabling the Population Balance Model
- 26.6.1.2. Defining Population Balance Boundary Conditions
- 26.6.1.3. Defining Population Balance Cell Zones Conditions
- 26.6.1.4. Specifying Population Balance Solution Controls
- 26.6.1.5. Coupling With Fluid Dynamics
- 26.6.1.6. Specifying Interphase Mass Transfer Due to Nucleation and Growth
- 26.6.1.7. Size Calculator
- 26.6.2. Solution Strategies
- 26.6.3. Postprocessing for the Population Balance Model
- 26.6.4. UDFs for Population Balance Modeling
- 26.6.4.1. Population Balance Variables
- 26.6.4.2. Population Balance
DEFINE
Macros - 26.6.4.3. Hooking a Population Balance UDF to Ansys Fluent
- 26.6.5.
DEFINE_HET_RXN_RATE
Macro
- 26.7. Setting Up the Wet Steam Model
- 26.8. Solution Strategies for Multiphase Modeling
- 26.8.1. General Solution Strategies
- 26.8.1.1. Coupled Solution for Eulerian Multiphase Flows
- 26.8.1.2. Coupled Solution for VOF and Mixture Multiphase Flows
- 26.8.1.3. Selecting the Pressure-Velocity Coupling Method
- 26.8.1.4. Controlling the Volume Fraction Coupled Solution
- 26.8.1.5. Default and Stability Controls
- 26.8.1.6. Heat Transfer and Radiative Flux Distribution for Non-Eulerian Multiphase Models
- 26.8.1.7. Steady-State Solution Strategies
- 26.8.2. Model-Specific Solution Strategies
- 26.8.2.1. VOF Model
- 26.8.2.1.1. Setting the Reference Pressure Location
- 26.8.2.1.2. Pressure Interpolation Scheme
- 26.8.2.1.3. Discretization Scheme Selection
- 26.8.2.1.4. High-Order Rhie-Chow Face Flux Interpolation
- 26.8.2.1.5. Treatment of Unsteady Terms in Rhie-Chow Face Flux Interpolation
- 26.8.2.1.6. Pressure-Velocity Coupling and Under-Relaxation for the Time-dependent Formulations
- 26.8.2.1.7. Under-Relaxation for the Steady-State Formulation
- 26.8.2.2. Mixture Model
- 26.8.2.3. Eulerian Model
- 26.8.2.4. Wet Steam Model
- 26.9. Multiphase Case Check
- 26.10. Postprocessing for Multiphase Modeling
- 27. Modeling Solidification and Melting
- 28. Modeling Fluid-Structure Interaction (FSI) Within Fluent
- 29. Modeling Eulerian Wall Films
- 29.1. Limitations
- 29.2. Overview of Using the Eulerian Wall Film Model
- 29.3. Setting Eulerian Wall Film Model Options
- 29.4. Setting Eulerian Wall Film Solution Controls
- 29.5. Setting Eulerian Wall Film Boundary, Initial, and Source Term Conditions
- 29.6. Coupling of Eulerian Wall Film with the VOF Multiphase Model
- 29.7. Postprocessing the Eulerian Wall Film
- 30. Modeling Electric Potential Field and Electrochemistry Models
- 30.1. Simulating the Electric Potential Field
- 30.2. Simulating the Lithium-ion Battery
- 30.3. Setting the Electrolysis and H2 Pump Model
- 30.3.1. Geometry Definition for the Electrolysis and H2 Pump Model
- 30.3.2. Workflow for Using the Electrolysis and H2 Pump Model
- 30.3.3. Setting up the Electrolysis and H2 Pump Model
- 30.3.3.1. Specifying Model Options (Model Tab)
- 30.3.3.2. Specifying Model Parameters (Parameters Tab)
- 30.3.3.3. Specifying Anode Properties (Anode Tab)
- 30.3.3.4. Specifying Electrolyte/Membrane Properties (Electrolyte Tab)
- 30.3.3.5. Specifying Cathode Properties (Cathode Tab)
- 30.3.3.6. Setting the External Electrical Tabs (Electrical Tabs Tab)
- 30.3.3.7. (Customization Tab)
- 30.3.3.8. Setting Advanced Options (Advanced Tab)
- 30.3.4. Solution Strategies for the Electrolysis and H2 Pump Model
- 30.4. Postprocessing Electric Potential Field and Li-ion Battery Quantities
- 31. Modeling Batteries
- 31.1. Introduction
- 31.2. Using the MSMD-Based Battery Models
- 31.2.1. Limitations
- 31.2.2. Geometry Definition
- 31.2.3. Setting up the Battery Model
- 31.2.3.1. Specifying Battery Model Options
- 31.2.3.2. Specifying Conductive Zones
- 31.2.3.3. Specifying Electric Contacts
- 31.2.3.4. Specifying Battery Model Parameters
- 31.2.3.5. Hooking User-Defined Functions
- 31.2.3.6. Specifying Advanced Options
- 31.2.3.6.1. Running the Standalone Echem Model
- 31.2.3.6.2. Simulating the Aging Process of a Battery (Standalone Mode)
- 31.2.3.6.3. Using the Battery Pack Builder Tool
- 31.2.3.6.4. Using the Battery ROM Tool Kit
- 31.2.3.6.5. Defining Orthotropic Thermal Conductivity
- 31.2.3.6.6. Using the Empirical-Based Battery Swelling Model
- 31.2.3.6.7. Battery Venting Model
- 31.2.3.6.8. Including the Entropic Heat Effects
- 31.2.3.6.9. Using the Thermal Abuse Model
- 31.2.3.7. Specifying External and Internal Short-Circuit Resistances
- 31.2.3.8. Setting a Battery Swelling Case
- 31.2.4. Using Parameter Estimation Tools
- 31.2.5. Initializing the Battery Model
- 31.2.6. Modifying Material Properties
- 31.2.7. Solution Controls for the MSMD Battery Model
- 31.2.8. Predefined Report Definitions for the Battery Model
- 31.2.9. Postprocessing the MSMD Battery Model
- 32. Modeling Fuel Cells
- 32.1. Using the PEMFC Model
- 32.1.1. Overview and Limitations
- 32.1.2. Geometry Definition for the PEMFC Model
- 32.1.3. Installing the PEMFC Model
- 32.1.4. Loading the PEMFC Module
- 32.1.5. Workflow for Using the PEMFC Module
- 32.1.6. Setting Up the PEMFC Module
- 32.1.6.1. Specifying Model Options (Model Tab)
- 32.1.6.2. Specifying Model Parameters (Parameters Tab)
- 32.1.6.3. Specifying Anode Properties (Anode Tab)
- 32.1.6.3.1. Specifying Current Collector Properties for the Anode
- 32.1.6.3.2. Specifying Flow Channel Properties for the Anode
- 32.1.6.3.3. Specifying Porous Electrode Properties for the Anode
- 32.1.6.3.4. Specifying Catalyst Layer Properties for the Anode
- 32.1.6.3.5. Specifying Micro Porous Layer (Optional) Properties for the Anode
- 32.1.6.3.6. Specifying Cell Zone Conditions for the Anode
- 32.1.6.4. Specifying Electrolyte/Membrane Properties (Electrolyte Tab)
- 32.1.6.5. Specifying Cathode Properties (Cathode Tab)
- 32.1.6.5.1. Specifying Current Collector Properties for the Cathode
- 32.1.6.5.2. Specifying Flow Channel Properties for the Cathode
- 32.1.6.5.3. Specifying Porous Electrode Properties for the Cathode
- 32.1.6.5.4. Specifying Catalyst Layer Properties for the Cathode
- 32.1.6.5.5. Specifying Micro Porous Layer (Optional) Properties for the Cathode
- 32.1.6.5.6. Specifying Cell Zone Conditions for the Cathode
- 32.1.6.6. Setting the External Electrical Tabs (Electrical Tabs Tab)
- 32.1.6.7. Setting Advanced Properties (Advanced Tab)
- 32.1.6.8. Customizing the PEM Fuel Cell Module
- 32.1.6.9. Reporting on the Solution (Reports Tab)
- 32.1.6.10. User-Defined Functions Hooked to the PEMFC Module
- 32.1.7. PEMFC Model Boundary Conditions
- 32.1.8. Solution Guidelines for the PEMFC Model
- 32.1.9. Postprocessing the PEMFC Model
- 32.1.10. User-Accessible Functions
- 32.2. Using the Fuel Cell and Electrolysis Model
- 32.2.1. Overview and Limitations
- 32.2.2. Geometry Definition for the Fuel Cell and Electrolysis Model
- 32.2.3. Installing the Fuel Cell and Electrolysis Model
- 32.2.4. Loading the Fuel Cell and Electrolysis Module
- 32.2.5. Workflow for Using the Fuel Cell and Electrolysis Module
- 32.2.6. Setting Up the Fuel Cell and Electrolysis Module
- 32.2.6.1. Specifying Model Options (Model Tab)
- 32.2.6.2. Specifying Model Parameters (Parameters Tab)
- 32.2.6.3. Specifying Anode Properties (Anode Tab)
- 32.2.6.3.1. Specifying Current Collector Properties for the Anode
- 32.2.6.3.2. Specifying Flow Channel Properties for the Anode
- 32.2.6.3.3. Specifying Porous Electrode Properties for the Anode
- 32.2.6.3.4. Specifying Catalyst Layer Properties for the Anode
- 32.2.6.3.5. Specifying Cell Zone Conditions for the Anode
- 32.2.6.4. Specifying Electrolyte/Membrane Properties (Electrolyte Tab)
- 32.2.6.5. Specifying Cathode Properties (Cathode Tab)
- 32.2.6.5.1. Specifying Current Collector Properties for the Cathode
- 32.2.6.5.2. Specifying Flow Channel Properties for the Cathode
- 32.2.6.5.3. Specifying Porous Electrode Properties for the Cathode
- 32.2.6.5.4. Specifying Catalyst Layer Properties for the Cathode
- 32.2.6.5.5. Specifying Cell Zone Conditions for the Cathode
- 32.2.6.6. Setting Advanced Properties (Advanced Tab)
- 32.2.6.7. Customizing the Fuel Cell and Electrolysis Module
- 32.2.6.8. Reporting on the Solution (Reports Tab)
- 32.2.7. Modeling Current Collectors
- 32.2.8. Fuel Cell and Electrolysis Model Boundary Conditions
- 32.2.9. Solution Guidelines for the Fuel Cell and Electrolysis Model
- 32.2.10. Postprocessing the Fuel Cell and Electrolysis Model
- 32.2.11. User-Accessible Functions
- 32.3. Using the Solid Oxide Fuel Cell With Unresolved Electrolyte Model
- 32.3.1. Limitation on Modeling Solid Oxide Fuel Cells
- 32.3.2. Installing the Solid Oxide Fuel Cell With Unresolved Electrolyte Model
- 32.3.3. Loading the Solid Oxide Fuel Cell With Unresolved Electrolyte Module
- 32.3.4. Solid Oxide Fuel Cell With Unresolved Electrolyte Module Set Up Procedure
- 32.3.5. Setting the SOFC Model
- 32.3.6. User-Accessible Functions for the Solid Oxide Fuel Cell With Unresolved Electrolyte Model
- 33. Modeling Magnetohydrodynamics
- 33.1. Introduction
- 33.2. Implementation
- 33.3. Using the Ansys Fluent MHD Module
- 33.4. Guidelines For Using the Ansys Fluent MHD Model
- 33.5. Definitions of the Magnetic Field
- 33.6. External Magnetic Field Data Format
- 34. Modeling Continuous Fibers
- 34.1. Installing the Continuous Fiber Module
- 34.2. Loading the Continuous Fiber Module
- 34.3. Getting Started With the Continuous Fiber Module
- 34.4. Fiber Models and Options
- 34.5. Fiber Material Properties
- 34.6. Defining Fibers
- 34.6.1. Overview
- 34.6.2. Fiber Injection Types
- 34.6.3. Working with Fiber Injections
- 34.6.3.1. Creating Fiber Injections
- 34.6.3.2. Modifying Fiber Injections
- 34.6.3.3. Copying Fiber Injections
- 34.6.3.4. Deleting Fiber Injections
- 34.6.3.5. Initializing Fiber Injections
- 34.6.3.6. Computing Fiber Injections
- 34.6.3.7. Print Fiber Injections
- 34.6.3.8. Read Data of Fiber Injections
- 34.6.3.9. Write Data of Fiber Injections
- 34.6.3.10. Write Binary Data of Fiber Injections
- 34.6.3.11. List Fiber Injections
- 34.6.4. Defining Fiber Injection Properties
- 34.6.5. Point Properties Specific to Single Fiber Injections
- 34.6.6. Point Properties Specific to Line Fiber Injections
- 34.6.7. Point Properties Specific to Matrix Fiber Injections
- 34.6.8. Define Fiber Grids
- 34.7. User-Defined Functions (UDFs) for the Continuous Fiber Model
- 34.8. Fiber Model Solution Controls
- 34.9. Postprocessing for the Continuous Fibers
- 35. Creating Reduced Order Models (ROMs)
- 36. Using the Solver
- 36.1. Overview of Using the Solver
- 36.2. Choosing the Spatial Discretization Scheme
- 36.3. Pressure-Based Solver Settings
- 36.4. Density-Based Solver Settings
- 36.5. Setting Algebraic Multigrid Parameters
- 36.6. Setting Solution Limits
- 36.7. Setting Multi-Stage Time-Stepping Parameters
- 36.8. Selecting Gradient Limiters
- 36.9. Initializing the Solution
- 36.10. Full Multigrid (FMG) Initialization
- 36.11. Hybrid Initialization
- 36.12. Performing Steady-State Calculations
- 36.13. Performing Time-Dependent Calculations
- 36.14. Performing Calculations with a Pseudo Time Method
- 36.15. Monitoring Solution Convergence
- 36.15.1. Monitoring Residuals
- 36.15.1.1. Definition of Residuals for the Pressure-Based Solver
- 36.15.1.2. Definition of Residuals for the Density-Based Solver
- 36.15.1.3. Overview of Using the Residual Monitors Dialog Box
- 36.15.1.4. Printing and Plotting Residuals
- 36.15.1.5. Storing Residual History Points
- 36.15.1.6. Controlling Normalization and Scaling
- 36.15.1.7. Choosing a Convergence Criterion
- 36.15.1.8. Modifying Convergence Criteria
- 36.15.1.9. Disabling Monitoring
- 36.15.1.10. Plot Parameters
- 36.15.1.11. Postprocessing Residual Values
- 36.15.2. Monitoring Statistics
- 36.15.3. Monitoring Solution Quantities
- 36.16. Convergence Conditions
- 36.17. Executing Commands During the Calculation
- 36.18. Automatic Initialization of the Solution and Case Modification
- 36.19. Animating the Solution
- 36.20. Checking Your Case Setup
- 36.21. Convergence and Stability
- 36.21.1. Judging Convergence
- 36.21.2. Step-by-Step Solution Processes
- 36.21.3. Modifying Algebraic Multigrid Parameters
- 36.21.4. Modifying the Multi-Stage Parameters
- 36.21.5. Robustness with Meshes of Poor Quality
- 36.21.6. Warped-Face Gradient Correction
- 36.21.7. Numerical Noise Filter for the Energy Equation
- 36.22. Solution Steering
- 37. Using the Fluent Native GPU Solver
- 37.1. Introduction to the Fluent GPU Solver
- 37.2. Supported GPUs and Drivers
- 37.3. Basic Steps for CFD Analysis Using the Fluent GPU Solver
- 37.4. Starting the Fluent GPU Solver
- 37.5. Exiting the Fluent GPU Solver
- 37.6. Graphical User Interface (GUI)
- 37.7. Using CPU Processes for Setup and Postprocessing
- 37.8. Reading Fluent Case Files Into the Fluent GPU Solver
- 37.9. Features Supported by the Fluent GPU Solver
- 37.10. Fluent GPU Solver Limitations
- 37.11. Transitioning from a Steady-State Solution to a Transient Calculation
- 37.12. Troubleshooting Cases
- 37.13. Resolving GPU Solver Performance Issues
- 37.14. GPU Memory Usage
- 38. Adapting the Mesh
- 39. Creating Surfaces and Cell Registers for Displaying and Reporting Data
- 39.1. Using Surfaces
- 39.1.1. Zone Surfaces
- 39.1.2. Partition Surfaces
- 39.1.3. Imprint Surfaces
- 39.1.4. Point Surfaces
- 39.1.5. Structural Point Surfaces
- 39.1.6. Line and Rake Surfaces
- 39.1.7. Plane Surfaces
- 39.1.8. Quadric Surfaces
- 39.1.9. Iso-surfaces
- 39.1.10. Clipping Surfaces
- 39.1.11. Transforming Surfaces
- 39.1.12. Expression Volumes
- 39.1.13. Grouping, Prioritizing, Editing, Renaming, and Deleting Surfaces
- 39.2. Using Cell Registers
- 40. Displaying Graphics
- 40.1. Basic Graphics Generation
- 40.1.1. Graphics Performance
- 40.1.2. Displaying the Mesh
- 40.1.3. Displaying Contours and Profiles
- 40.1.4. Displaying Vectors
- 40.1.4.1. Generating Vector Plots
- 40.1.4.2. Displaying Relative Velocity Vectors
- 40.1.4.3. Vector Plot Options
- 40.1.4.3.1. Scaling the Vectors
- 40.1.4.3.2. Skipping Vectors
- 40.1.4.3.3. Drawing Vectors in the Plane of the Surface
- 40.1.4.3.4. Displaying Fixed-Length Vectors
- 40.1.4.3.5. Displaying Vector Components
- 40.1.4.3.6. Specifying the Range of Magnitudes Displayed
- 40.1.4.3.7. Changing the Scalar Field Used for Coloring the Vectors
- 40.1.4.3.8. Controlling 3D Vector Tessellation for Performance and Appearance
- 40.1.4.3.9. Displaying Vectors Using a Single Color
- 40.1.4.3.10. Including the Mesh in the Vector Plot
- 40.1.4.3.11. Changing the Arrow Characteristics
- 40.1.4.4. Creating and Managing Custom Vectors
- 40.1.4.5. Creating and Using Vector Plot Definitions
- 40.1.5. Displaying Pathlines
- 40.1.5.1. Steps for Generating Pathlines
- 40.1.5.2. Options for Pathline Plots
- 40.1.5.2.1. Including the Mesh in the Pathline Display
- 40.1.5.2.2. Controlling the Pathline Style
- 40.1.5.2.3. Controlling Pathline Colors
- 40.1.5.2.4. “Thinning” Pathlines
- 40.1.5.2.5. Coarsening Pathlines
- 40.1.5.2.6. Reversing the Pathlines
- 40.1.5.2.7. Plotting Oil-Flow Pathlines
- 40.1.5.2.8. Controlling the Pulse Mode
- 40.1.5.2.9. Controlling the Accuracy
- 40.1.5.2.10. Plotting Relative Pathlines
- 40.1.5.2.11. Generating an XY Plot Along Pathline Trajectories
- 40.1.5.2.12. Saving Pathline Data
- 40.1.5.2.13. Choosing Node or Cell Values
- 40.1.5.3. Creating and Using Pathline Definitions
- 40.1.6. Displaying Line Integral Convolutions (LICs)
- 40.1.7. Displaying a Scene
- 40.1.8. Displaying Results on a Sweep Surface
- 40.1.9. Hiding the Graphics Window Display
- 40.2. Customizing the Graphics Display
- 40.2.1. Embedded Graphics Window Dashboards
- 40.2.2. Advanced Graphics Overlays
- 40.2.3. Managing Multiple Graphics Windows
- 40.2.4. Showing Boundary Markers
- 40.2.5. Changing the Legend Display
- 40.2.6. Adding Text to the Graphics Window
- 40.2.7. Changing the Colormap and Range
- 40.2.8. Adding Lights
- 40.2.9. Modifying the Rendering Options
- 40.3. Enhanced Graphics Visual Effects
- 40.4. Realistic Rendering Using Raytracing
- 40.5. Controlling the Mouse Button Functions
- 40.6. Viewing the Application Window
- 40.7. Measuring Distance and Angle
- 40.8. Controlling the Display State and Modifying the View
- 40.9. Advanced Scene Composition
- 40.10. Animating Graphics
- 40.11. Histogram and XY Plots
- 40.11.1. Plot Types
- 40.11.2. XY Plots of Solution Data
- 40.11.3. Creating an XY Plot From Multiple Data Sources (Including Files)
- 40.11.4. XY Plots of Profiles
- 40.11.5. XY Plots of Circumferential Averages
- 40.11.6. XY Plot File Format
- 40.11.7. Residual Plots
- 40.11.8. Histograms
- 40.11.9. Modifying Axis Attributes
- 40.11.10. Modifying Curve Attributes
- 40.12. Fast Fourier Transform (FFT) Postprocessing
- 40.12.1. Limitations of the FFT Algorithm
- 40.12.2. Windowing
- 40.12.3. Fast Fourier Transform (FFT)
- 40.12.4. Using the FFT Utility
- 40.13. Cumulative Force, Moment, and Coefficients Plots
- 41. Reporting Alphanumeric Data
- 41.1. Reporting Conventions
- 41.2. Monitoring and Reporting Solution Data
- 41.2.1. Creating Report Definitions
- 41.2.1.1. Surface Report Definitions
- 41.2.1.2. Volume Report Definitions
- 41.2.1.3. Force and Moment Report Definitions
- 41.2.1.4. Flux Report Definition
- 41.2.1.5. Mesh Report Definitions
- 41.2.1.6. Aerodamping (Travelling Wave Method) Report Definition
- 41.2.1.7. DPM Report Definition
- 41.2.1.8. User Defined Report Definition
- 41.2.1.9. Expression Report Definition
- 41.2.2. Report Files and Report Plots
- 41.3. Creating Output Parameters
- 41.4. Fluxes Through Boundaries
- 41.5. Forces on Boundaries
- 41.6. Projected Surface Area Calculations
- 41.7. Surface Integration
- 41.8. Volume Integration
- 41.9. Efficiency Calculations
- 41.10. Histogram Reports
- 41.11. Discrete Phase
- 41.12. S2S Information
- 41.13. Reference Values
- 41.14. Summary Reports of Case Settings
- 41.15. System Resource Usage
- 42. Field Function Definitions
- 43. Parallel Processing
- 43.1. Introduction to Parallel Processing
- 43.2. Starting Parallel Ansys Fluent Using Fluent Launcher
- 43.3. Starting Parallel Ansys Fluent on a Windows System
- 43.4. Starting Parallel Ansys Fluent on a Linux System
- 43.5. Mesh Partitioning and Load Balancing
- 43.5.1. Overview of Mesh Partitioning
- 43.5.2. Partitioning the Mesh Automatically
- 43.5.3. Partitioning the Mesh Manually and Balancing the Load
- 43.5.4. Using the Partitioning and Load Balancing Dialog Box
- 43.5.5. Mesh Partitioning Methods
- 43.5.6. Checking the Partitions
- 43.5.7. Load Distribution
- 43.5.8. Troubleshooting
- 43.6. Using General Purpose Graphics Processing Units (GPGPUs) With the Algebraic Multigrid (AMG) Solver
- 43.7. Controlling the Threads
- 43.8. Checking Network Connectivity
- 43.9. Checking and Improving Parallel Performance
- 44. Running Ansys Fluent on Arm Compute Nodes
- 45. Using Simulation Reports
- 45.1. Overview of Simulation Reports
- 45.2. Preparing Simulation Reports
- 45.3. Generating Simulation Reports
- 45.4. Viewing Simulation Reports
- 45.4.1. Viewing System Information
- 45.4.2. Viewing Geometry and Mesh Information
- 45.4.3. Viewing Simulation Setup Information
- 45.4.4. Viewing Run Information
- 45.4.5. Viewing Solution Status
- 45.4.6. Viewing Named Expression Information
- 45.4.7. Viewing Report Definition Information
- 45.4.8. Viewing Plot Information
- 45.4.9. Viewing Contours, Vectors, Pathlines, LICs, XY Plots, Scenes, Histograms, and Animations
- 45.5. Saving Simulation Reports
- 45.6. Additional Simulation Report Options
- 45.7. Customizing Simulation Reports
- 45.8. Generating Reports Using the Text User Interface (TUI)
- 46. Performing Parametric Studies
- 46.1. Prerequisites
- 46.2. Limitations
- 46.3. Getting Started With Your Parametric Study
- 46.4. Using the Parametric Ribbon
- 46.5. Using the Outline View for Parametric Studies
- 46.6. Working With the Design Point Table
- 46.6.1. Customizing the Design Point Table
- 46.6.2. Updating Design Points
- 46.6.3. Adding Design Points
- 46.6.4. Operating on Design Points
- 46.6.5. Importing and Exporting Design Point Tables
- 46.6.6. Saving Journals When Updating Design Points
- 46.6.7. Accounting for Mesh Morphing During Parametric Updates
- 46.6.8. Parametric Design Point Process Details and Case Change Considerations
- 46.7. Monitoring and Viewing Design Point Update Status
- 46.8. Creating Simulation Reports for Design Points and Parametric Studies
- 46.9. Setting Preferences for Parametric Studies
- 46.10. Viewing the Current Case Parameters
- 46.11. Managing Files for Your Parametric Studies
- 47. Remotely Accessing Your Simulations Using Ansys Fluent's Web Interface
- 47.1. Overview
- 47.2. Getting Started With Ansys Fluent's Web Interface
- 47.3. Using Ansys Fluent's Web Interface
- 47.3.1. Overview of the Graphical Interface
- 47.3.1.1. The Main Menu
- 47.3.1.2. The Outline View
- 47.3.1.3. The Graphics Window
- 47.3.1.4. The View Arc
- 47.3.1.5. The Status Bar
- 47.3.1.6. The Stage Navigator
- 47.3.1.7. The Console Panel
- 47.3.1.8. The Results Arc
- 47.3.1.9. The Plots View
- 47.3.1.10. Property Panels
- 47.3.1.11. Working with Units
- 47.3.1.12. Working with Expressions
- 47.3.1.13. Editing Multiple Objects at Once
- 47.3.2. Interacting with Your Simulation Setup
- 47.3.2.1. Accessing General Settings
- 47.3.2.2. Accessing Model Settings
- 47.3.2.3. Accessing Material Settings
- 47.3.2.4. Accessing Cell Zone Settings
- 47.3.2.5. Accessing Boundary Condition Settings
- 47.3.2.6. Accessing Reference Values Settings
- 47.3.2.7. Accessing Reference Frame Settings
- 47.3.2.8. Accessing Named Expression Settings
- 47.3.3. Interacting with Your Solution Settings
- 47.3.4. Interacting with the Results of Your Simulation
- 47.3.4.1. Working With Surfaces and Your Simulation Results
- 47.3.4.1.1. Creating and Displaying Point Surfaces
- 47.3.4.1.2. Creating and Displaying Line Surfaces
- 47.3.4.1.3. Creating and Displaying Rake Surfaces
- 47.3.4.1.4. Creating and Displaying Plane Surfaces
- 47.3.4.1.5. Creating and Displaying Iso Surfaces
- 47.3.4.1.6. Creating and Displaying Iso-Clip Surfaces
- 47.3.4.1.7. Creating and Displaying Transform Surfaces
- 47.3.4.1.8. Creating and Displaying Plane Slice Surfaces
- 47.3.4.1.9. Creating and Displaying Sphere Slice Surfaces
- 47.3.4.1.10. Creating and Displaying Quadric Surfaces
- 47.3.4.2. Working With Graphics Objects and Your Simulation Results
- 47.3.4.3. Working With Plots and Your Simulation Results
- 47.3.4.4. Creating and Displaying Scenes and Your Simulation Results
- 47.3.4.5. Creating and Displaying Reports for Your Simulation Results
- 47.3.5. Working With Parameters
- 47.4. Setting Up Your Environment (System Administrators)
- 48. Design Analysis and Optimization
- 48.1. The Adjoint Solver
- 48.2. Using the Adjoint Solver
- 48.2.1. Model Considerations for Using Adjoint Solver
- 48.2.2. Defining Observables
- 48.2.3. Solving the Adjoint
- 48.2.4. Postprocessing of Adjoint Solutions
- 48.2.5. Modifying the Geometry Using the Design Tool
- 48.2.6. Using the Gradient-Based Optimizer
- 48.2.6.1. Using the Turbulence Model Design Tool
- 48.2.6.1.1. Turbulence Model Optimization Strategies
- 48.2.6.1.2. Defining the Design Region
- 48.2.6.1.3. Defining Optimizer Design Variable Settings
- 48.3. Geometry Parameterization and Exploration
- 48.4. The Mesh Morpher/Optimizer
- 48.5. Using the Mesh Morpher/Optimizer
- 49. Performing System Coupling Simulations Using Fluent
- 49.1. Supported Capabilities and Limitations
- 49.2. Performing System Coupling in the GUI or CLI
- 49.3. Performing System Coupling in Ansys Workbench
- 49.4. Variables Available for System Coupling
- 49.5. System Coupling Related Settings in Fluent
- 49.6. FSI Setup Recommendations for Fluent-Mechanical Couplings
- 49.6.1. Using Contact Detection for Fluent-Mechanical FSI Problems
- 49.6.2. Recommendations for Dynamic Mesh Settings for Fluent-Mechanical FSI
- 49.6.3. Pathologies & Candidate Resolutions for Fluent-Mechanical FSI
- 49.7. How Fluent's Execution is Affected by System Couplings
- 49.8. Restarting Fluent Analyses as Part of System Couplings
- 49.9. System Coupling case with Fluent using Patched Data
- 49.10. Running Fluent as a Participant from System Coupling's GUI or CLI
- 49.11. Troubleshooting Two-Way Coupled Analysis Problems
- 49.12. Product Licensing Considerations when using System Coupling
- 50. Customizing Fluent
- 51. Task Page Reference Guide
- 51.1. Meshing Task Page
- 51.2. Setup Task Page
- 51.3. General Task Page
- 51.4. Models Task Page
- 51.4.1. Multiphase Model Dialog Box
- 51.4.2. Energy Dialog Box
- 51.4.3. Viscous Model Dialog Box
- 51.4.4. Radiation Model Dialog Box
- 51.4.5. View Factors and Clustering Dialog Box
- 51.4.6. Participating Boundary Zones Dialog Box
- 51.4.7. Solar Calculator Dialog Box
- 51.4.8. Heat Exchanger Model Dialog Box
- 51.4.9. Dual Cell Heat Exchanger Dialog Box
- 51.4.10. Set Dual Cell Heat Exchanger Dialog Box
- 51.4.11. Heat Transfer Data Table Dialog Box
- 51.4.12. NTU Table Dialog Box
- 51.4.13. Copy From Dialog Box
- 51.4.14. Ungrouped Macro Heat Exchanger Dialog Box
- 51.4.15. Velocity Effectiveness Curve Dialog Box
- 51.4.16. Core Porosity Model Dialog Box
- 51.4.17. Macro Heat Exchanger Group Dialog Box
- 51.4.18. Species Model Dialog Box
- 51.4.19. Coal Calculator Dialog Box
- 51.4.20. Integration Parameters Dialog Box
- 51.4.21. Flamelet 3D Surfaces Dialog Box
- 51.4.22. Flamelet 2D Curves Dialog Box
- 51.4.23. Unsteady Flamelet Parameters Dialog Box
- 51.4.24. Flamelet Fluid Zones Dialog Box
- 51.4.25. Select Transported Scalars Dialog Box
- 51.4.26. Distribution of Points Dialog Box
- 51.4.27. PDF Table Dialog Box
- 51.4.28. Spark Ignition Dialog Box
- 51.4.29. Set Spark Ignition Dialog Box
- 51.4.30. Autoignition Model Dialog Box
- 51.4.31. Inert Dialog Box
- 51.4.32. NOx Model Dialog Box
- 51.4.33. Soot Model Dialog Box
- 51.4.34. Sticking Coefficients Dialog Box
- 51.4.35. Mechanism Dialog Box
- 51.4.36. Reactor Network Dialog Box
- 51.4.37. Decoupled Detailed Chemistry Dialog Box
- 51.4.38. Reacting Channel Model Dialog Box
- 51.4.39. Reacting Channel 2D Curves Dialog Box
- 51.4.40. Discrete Phase Model Dialog Box
- 51.4.41. DEM Collisions Dialog Box
- 51.4.42. Create Collision Partner Dialog Box
- 51.4.43. Copy Collision Partner Dialog Box
- 51.4.44. Rename Collision Partner Dialog Box
- 51.4.45. DEM Collision Settings Dialog Box
- 51.4.46. Solidification and Melting Dialog Box
- 51.4.47. Acoustics Model Dialog Box
- 51.4.48. Acoustic Sources Dialog Box
- 51.4.49. Acoustic Receivers Dialog Box
- 51.4.50. Basic Shapes Dialog Box
- 51.4.51. Integration Surface Dialog Box
- 51.4.52. Interior Cell Zone Selection Dialog Box
- 51.4.53. Structural Model Dialog Box
- 51.4.54. Eulerian Wall Film Dialog Box
- 51.4.55. Battery Model Dialog Box
- 51.4.56. Standalone Echem Model Dialog Box
- 51.4.57. Potential/Electrochemistry Dialog Box
- 51.5. Materials Task Page
- 51.5.1. Create/Edit Materials Dialog Box
- 51.5.2. Fluent Database Materials Dialog Box
- 51.5.3. GRANTA MDS Materials Dialog Box
- 51.5.4. Open Database Dialog Box
- 51.5.5. User-Defined Database Materials Dialog Box
- 51.5.6. Copy Case Material Dialog Box
- 51.5.7. Material Properties Dialog Box
- 51.5.8. Edit Property Methods Dialog Box
- 51.5.9. New Material Name Dialog Box
- 51.5.10. Polynomial Profile Dialog Box
- 51.5.11. Piecewise-Linear Profile Dialog Box
- 51.5.12. Piecewise-Polynomial Profile Dialog Box
- 51.5.13. NASA-9-Coefficient Piecewise-Polynomial Profile Dialog Box
- 51.5.14. Model Options Dialog Box
- 51.5.15. Compressible Liquid Dialog Box
- 51.5.16. User-Defined Functions Dialog Box
- 51.5.17. Sutherland Law Dialog Box
- 51.5.18. Power Law Dialog Box
- 51.5.19. Non-Newtonian Power Law Dialog Box
- 51.5.20. Carreau Model Dialog Box
- 51.5.21. Cross Model Dialog Box
- 51.5.22. Herschel-Bulkley Dialog Box
- 51.5.23. Biaxial Conductivity Dialog Box
- 51.5.24. Cylindrical Orthotropic Conductivity Dialog Box
- 51.5.25. Orthotropic Conductivity Dialog Box
- 51.5.26. Anisotropic Conduction - Principal Components Dialog Box
- 51.5.27. Anisotropic Conductivity Dialog Box
- 51.5.28. Species Dialog Box
- 51.5.29. Reactions Dialog Box
- 51.5.30. Backward Reaction Parameters Dialog Box
- 51.5.31. Third-Body Efficiency Dialog Box
- 51.5.32. Pressure-Dependent Reaction Dialog Box
- 51.5.33. Coverage-Dependent Reaction Dialog Box
- 51.5.34. Reference Molar Concentrations Dialog Box
- 51.5.35. Reaction Mechanisms Dialog Box
- 51.5.36. Site Parameters Dialog Box
- 51.5.37. Mass Diffusion Coefficients Dialog Box
- 51.5.38. Thermal Diffusion Coefficients Dialog Box
- 51.5.39. UDS Diffusion Coefficients Dialog Box
- 51.5.40. WSGGM User Specified Dialog Box
- 51.5.41. Gray-Band Absorption Coefficient Dialog Box
- 51.5.42. Delta-Eddington Scattering Function Dialog Box
- 51.5.43. Gray-Band Refractive Index Dialog Box
- 51.5.44. Single Rate Model Dialog Box
- 51.5.45. Secondary Rate Model Dialog Box
- 51.5.46. Two Competing Rates Model Dialog Box
- 51.5.47. CPD Model Dialog Box
- 51.5.48. Kinetics/Diffusion-Limited Combustion Model Dialog Box
- 51.5.49. Intrinsic Combustion Model Dialog Box
- 51.5.50. Multiple Surface Reactions Dialog Box
- 51.5.51. Edit Material Dialog Box
- 51.6. Cell Zone Conditions Task Page
- 51.6.1. Fluid Dialog Box
- 51.6.2. Solid Dialog Box
- 51.6.3. Copy Conditions Dialog Box
- 51.6.4. Operating Conditions Dialog Box
- 51.6.5. Select Input Parameter Dialog Box
- 51.6.6. Profiles Dialog Box
- 51.6.7. Replicate Profile Dialog Box
- 51.6.8. Orient Profile Dialog Box
- 51.6.9. Write Profile Dialog Box
- 51.6.10. Select Profiles for Writing
- 51.7. Boundary Conditions Task Page
- 51.7.1. Axis Dialog Box
- 51.7.2. Degassing Dialog Box
- 51.7.3. Exhaust Fan Dialog Box
- 51.7.4. Fan Dialog Box
- 51.7.5. Inlet Vent Dialog Box
- 51.7.6. Intake Fan Dialog Box
- 51.7.7. Interface Dialog Box
- 51.7.8. Interior Dialog Box
- 51.7.9. Mass-Flow Inlet Dialog Box
- 51.7.10. Mass-Flow Outlet Dialog Box
- 51.7.11. Outflow Dialog Box
- 51.7.12. Outlet Vent Dialog Box
- 51.7.13. Overset Dialog Box
- 51.7.14. Periodic Dialog Box
- 51.7.15. Porous Jump Dialog Box
- 51.7.16. Pressure Far-Field Dialog Box
- 51.7.17. Pressure Inlet Dialog Box
- 51.7.18. Pressure Outlet Dialog Box
- 51.7.19. Radiator Dialog Box
- 51.7.20. RANS/LES Interface Dialog Box
- 51.7.21. Symmetry Dialog Box
- 51.7.22. Velocity Inlet Dialog Box
- 51.7.23. Wall Dialog Box
- 51.7.24. Periodic Conditions Dialog Box
- 51.7.25. Perforated Walls Dialog Box
- 51.8. Overset Interfaces Task Page
- 51.9. Dynamic Mesh Task Page
- 51.9.1. Mesh Method Settings Dialog Box
- 51.9.2. Mesh Smoothing Parameters Dialog Box
- 51.9.3. Advanced Remeshing Settings Dialog Box
- 51.9.4. Mesh Scale Info Dialog Box
- 51.9.5. Options Dialog Box
- 51.9.6. In-Cylinder Output Controls Dialog Box
- 51.9.7. Six DOF Properties Dialog Box
- 51.9.8. Periodic Displacement Group Dialog Box
- 51.9.9. Periodic Displacement Properties Dialog Box
- 51.9.10. Flow Control Settings Dialog Box
- 51.9.11. Dynamic Mesh Events Dialog Box
- 51.9.12. Define Event Dialog Box
- 51.9.13. Events Preview Dialog Box
- 51.9.14. Dynamic Mesh Zones Dialog Box
- 51.9.15. Orientation Calculator Dialog Box
- 51.9.16. Zone Scale Info Dialog Box
- 51.9.17. Zone Motion Dialog Box
- 51.9.18. Mesh Motion Dialog Box
- 51.9.19. Autosave Case During Mesh Motion Preview Dialog Box
- 51.10. Reference Values Task Page
- 51.11. Solution Task Page
- 51.12. Solution Methods Task Page
- 51.13. Solution Controls Task Page
- 51.14. Solution Initialization Task Page
- 51.15. Calculation Activities Task Page
- 51.15.1. Autosave Dialog Box
- 51.15.2. Data File Quantities Dialog Box
- 51.15.3. Automatic Export Dialog Box
- 51.15.4. Automatic Particle History Data Export Dialog Box
- 51.15.5. Execute Commands Manager Dialog Box
- 51.15.6. Execute Commands Dialog Box
- 51.15.7. Define Macro Dialog Box
- 51.15.8. Case Modification Manager Dialog Box
- 51.15.9. Auto Initialization Method Dialog Box
- 51.15.10. Modify Case Dialog Box
- 51.16. Run Calculation Task Page
- 51.16.1. Case Check Dialog Box
- 51.16.2. Adaptive Time Stepping Dialog Box
- 51.16.3. Simulation Status Dialog Box
- 51.16.4. Solution Steering Dialog Box
- 51.16.5. Acoustic Sources FFT Dialog Box
- 51.16.6. Acoustic Signals Dialog Box
- 51.16.7. Sampling Options Dialog Box
- 51.16.8. Zone-Specific Sampling Options Dialog Box
- 51.17. Results Task Page
- 51.18. Graphics and Animations Task Page
- 51.18.1. Profile Options Dialog Box
- 51.18.2. Vector Options Dialog Box
- 51.18.3. Custom Vectors Dialog Box
- 51.18.4. Vector Definitions Dialog Box
- 51.18.5. Path Style Attributes Dialog Box
- 51.18.6. Ribbon Attributes Dialog Box
- 51.18.7. Particle Filter Attributes Dialog Box
- 51.18.8. Reporting Variables Dialog Box
- 51.18.9. Track Style Attributes Dialog Box
- 51.18.10. Particle Sphere Style Attributes Dialog Box
- 51.18.11. Particle Vector Style Attributes Dialog Box
- 51.18.12. Sweep Surface Dialog Box
- 51.18.13. Create Surface Dialog Box
- 51.18.14. Animate Dialog Box
- 51.18.15. Save Picture Dialog Box
- 51.18.16. Playback Dialog Box
- 51.18.17. Video Options Dialog Box
- 51.18.18. Advanced Video Quality Options Dialog Box
- 51.18.19. Display Options Dialog Box
- 51.18.20. Scene Description Dialog Box
- 51.18.21. Display Properties Dialog Box
- 51.18.22. Transformations Dialog Box
- 51.18.23. Iso-Value Dialog Box
- 51.18.24. Pathline Attributes Dialog Box
- 51.18.25. Bounding Frame Dialog Box
- 51.18.26. Views Dialog Box
- 51.18.27. Write Views Dialog Box
- 51.18.28. Mirror Planes Dialog Box
- 51.18.29. Periodic Instancing Dialog Box
- 51.18.30. Camera Parameters Dialog Box
- 51.18.31. Lights Dialog Box
- 51.18.32. Colormap Dialog Box
- 51.18.33. Colormap Editor Dialog Box
- 51.18.34. Annotate Dialog Box
- 51.19. Plots Task Page
- 51.19.1. Solution XY Plot Dialog Box
- 51.19.2. Histogram Dialog Box
- 51.19.3. Plot Data Sources Dialog Box
- 51.19.4. Plot Profile Data Dialog Box
- 51.19.5. Plot Interpolated Data Dialog Box
- 51.19.6. Fourier Transform Dialog Box
- 51.19.7. Ansys Sound Analysis Dialog Box
- 51.19.8. Cumulative Plot Dialog Box
- 51.19.9. Plot/Modify Input Signal Dialog Box
- 51.19.10. Axes Dialog Box
- 51.19.11. Curves Dialog Box
- 51.20. Reports Task Page
- 51.20.1. Flux Reports Dialog Box
- 51.20.2. Force Reports Dialog Box
- 51.20.3. Projected Surface Areas Dialog Box
- 51.20.4. Surface Integrals Dialog Box
- 51.20.5. Volume Integrals Dialog Box
- 51.20.6. Sample Trajectories Dialog Box
- 51.20.7. Trajectory Sample Histograms Dialog Box
- 51.20.8. Particle Summary Dialog Box
- 51.20.9. Heat Exchanger Report Dialog Box
- 51.20.10. Parameters Dialog Box
- 51.20.11. Use Input Parameter in Scheme Procedure Dialog Box
- 51.20.12. Use Input Parameter for UDF Dialog Box
- 51.20.13. Rename Dialog Box
- 51.20.14. Parameter Expression Dialog Box
- 51.20.15. Save Output Parameter Dialog Box
- 51.21. Parameters and Customization Task Page
- 52. Ribbon Reference Guide
- 52.1. File Ribbon Tab
- 52.1.1. File/Read/Mesh...
- 52.1.2. File/Read/Case...
- 52.1.3. File/Read/Data...
- 52.1.4. File/Read/Case & Data...
- 52.1.5. File/Read/Case Settings Only...
- 52.1.6. File/Read/Case/Mesh Info...
- 52.1.7. File/Read/PDF...
- 52.1.8. File/Read/ISAT Table...
- 52.1.9. File/Read/DTRM Rays...
- 52.1.10. File/Read/View Factors...
- 52.1.11. File/Read/Profile...
- 52.1.12. File/Read/Scheme...
- 52.1.13. File/Read/Journal...
- 52.1.14. File/Write/Case...
- 52.1.15. File/Write/Data...
- 52.1.16. File/Write/Case & Data...
- 52.1.17. File/Write/PDF...
- 52.1.18. File/Write/ISAT Table...
- 52.1.19. File/Write/Flamelet...
- 52.1.20. File/Write/Profile...
- 52.1.21. File/Write/Autosave...
- 52.1.22. File/Write/Boundary Mesh...
- 52.1.23. File/Write/Start Journal...
- 52.1.24. File/Write/Stop Journal
- 52.1.25. File/Write/Start Transcript...
- 52.1.26. File/Write/Stop Transcript
- 52.1.27. File/Import/ABAQUS/Input File...
- 52.1.28. File/Import/ABAQUS/Filbin File...
- 52.1.29. File/Import/ABAQUS/ODB File...
- 52.1.30. File/Import/CFX/Definition File...
- 52.1.31. File/Import/CFX/Result File...
- 52.1.32. File/Import/CGNS/Mesh...
- 52.1.33. File/Import/CGNS/Data...
- 52.1.34. File/Import/CGNS/Mesh & Data...
- 52.1.35. File/Import/EnSight...
- 52.1.36. File/Import/FIDAP...
- 52.1.37. File/Import/GAMBIT...
- 52.1.38. File/Import/HYPERMESH ASCII...
- 52.1.39. File/Import/LSTC/Input File...
- 52.1.40. File/Import/LSTC/State File...
- 52.1.41. File/Import/Marc POST...
- 52.1.42. File/Import/NASTRAN/Bulkdata File...
- 52.1.43. File/Import/NASTRAN/Op2 File...
- 52.1.44. File/Import/PLOT3D/Grid File...
- 52.1.45. File/Import/PLOT3D/Result File...
- 52.1.46. File/Import/Tecplot...
- 52.1.47. File/Import/Partition/Metis...
- 52.1.48. File/Import/Partition/Metis Zone...
- 52.1.49. File/Import/CHEMKIN Mechanism...
- 52.1.50. File/Import/FMU...
- 52.1.51. File/Export/Solution Data...
- 52.1.52. File/Export/Particle History Data...
- 52.1.53. File/Export/During Calculation/Solution Data...
- 52.1.54. File/Export/During Calculation/Particle History Data...
- 52.1.55. File/Export to CFD-Post...
- 52.1.56. File/Table File Manager...
- 52.1.57. File/Solution Files...
- 52.1.58. File/Interpolate...
- 52.1.59. File/FSI Mapping/Volume...
- 52.1.60. File/FSI Mapping/Surface...
- 52.1.61. File/Save Picture...
- 52.1.62. File/Data File Quantities...
- 52.1.63. File/Batch Options...
- 52.1.64. File/Idle Timeout...
- 52.1.65. File/Exit
- 52.2. Dialog Boxes Available from the Ribbon
- 52.2.1. 1D Simulation Library Dialog Box
- 52.2.2. Activate Cell Zones Dialog Box
- 52.2.3. Adaption Criteria Settings Dialog Box
- 52.2.4. Adjacency Dialog Box
- 52.2.5. Advanced Options Dialog Box
- 52.2.6. Aerodamping (Influence Coefficient Method) Report Definition Dialog Box
- 52.2.7. Aerodamping (Travelling Wave Method) Report Definition Dialog Box
- 52.2.8. Animation Definition Dialog Box
- 52.2.9. Application About to Exit Dialog Box
- 52.2.10. Auto Partition Mesh Dialog Box
- 52.2.11. Automatic Mesh Adaption Dialog Box
- 52.2.12. Cell Count Report Definition Dialog Box
- 52.2.13. Cell Register Display Options Dialog Box
- 52.2.14. Compiled UDFs Dialog Box
- 52.2.15. Conduction Layers Dialog Box
- 52.2.16. Conduction Manager Dialog Box
- 52.2.17. Contours Dialog Box
- 52.2.18. Convergence Conditions Dialog Box
- 52.2.19. Create Mesh Interfaces
- 52.2.20. Create/Edit Mesh Interfaces Dialog Box
- 52.2.21. Create/Edit Turbo Interfaces Dialog Box
- 52.2.22. Curvilinear Coordinate System Dialog Box
- 52.2.23. Custom Field Function Calculator Dialog Box
- 52.2.24. Custom Laws Dialog Box
- 52.2.25. Dashboard Definition Dialog Box
- 52.2.26. Deactivate Cell Zones Dialog Box
- 52.2.27. Define Control Points Dialog Box
- 52.2.28. Delete Cell Zones Dialog Box
- 52.2.29. Display Options - Adaption Dialog Box
- 52.2.30. Display States Dialog Box
- 52.2.31. DPM Report Definition Dialog Box
- 52.2.32. DPM Source Report Definition Dialog Box
- 52.2.33. Drag Report Definition Dialog Box
- 52.2.34. DTRM Graphics Dialog Box
- 52.2.35. DTRM Rays Dialog Box
- 52.2.36. Edit Gap Region Dialog Box
- 52.2.37. Edit Mesh Interfaces Dialog Box
- 52.2.38. Edit Report File Dialog Box
- 52.2.39. Edit Report Plot Dialog Box
- 52.2.40. Execute on Demand Dialog Box
- 52.2.41. Expression Dialog Box
- 52.2.42. Expression Editor Dialog Box
- 52.2.43. Expression Manager Dialog Box
- 52.2.44. Expression Report Definition Dialog Box
- 52.2.45. Expression Volume Dialog Box
- 52.2.46. Face Count Report Definition Dialog Box
- 52.2.47. Field Function Definitions Dialog Box
- 52.2.48. Flux Report Definition Dialog Box
- 52.2.49. Force Report Definition Dialog Box
- 52.2.50. Fuse Face Zones Dialog Box
- 52.2.51. Gap Model Dialog Box
- 52.2.52. General Adaption Controls Dialog Box
- 52.2.53. Generalized/Modal Force Report Definition Dialog Box
- 52.2.54. Geometry Based Adaption Controls Dialog Box
- 52.2.55. Geometry Based Adaption Dialog Box
- 52.2.56. Import Particle Data Dialog Box
- 52.2.57. Imprint Surface Dialog Box
- 52.2.58. Improve Mesh Dialog Box
- 52.2.59. Injections Dialog Box
- 52.2.60. Input Summary Dialog Box
- 52.2.61. Interface Creation Options Dialog Box
- 52.2.62. Interpreted UDFs Dialog Box
- 52.2.63. Iso-Clip Dialog Box
- 52.2.64. Iso-Surface Dialog Box
- 52.2.65. Lift Report Definition Dialog Box
- 52.2.66. Line Integral Convolutions Dialog Box
- 52.2.67. Line/Rake Surface Dialog Box
- 52.2.68. Manual Mesh Adaption Dialog Box
- 52.2.69. Manage Adaption Criteria Dialog Box
- 52.2.70. Manage Geometry-Based Adaption Dialog Box
- 52.2.71. Manage Sponge Layers Dialog Box
- 52.2.72. Mapped Interface Options Dialog Box
- 52.2.73. Material Editor Dialog Box
- 52.2.74. Measure Dialog Box
- 52.2.75. Merge Zones Dialog Box
- 52.2.76. Mesh Interfaces Dialog Box
- 52.2.77. Mesh Morpher/Optimizer Dialog Box
- 52.2.78. Mixing Planes Dialog Box
- 52.2.79. Moment Report Definition Dialog Box
- 52.2.80. Motion Settings Dialog Box
- 52.2.81. Multi Edit Dialog Box
- 52.2.82. New Report File Dialog Box
- 52.2.83. New Report Plot Dialog Box
- 52.2.84. Objective Function Definition Dialog Box
- 52.2.85. Optimization History Monitor Dialog Box
- 52.2.86. Parallel Connectivity Dialog Box
- 52.2.87. Parameter Bounds Dialog Box
- 52.2.88. Particle Tracks Dialog Box
- 52.2.89. Partition Surface Dialog Box
- 52.2.90. Partitioning and Load Balancing Dialog Box
- 52.2.91. Pathlines Dialog Box
- 52.2.92. PCB Model Dialog Box
- 52.2.93. Plane Surface Dialog Box
- 52.2.94. Point Surface Dialog Box
- 52.2.95. Quadric Surface Dialog Box
- 52.2.96. Raytracing Display Dialog Box
- 52.2.97. Reduced Order Model Dialog Box
- 52.2.98. Reference Frame Dialog Box
- 52.2.99. Replace Cell Zone Dialog Box
- 52.2.100. Report Definitions Dialog Box
- 52.2.101. Report File Definitions Dialog Box
- 52.2.102. Report Plot Definitions Dialog Box
- 52.2.103. Residual Monitors Dialog Box
- 52.2.104. Rotate Mesh Dialog Box
- 52.2.105. S2S Information Dialog Box
- 52.2.106. Select UDM Zones Dialog Box
- 52.2.107. Select Window Dialog Box
- 52.2.108. Separate Cell Zones Dialog Box
- 52.2.109. Separate Face Zones Dialog Box
- 52.2.110. Set Injection Properties Dialog Box
- 52.2.111. Set Multiple Injection Properties Dialog Box
- 52.2.112. Sponge Layer Dialog Box
- 52.2.113. Structural Point Surface Dialog Box
- 52.2.114. Surface Meshes Dialog Box
- 52.2.115. Surface Rendering Properties Dialog Box
- 52.2.116. Surface Report Definition Dialog Box
- 52.2.117. Surfaces Dialog Box
- 52.2.118. Thread Control Dialog Box
- 52.2.119. Time Averaged Explicit Thermal Coupling Dialog Box
- 52.2.120. Transform Surface Dialog Box
- 52.2.121. Translate Mesh Dialog Box
- 52.2.122. Turbo 2D Contours Dialog Box
- 52.2.123. Turbo Averaged Contours Dialog Box
- 52.2.124. Turbo Averaged XY Plot Dialog Box
- 52.2.125. Turbo Options Dialog Box
- 52.2.126. Turbo Report Dialog Box
- 52.2.127. Turbo Topology Dialog Box
- 52.2.128. UDF Library Manager Dialog Box
- 52.2.129. User-Defined Fan Model Dialog Box
- 52.2.130. User-Defined Function Hooks Dialog Box
- 52.2.131. User-Defined Memory Dialog Box
- 52.2.132. User Defined Report Definition Dialog Box
- 52.2.133. User-Defined Scalars Dialog Box
- 52.2.134. Vectors Dialog Box
- 52.2.135. Volume Report Definition Dialog Box
- 52.2.136. Warning Dialog Box
- 52.2.137. Zone Surface Dialog Box
- 52.2.138. Zone Type Color and Material Assignment Dialog Box
- A. Ansys Fluent Model Compatibility
- B. Ansys Fluent File Formats
- B.1. CFF File Format
- B.2. Legacy Case and Data File Formats
- B.3. Mesh Morpher/Optimizer File Formats
- B.4. Conduction Settings File Format
- B.5. 3D Fan Curve File Format
- C. Controlling CHEMKIN-CFD Solver Parameters Using Text Commands
- C.1. Advanced Parameters Used in the Steady-State Solution Algorithm
- C.2. Setting Up Monitor Cells for the Ansys CHEMKIN-CFD Chemistry Solver
- C.3. Diagnostic Files and Error Messages
- C.4. Error Messages Printed in the Ansys Fluent Graphical User Interface
- C.5. Diagnostic Messages in the KINetics-log.txt File
- D. Nomenclature
- Bibliography