Expand/Collapse all
I. Getting Started
1. Introduction to Ansys Fluent
1.1. The Ansys Product Improvement Program
1.2. Program Capabilities
1.3. Known Limitations in Ansys Fluent 2024 R2
1.4. Supported Third-Party Software
2. Basic Steps for CFD Analysis using Ansys Fluent
2.1. Steps in Solving Your CFD Problem
2.2. Planning Your CFD Analysis
3. Guide to a Successful Simulation Using Ansys Fluent
4. Starting and Executing Ansys Fluent
4.1. Starting Ansys Fluent
4.1.1. Selecting the Licensing Level
4.1.2. Starting Ansys Fluent Using Fluent Launcher
4.1.2.1. Setting General Options in Fluent Launcher
4.1.2.2. Single-Precision and Double-Precision Solvers
4.1.2.3. Setting Parallel Options in Fluent Launcher
4.1.2.4. Setting Remote Options in Fluent Launcher
4.1.2.5. Setting Scheduler Options in Fluent Launcher
4.1.2.6. Setting Environment Options in Fluent Launcher
4.1.3. Starting Ansys Fluent on a Windows System
4.1.4. Starting Ansys Fluent on a Linux System
4.1.5. Command Line Startup Options
4.1.5.1. ACT Option
4.1.5.2. Application Option
4.1.5.3. Application Script Option
4.1.5.4. Graphics and Files Options
4.1.5.5. Meshing Mode Option
4.1.5.6. Performance Options
4.1.5.7. Parallel Options
4.1.5.8. Postprocessing Option
4.1.5.9. Remote Visualization Options
4.1.5.10. Scheduler Options
4.1.5.11. Text Command Option
4.1.5.12. Version, Release Options, and Environment Variables
4.1.5.13. System Coupling Options
4.1.5.14. Other Startup Options
4.1.6. Aborting During Startup
4.2. Running Ansys Fluent in Batch Mode
4.2.1. Background Execution on Linux Systems
4.2.2. Background Execution on Windows Systems
4.2.3. Batch Execution Options
4.3. Switching Between Meshing and Solution Modes
4.4. Checkpointing an Ansys Fluent Simulation
4.5. Cleaning Up Processes From an Ansys Fluent Simulation
4.6. Exiting Ansys Fluent
Glossary of Terms
II. Meshing Mode
1. Introduction to Meshing Mode in Fluent
1.1. Meshing Approach
1.2. Meshing Mode Capabilities
1.3. Starting Fluent in Meshing Mode
1.3.1. Starting the Dual Process Build
1.3.2. Dynamically Spawning Processes Between Fluent Meshing and Fluent Solution Modes
1.4. Graphical User Interface
1.4.1. User Interface Components
1.4.1.1. The Ribbon
1.4.1.2. The Workflow Tab
1.4.1.3. The Outline View Tab
1.4.1.4. The Graphics Window
1.4.1.5. Quick Search
1.4.1.6. The Console
1.4.1.7. The Toolbars
1.4.1.7.1. Pointer Tools
1.4.1.7.2. View Tools
1.4.1.7.3. Graphics Effects Tools
1.4.1.7.4. Mesh Display Tools
1.4.1.7.5. Visibility Tools
1.4.1.7.6. Copy Tools
1.4.1.7.7. Object Selection/Display Tools
1.4.1.7.8. Filter Toolbar
1.4.1.7.9. CAD Tools
1.4.1.7.10. Tools
1.4.1.7.11. Context Toolbar
1.4.1.8. ACT Start Page
1.4.2. Customizing the User Interface
1.4.3. Setting User Preferences/Options
1.4.4. Using the Help System
1.4.4.1. Help for Text Interface Commands
1.4.4.2. Obtaining a Listing of Other License Users
1.5. Text User Interface
1.6. Reading and Writing Files
1.6.1. Shortcuts for Reading and Writing Files
1.6.1.1. Binary Files
1.6.1.2. Reading and Writing Compressed Files
1.6.1.2.1. Reading Compressed Files
1.6.1.2.2. Writing Compressed Files
1.6.1.3. Tilde Expansion (LINUX Systems Only)
1.6.1.4. Disabling the Overwrite Confirmation Prompt
1.6.2. Mesh Files
1.6.2.1. Reading Mesh Files
1.6.2.1.1. Reading Multiple Mesh Files
1.6.2.1.2. Reading 2D Mesh Files in the 3D Version of Fluent
1.6.2.2. Reading Boundary Mesh Files
1.6.2.3. Reading Faceted Geometry Files from Ansys Workbench in Fluent
1.6.2.4. Appending Mesh Files
1.6.2.5. Writing Mesh Files
1.6.2.6. Writing Boundary Mesh Files
1.6.3. Case Files
1.6.3.1. Reading Case Files
1.6.3.1.1. Reading Files Using the Legacy Format
1.6.3.2. Writing Case Files
1.6.3.2.1. Writing Files Using the Legacy Format
1.6.4. Reading and Writing Size-Field Files
1.6.5. Reading Scheme Source Files
1.6.6. Creating and Reading Journal Files
1.6.7. Creating Transcript Files
1.6.8. Reading and Writing Domain Files
1.6.9. Importing Files
1.6.9.1. Importing CAD Files
1.6.10. Saving Picture Files
1.6.10.1. Using the Save Picture Dialog Box
2. Getting Started with the Fluent Guided Workflows
2.1. Prerequisites for the Fluent Guided Workflows
2.2. Limitations of the Fluent Guided Workflows
2.3. Customizing Workflows
2.3.1. Customizing Your Journal Files Using Python
2.4. Understanding Task States
2.5. Operating on Tasks
2.6. Grouping Tasks
2.7. Editing Tasks
2.8. Monitoring Task Updates
2.9. Accessing Advanced Options
2.10. Filtering Lists and Using Wildcards
2.11. Saving and Loading Workflows
2.12. Setting Preferences for Workflows
2.13. Getting Help for Workflow Tasks
3. Using the Watertight Geometry Meshing Guided Workflows
3.1. Watertight Geometry Workflow Limitations
3.2. Importing Geometries
3.3. Importing Body of Influence Geometries
3.4. Adding Local Sizing
3.5. Generating the Surface Mesh
3.6. Setting Up Periodic Boundaries
3.7. Describing the Geometry
3.7.1. Best Practices for Using Non-conformal Interfaces
3.8. Applying Share Topology
3.8.1. Troubleshooting Gap Marking
3.9. Enclosing Fluid Regions
3.10. Creating Regions
3.11. Updating Regions
3.12. Adding Thin Volume Meshing Controls
3.12.1. Thin Volume Meshing of Parallel Zones
3.12.2. Thin Volume Meshing of Stacked Plates
3.13. Adding Boundary Layers
3.14. Adding Multizone Controls
3.14.1. Understanding Multizone Meshing
3.14.2. Strategies for Using Multizone Meshing
3.14.3. Working With Boundary Layers in Multizone Meshing
3.15. Generating the Multizone Mesh
3.16. Generating the Volume Mesh
3.17. Updating Boundaries
3.18. Improving the Surface Mesh
3.19. Adding Boundary Types
3.20. Improving the Volume Mesh
3.21. Transforming the Volume Mesh
3.22. Extruding the Volume Mesh
3.23. Adding Linear Mesh Patterns
3.23.1. Creating Custom Patterns Using Scripts
3.23.1.1. Examples of Creating Custom Patterns Using Scripts
3.23.1.1.1. Pattern Example Using Explicit Name Rule
3.23.1.1.2. Pattern Example of Using Both Explicit and Regular Name Rule
3.24. Managing Zones
3.25. Modifying Mesh Refinement
3.26. Creating Local Refinement Regions
3.27. Running Custom Journal Commands
4. Using the Fault-tolerant Meshing Workflow
4.1. Fault-tolerant Meshing Workflow Limitations
4.2. Importing CAD Geometries and Managing CAD Parts
4.2.1. Appending CAD Files
4.2.2. Working with the CAD Model Tree
4.2.3. Working with the Meshing Model Tree
4.2.4. Setting Properties for Meshing Model Objects
4.2.4.1. Creating Automatic Meshing Objects on a Per Part Basis
4.2.4.2. Creating Customized Meshing Objects
4.2.5. Performing Operations on Meshing Model Objects
4.2.5.1. Performing Transformation Operations on Meshing Model Objects
4.2.5.1.1. Applying a Translation Transformation
4.2.5.1.2. Applying a Rotation Transformation
4.2.5.1.3. Applying a Rotation About an Axis Transformation
4.2.5.1.4. Applying a Scaling Transformation
4.2.5.1.5. Applying a Mirror Transformation
4.2.5.2. Performing Refaceting Operations on Meshing Model Objects
4.2.5.3. Performing Object Setting Operations on Meshing Model Objects
4.2.5.4. Listing Meshing Operations
4.2.6. Faceting Considerations
4.2.7. Setting Display Options for CAD Model and Meshing Objects
4.2.8. Using Hot Key Shortcuts in the Model Trees and the Graphics Window
4.3. Describing the Geometry and the Flow
4.4. Enclosing Fluid Regions
4.5. Creating External Flow Boundaries
4.6. Creating Local Refinement Regions
4.7. Identifying Construction Surfaces
4.8. Extracting Edge Features
4.9. Adding Thickness to Your Geometry
4.10. Creating Porous Regions
4.11. Identifying Regions
4.12. Defining Leakage Thresholds
4.13. Updating Your Region Settings
4.14. Choosing Mesh Control Options
4.14.1. Working With Wrap and Target Sizes
4.15. Adding Local Size Controls
4.16. Creating Contact Patches
4.17. Creating Gap Covers
4.18. Generating the Surface Mesh
4.19. Updating Boundaries
4.20. Describing Overset Features
4.20.1. Creating Collar Meshes
4.20.2. Creating Component Meshes
4.21. Adding Boundary Layers
4.22. Identifying Deviated Faces
4.23. Generating the Volume Mesh
4.24. Creating Overset Mesh Interfaces
4.25. Identifying Orphans
4.26. Transforming the Volume Mesh
4.27. Extruding the Volume Mesh
4.28. Managing Zones
4.29. Separating Contacts
4.30. Choosing Part Replacement Options
4.30.1. Appending Replacement Parts
4.30.2. Applying Part Replacement Settings
4.30.3. Adding Local Sizing for Replacement Parts
4.30.4. Adding Boundary Layers for Replacement Parts
4.30.5. Updating the Volume Mesh
5. Using the 2D Meshing Guided Workflow
5.1. 2D Meshing Workflow
5.1.1. Loading the CAD Geometry
5.1.2. Updating Regions
5.1.3. Updating Boundaries
5.1.4. Defining Global Sizing
5.1.5. Adding Local Sizing
5.1.6. Adding 2D Boundary Layers
5.1.7. Generating the Surface Mesh
5.1.8. Exporting the Fluent 2D Mesh
6. Improving and Examining the Mesh and its Quality
6.1. Improving the Mesh
6.1.1. Smoothing Nodes
6.1.1.1. Laplace Smoothing
6.1.1.2. Variational Smoothing of Tetrahedral Meshes
6.1.1.3. Skewness-Based Smoothing of Tetrahedral Meshes
6.1.2. Swapping
6.1.3. Improving the Mesh
6.1.4. Removing Slivers from a Tetrahedral Mesh
6.1.4.1. Automatic Sliver Removal
6.1.4.2. Removing Slivers Manually
6.1.5. Modifying Cells
6.1.5.1. Using the Modify Cells Dialog Box
6.1.6. Moving Nodes
6.1.6.1. Automatic Correction
6.1.6.2. Semi-Automatic Correction
6.1.6.3. Repairing Negative Volume Cells
6.1.7. Cavity Remeshing
6.1.7.1. Tetrahedral Cavity Remeshing
6.1.7.2. Hexcore Cavity Remeshing
6.1.8. Manipulating Cell Zones
6.1.8.1. Active Zones and Cell Types
6.1.8.2. Copying and Moving Cell Zones
6.1.9. Separating Cell Zones
6.1.10. Manipulating Cell Zone Conditions
6.1.11. Using Domains to Group and Mesh Boundary Faces
6.1.11.1. Using Domains
6.1.11.2. Defining Domains
6.1.12. Checking the Mesh
6.1.13. Selectively Checking the Volume Mesh
6.1.14. Checking the Mesh Quality
6.1.15. Clearing the Mesh
6.2. Examining the Mesh
6.2.1. Displaying the Mesh
6.2.1.1. Generating the Mesh Display using Onscreen Tools
6.2.1.2. Generating the Mesh Display Using the Display Grid Dialog Box
6.2.1.2.1. Mesh Display Attributes
6.2.2. Controlling Display Options
6.2.3. Modifying and Saving the View
6.2.3.1. Mirroring a Non-symmetric Domain
6.2.3.2. Controlling Perspective and Camera Parameters
6.2.4. Composing a Scene
6.2.4.1. Changing the Display Properties
6.2.4.2. Transforming Geometric Entities in a Scene
6.2.4.3. Adding a Bounding Frame
6.2.4.4. Using the Scene Description Dialog Box
6.2.5. Controlling the Mouse Buttons
6.2.6. Controlling the Mouse Probe Function
6.2.7. Annotating the Display
6.2.8. Setting Default Controls
6.3. Determining Mesh Statistics and Quality
6.3.1. Performing Meshing Diagnostics
6.3.1.1. Performing a Mesh Check and Diagnostics
6.3.1.2. Diagnosing the Mesh Quality
6.3.1.3. Using the Diagnostics Tools Dialog Box
6.3.1.4. Setting the Scope of Your Diagnostics
6.3.2. Determining Mesh Statistics
6.3.3. Determining Mesh Quality
6.3.3.1. Determining Surface Mesh Quality
6.3.3.2. Determining Volume Mesh Quality
6.3.3.3. Determining Boundary Cell Quality
6.3.3.4. Quality Measure
6.3.4. Reporting Mesh Information
7. Advanced Meshing Topics
7.1. CAD Assemblies
7.1.1. CAD Assemblies Tree
7.1.1.1. FMDB File
7.1.1.2. CAD Entity Path
7.1.1.3. CAD Assemblies Tree Options
7.1.2. Visualizing CAD Entities
7.1.3. Updating CAD Entities
7.1.4. Manipulating CAD Entities
7.1.4.1. Creating and Modifying Geometry/Mesh Objects
7.1.4.2. Managing Labels
7.1.4.3. Setting CAD Entity States
7.1.4.4. Modifying CAD Entities
7.1.5. CAD Association
7.2. Size Functions and Scoped Sizing
7.2.1. Types of Size Functions or Scoped Sizing Controls
7.2.1.1. Curvature
7.2.1.2. Proximity
7.2.1.3. Meshed
7.2.1.4. Hard
7.2.1.5. Soft
7.2.1.6. Body of Influence
7.2.2. Defining Size Functions
7.2.2.1. Creating Default Size Functions
7.2.3. Defining Scoped Sizing Controls
7.2.3.1. Size Control Files
7.2.4. Computing the Size Field
7.2.4.1. Size Field Files
7.2.4.2. Using Size Field Filters
7.2.4.3. Visualizing Sizes
7.2.5. Using the Size Field
7.3. Objects and Material Points
7.3.1. Objects
7.3.1.1. Object Attributes
7.3.1.1.1. Creating Objects
7.3.1.2. Object Entities
7.3.1.2.1. Using Face Zone Labels
7.3.1.3. Managing Objects
7.3.1.3.1. Using hotkeys and onscreen tools
7.3.1.3.1.1. Creating Objects for CAD Entities
7.3.1.3.1.2. Creating Objects for Unreferenced Zones
7.3.1.3.1.3. Creating Multiple Objects
7.3.1.3.1.4. Easy Object Creation and Modification
7.3.1.3.1.5. Changing Object Properties
7.3.1.3.1.6. Automatic Alignment of Objects
7.3.1.3.1.7. Remeshing Geometry Objects
7.3.1.3.1.8. Creating Edge Zones
7.3.1.3.2. Using the Manage Objects Dialog Box
7.3.1.3.2.1. Defining Objects
7.3.1.3.2.2. Object Manipulation Operations
7.3.1.3.2.3. Object Transformation Operations
7.3.2. Material Points
7.3.2.1. Creating Material Points
7.4. Object-Based Surface Meshing
7.4.1. Surface Mesh Processes
7.4.2. Preparing the Geometry
7.4.2.1. Using a Bounding Box
7.4.2.2. Closing Annular Gaps in the Geometry
7.4.2.3. Patching Tools
7.4.2.3.1. Using the Patch Options Dialog Box
7.4.2.3.2. Using the Loop Selection Tool
7.4.2.4. Using User-Defined Groups
7.4.3. Diagnostic Tools
7.4.3.1. Geometry Issues
7.4.3.2. Face Connectivity Issues
7.4.3.3. Quality Checking
7.4.3.4. Summary
7.4.4. Connecting Objects
7.4.4.1. Using the Join/Intersect Dialog Box
7.4.4.2. Using the Join Dialog Box
7.4.4.3. Using the Intersect Dialog Box
7.4.5. Advanced Options
7.4.5.1. Object Management
7.4.5.2. Removing Gaps Between Mesh Objects
7.4.5.3. Removing Thickness in Mesh Objects
7.4.5.4. Sewing Objects
7.4.5.4.1. Resolving Thin Regions
7.4.5.4.2. Processing Slits
7.4.5.4.3. Removing Voids
7.5. Object-Based Volume Meshing
7.5.1. Volume Mesh Process
7.5.2. Volumetric Region Management
7.5.2.1. Computing and Verifying Regions
7.5.2.2. Volumetric Region Operations
7.5.3. Generating the Volume Mesh
7.5.3.1. Meshing All Regions Collectively Using Auto Mesh
7.5.3.2. Meshing Regions Selectively Using Auto Fill Volume
7.5.4. Cell Zone Options
7.6. Manipulating the Boundary Mesh
7.6.1. Manipulating Boundary Nodes
7.6.1.1. Free and Isolated Nodes
7.6.2. Intersecting Boundary Zones
7.6.2.1. Intersecting Zones
7.6.2.2. Joining Zones
7.6.2.3. Stitching Zones
7.6.2.4. Using the Intersect Boundary Zones Dialog Box
7.6.2.5. Using Shortcut Keys/Icons
7.6.3. Modifying the Boundary Mesh
7.6.3.1. Using the Modify Boundary Dialog Box
7.6.3.2. Operations Performed: Modify Boundary Dialog Box
7.6.3.3. Locally Remeshing a Boundary Zone or Faces
7.6.3.4. Moving Nodes
7.6.4. Improving Boundary Surfaces
7.6.4.1. Improving the Boundary Surface Quality
7.6.4.2. Smoothing the Boundary Surface
7.6.4.3. Swapping Face Edges
7.6.5. Refining the Boundary Mesh
7.6.5.1. Procedure for Refining Boundary Zones
7.6.6. Creating and Modifying Features
7.6.6.1. Creating Edge Zones
7.6.6.2. Modifying Edge Zones
7.6.6.3. Using the Feature Modify Dialog Box
7.6.7. Remeshing Boundary Zones
7.6.7.1. Creating Edge Zones
7.6.7.2. Modifying Edge Zones
7.6.7.3. Remeshing Boundary Face Zones
7.6.7.4. Using the Surface Retriangulation Dialog Box
7.6.8. Faceted Stitching of Boundary Zones
7.6.9. Triangulating Boundary Zones
7.6.10. Separating Boundary Zones
7.6.10.1. Separating Face Zones using Hotkeys
7.6.10.2. Using the Separate Face Zones dialog box
7.6.11. Projecting Boundary Zones
7.6.12. Creating Groups
7.6.13. Manipulating Boundary Zones
7.6.14. Manipulating Boundary Conditions
7.6.15. Creating Surfaces
7.6.15.1. Creating a Bounding Box
7.6.15.1.1. Using the Bounding Box Dialog Box
7.6.15.1.2. Using the Construct Geometry Tool
7.6.15.2. Creating a Planar Surface Mesh
7.6.15.2.1. Using the Plane Surface Dialog Box
7.6.15.3. Creating a Cylinder/Frustum
7.6.15.3.1. Using the Cylinder Dialog Box
7.6.15.3.2. Using the Construct Geometry Tool
7.6.15.4. Creating a Swept Surface
7.6.15.4.1. Using the Swept Surface Dialog Box
7.6.15.5. Creating a Revolved Surface
7.6.15.5.1. Using the Revolved Surface Dialog Box
7.6.15.6. Creating Periodic Boundaries
7.6.16. Removing Gaps Between Boundary Zones
7.6.17. Using the Loop Selection Tool
7.7. Wrapping Objects
7.7.1. The Wrapping Process
7.7.1.1. Extract Edge Zones
7.7.1.2. Create Intersection Loops
7.7.1.2.1. Individually
7.7.1.2.2. Collectively
7.7.1.3. Setting Geometry Recovery Options
7.7.1.4. Fixing Holes in Objects
7.7.1.5. Shrink Wrapping the Objects
7.7.1.6. Improving the Mesh Objects
7.7.1.7. Object Wrapping Options
7.7.1.7.1. Resolving Thin Regions During Object Wrapping
7.7.1.7.2. Detecting Holes in the Object
7.7.1.7.3. Improving Feature Capture For Mesh Objects
7.8. Creating a Mesh
7.8.1. Choosing the Meshing Strategy
7.8.1.1. Boundary Mesh Containing Only Triangular Faces
7.8.1.2. Mixed Boundary Mesh
7.8.1.3. Hexcore Mesh
7.8.1.4. CutCell Mesh
7.8.1.5. Rapid Octree Mesh
7.8.1.6. Additional Meshing Tasks
7.8.1.7. Inserting Isolated Nodes into a Tet Mesh
7.8.2. Using the Auto Mesh Dialog Box
7.8.3. Generating a Thin Volume Mesh
7.8.4. Generating Pyramids
7.8.4.1. Creating Pyramids
7.8.4.2. Zones Created During Pyramid Generation
7.8.4.3. Pyramid Meshing Problems
7.8.5. Creating a Non-Conformal Interface
7.8.5.1. Separating the Non-Conformal Interface Between Cell Zones
7.8.6. Creating a Heat Exchanger Zone
7.8.7. Parallel Meshing
7.8.7.1. Auto Partitioning
7.8.7.1.1. Availability of Graphical User Interface Options After Parallel Meshing
7.8.7.1.2. Availability of Text Interface Options After Parallel Meshing
7.8.7.2. Controlling the Threads
7.9. Generating Prisms
7.9.1. The Prism Generation Process
7.9.1.1. Zones Created During Prism Generation
7.9.2. Procedure for Creating Zone-based Prisms
7.9.3. Prism Meshing Options for Zone-Specific Prisms
7.9.3.1. Growth Options for Zone-Specific Prisms
7.9.3.1.1. Growing Prisms Simultaneously from Multiple Zones
7.9.3.1.2. Growing Prisms on a Two-Sided Wall
7.9.3.1.3. Ignoring Invalid Normals
7.9.3.1.4. Detecting Proximity and Collision
7.9.3.1.5. Splitting Prism Layers
7.9.3.1.6. Preserving Orthogonality
7.9.3.2. Offset Distances
7.9.3.3. Direction Vectors
7.9.3.4. Using Adjacent Zones as the Sides of Prisms
7.9.3.5. Post Prism Mesh Quality Improvement
7.9.3.5.1. Improving the Prism Cell Quality
7.9.3.5.2. Removing Poor Quality Cells
7.9.3.5.3. Improving Warp
7.9.4. Prism Meshing Options for Scoped Prisms
7.9.5. Prism Meshing Problems
7.10. Generating Tetrahedral Meshes
7.10.1. Automatically Creating a Tetrahedral Mesh
7.10.1.1. Automatic Meshing Procedure for Tetrahedral Meshes
7.10.1.2. Using the Auto Mesh Tool
7.10.1.3. Automatic Meshing of Multiple Cell Zones
7.10.1.4. Automatic Meshing for Hybrid Meshes
7.10.1.5. Further Mesh Improvements
7.10.2. Manually Creating a Tetrahedral Mesh
7.10.2.1. Manual Meshing Procedure for Tetrahedral Meshes
7.10.3. Initializing the Tetrahedral Mesh
7.10.3.1. Initializing Using the Tet Dialog Box
7.10.4. Refining the Tetrahedral Mesh
7.10.4.1. Using Local Refinement Regions
7.10.4.2. Refinement Using the Tet Dialog Box
7.10.5. Common Tetrahedral Meshing Problems
7.11. Generating the Hexcore Mesh
7.11.1. Hexcore Meshing Procedure
7.11.2. Using the Hexcore Dialog Box
7.11.3. Controlling Hexcore Parameters
7.11.3.1. Maximum or Minimum Cell Length
7.11.3.2. Buffer Layers
7.11.3.3. Peel Layers
7.11.3.4. Defining Hexcore Extents
7.11.3.4.1. Hexcore to Selected Boundaries
7.11.3.5. Local Refinement Regions
7.12. Generating Polyhedral Meshes
7.12.1. Meshing Process for Polyhedral Meshes
7.12.2. Steps for Creating the Polyhedral Mesh
7.12.2.1. Further Mesh Improvements
7.12.2.2. Transferring the Poly Mesh to Solution Mode
7.13. Generating Poly-Hexcore Meshes
7.13.1. Steps for Creating the Poly-Hexcore Mesh
7.14. Generating the CutCell Mesh
7.14.1. The CutCell Meshing Process
7.14.2. Using the CutCell Dialog Box
7.14.2.1. Handling Zero-Thickness Walls
7.14.2.2. Handling Overlapping Surfaces
7.14.2.3. Resolving Thin Regions
7.14.3. Improving the CutCell Mesh
7.14.4. Post CutCell Mesh Generation Cleanup
7.14.5. Generating Prisms for the CutCell Mesh
7.14.6. The Cut-Tet Workflow
7.15. Generating Rapid Octree Meshes
7.15.1. Using the Rapid Octree Mesher
7.15.1.1. Geometry
7.15.1.1.1. Specifying the Input Object
7.15.1.1.2. Specifying the Volume
7.15.1.1.3. Defining the Bounding Box
7.15.1.1.4. Reporting the Base Length
7.15.1.2. Boundary Treatment
7.15.1.2.1. Boundary Mesh Optimization
7.15.1.2.2. Improve Geometry Resolution
7.15.1.3. Mesh Parameters
7.15.1.3.1. Refinement Regions
7.15.1.3.2. Custom Boundary Sizes
7.15.1.3.2.1. Creating Size Functions
7.15.1.3.2.2. Draw, Change, and Delete Functions
7.15.1.3.3. Boundary Layer Mesh
7.15.2. Limitations of the Rapid Octree Mesher
A. Importing Boundary and Volume Meshes
A.1. GAMBIT Meshes
A.2. TetraMesher Volume Mesh
A.3. Meshes from Third-Party CAD Packages
A.3.1. I-deas Universal Files
A.3.1.1. Recognized I-deas Datasets
A.3.1.2. Grouping Elements to Create Zones for a Surface Mesh
A.3.1.3. Grouping Nodes to Create Zones for a Volume Mesh
A.3.1.4. Periodic Boundaries
A.3.1.5. Deleting Duplicate Nodes
A.3.2. PATRAN Neutral Files
A.3.2.1. Recognized PATRAN Datasets
A.3.2.2. Grouping Elements to Create Zones
A.3.2.3. Periodic Boundaries
A.3.3. ANSYS Files
A.3.3.1. Recognized Datasets
A.3.3.2. Periodic Boundaries
A.3.4. ARIES Files
A.3.5. NASTRAN Files
A.3.5.1. Recognized NASTRAN Bulk Data Entries
A.3.5.2. Periodic Boundaries
A.3.5.3. Deleting Duplicate Nodes
B. Mesh File Format
B.1. Guidelines
B.2. Formatting Conventions in Binary Files and Formatted Files
B.3. Grid Sections
B.3.1. Comment
B.3.2. Header
B.3.3. Dimensions
B.3.4. Nodes
B.3.5. Periodic Shadow Faces
B.3.6. Cells
B.3.7. Faces
B.3.8. Edges
B.3.9. Face Tree
B.3.10. Cell Tree
B.3.11. Interface Face Parents
B.4. Non-Grid Sections
B.4.1. Zone
B.5. Example Files
C. Shortcut Keys
C.1. Shortcut Key Actions
C.1.1. Entity Information
Bibliography
III. Solution Mode
Using This Manual
1. Typographical Conventions
2. Mathematical Conventions
1. Graphical User Interface (GUI)
1.1. GUI Components
1.1.1. The Ribbon
1.1.2. The Outline View
1.1.2.1. Drag and Drop, Copy and Paste
1.1.3. Graphics Windows
1.1.4. Quick Search
1.1.5. Toolbars
1.1.5.1. The Standard Toolbar
1.1.5.2. The Graphics Toolbars
1.1.5.2.1. Mesh Display
1.1.5.2.2. Pointer Tools
1.1.5.2.3. View Tools
1.1.5.2.4. Visibility Tools
1.1.5.2.5. Copy Tools
1.1.5.2.6. Object Selection/Display Tools
1.1.5.2.7. Graphics Effects Tools
1.1.5.2.8. Additional Display Options
1.1.6. Task Pages
1.1.7. The Console
1.1.8. Dialog Boxes
1.1.8.1. Input Controls
1.1.8.1.1. Tabs
1.1.8.1.2. Buttons
1.1.8.1.3. Check Boxes
1.1.8.1.4. Radio Buttons
1.1.8.1.5. Text Entry Boxes
1.1.8.1.6. Integer Number Entry Boxes
1.1.8.1.7. Real Number Entry Boxes
1.1.8.1.8. Filter Text Entry Boxes
1.1.8.1.9. Single-Selection Lists
1.1.8.1.10. Multiple-Selection Lists
1.1.8.1.11. Drop-Down Lists
1.1.8.1.12. Scales
1.1.8.2. Types of Dialog Boxes
1.1.8.2.1. Information Dialog Boxes
1.1.8.2.2. Warning Dialog Boxes
1.1.8.2.3. Error Dialog Boxes
1.1.8.2.4. The Working Dialog Box
1.1.8.2.5. Question Dialog Box
1.1.8.2.6. The Select File Dialog Box
1.1.9. Quick Property Editor for Boundaries
1.2. Customizing the Graphical User Interface
1.3. Setting User Preferences/Options
1.4. Fluent Graphical User Interface Other Languages
1.5. Having the Session Close After Sitting Idle
1.5.1. Timeout Using the Set Idle Timeout Dialog Box
1.5.2. Timeout Using FLUENT_MAX_IDLE_TIMEOUT
1.5.3. Idle Timeout Limitations
1.6. Using the Help System
1.6.1. Learning and Support
1.6.2. Task Page and Dialog Box Help
1.6.3. Obtaining License Use Information
1.6.4. Version and Release Information
2. Text User Interface (TUI)
3. Reading and Writing Files
3.1. Shortcuts for Reading and Writing Files
3.1.1. Default File Suffixes
3.1.2. Binary Files
3.1.3. Detecting File Format
3.1.4. Recent File List
3.1.5. Reading and Writing Compressed Files
3.1.5.1. Reading Compressed Files
3.1.5.2. Writing Compressed Files
3.1.6. Tilde Expansion (Linux Systems Only)
3.1.7. Automatic Numbering of Files
3.1.8. Disabling the Overwrite Confirmation Prompt
3.2. Reading Mesh Files
3.3. Reading and Writing Case and Data Files
3.3.1. Reading and Writing Case Files
3.3.2. Reading and Writing Data Files
3.3.3. Reading and Writing Case and Data Files Together
3.3.4. Reading and Writing Files in the Legacy Format
3.3.5. Automatic Saving of Case and Data Files
3.4. Reading Settings Only for Mesh or Case Files with Large Cell Counts
3.5. Reading Fluent/UNS and RAMPANT Case and Data Files
3.6. Reading and Writing Profile Files
3.6.1. Reading Profile Files
3.6.2. Writing Profile Files
3.6.2.1. Writing Circumferential-Averaged Profiles
3.7. Reading Files in Tabular Format
3.7.1. Matrix Table Files
3.7.2. Real Gas Property (RGP) Table Files
3.8. Reading and Writing Boundary Conditions
3.9. Writing a Boundary Mesh
3.10. Reading Scheme Source Files
3.11. Creating and Reading Journal Files
3.11.1. Procedure
3.11.2. Multiple Journal Files
3.12. Creating Transcript Files
3.13. Importing Files
3.13.1. ABAQUS Files
3.13.2. CFX Files
3.13.3. Meshes and Data in CGNS Format
3.13.4. EnSight Files
3.13.5. GAMBIT and GeoMesh Mesh Files
3.13.6. HYPERMESH ASCII Files
3.13.7. NASTRAN Files
3.13.8. PLOT3D Files
3.13.9. Tecplot Files
3.13.10. Partition Files
3.13.11. CHEMKIN Mechanism
3.14. Exporting Solution Data
3.14.1. Exporting Limitations
3.15. Exporting Solution Data after a Calculation
3.15.1. ABAQUS Files
3.15.2. Mechanical APDL Input Files
3.15.3. ASCII Files
3.15.4. CDAT for CFD-Post and EnSight
3.15.5. CGNS Files
3.15.6. Common Fluids Format - Post Files
3.15.7. EnSight Case Gold Files
3.15.8. EnSight DVS
3.15.9. FAST Files
3.15.10. FAST Solution Files
3.15.11. FieldView Unstructured Files
3.15.12. NASTRAN Files
3.15.13. TAITherm Files
3.15.14. Tecplot Files
3.16. Exporting Steady-State Particle History Data
3.17. Exporting Data During a Transient Calculation
3.17.1. Creating Automatic Export Definitions for Solution Data
3.17.2. Creating Automatic Export Definitions for Transient Particle History Data
3.18. Exporting to Ansys CFD-Post
3.19. Parallel Exporting to Ansys EnSight
3.20. Managing Solution Files
3.21. Mesh-to-Mesh Solution Interpolation
3.21.1. Performing Mesh-to-Mesh Solution Interpolation
3.21.2. Format of the Interpolation File
3.22. Mapping Data for Fluid-Structure Interaction (FSI) Applications
3.22.1. FEA File Formats
3.22.2. Using the FSI Mapping Dialog Boxes
3.23. Saving Picture Files
3.23.1. Using the Save Picture Dialog Box
3.23.1.1. Choosing the Picture File Format
3.23.1.2. Specifying the Color Mode
3.23.1.3. Choosing the File Type
3.23.1.4. Defining the Resolution
3.23.1.5. Picture Options
3.23.2. Picture Options for PostScript Files
3.23.2.1. Window Dumps (Linux Systems Only)
3.23.2.2. Previewing the Picture Image
3.24. Setting Data File Quantities
3.25. The .fluent File
3.26. Coupled Simulations in Ansys Fluent with Functional Mock-up Unit (FMU) Files
4. Unit Systems
4.1. Restrictions on Units
4.2. Units in Mesh Files
4.3. Built-In Unit Systems in Ansys Fluent
4.4. Customizing Units
4.4.1. Listing Current Units
4.4.2. Changing the Units for a Quantity
4.4.3. Defining a New Unit
4.4.3.1. Determining the Conversion Factor
5. Fluent Expressions Language
5.1. Introduction to Expressions
5.1.1. Expression Syntax
5.1.1.1. Expression Data Types
5.1.1.2. Expression Values
5.1.1.3. Expression Operations and Functions
5.1.2. Units Validation
5.2. Expression Sources
5.2.1. Field Variables
5.2.2. Solution Variables
5.2.3. Scientific Constants
5.2.4. Aliases
5.2.5. Profiles
5.3. Creating and Using Expressions
5.3.1. Directly Applied Expressions
5.3.1.1. Expressions for Cell Zones and Boundary Conditions
5.3.1.2. Expressions for Material Properties
5.3.1.3. Expressions in the Console
5.3.2. Named Expressions
5.3.3. Context Specification
5.3.4. Plotting Expressions
5.3.5. Postprocessing Expressions
5.3.6. Expression Manager
5.4. Expression Examples
5.4.1. Parabolic Inflow Profile
5.4.2. Time-Varied Parabolic Inflow
5.4.3. Controlled Outlet Temperature
5.4.4. Computing Forces with Parameterized Angle of Attack
5.5. Appendix: Supported Field Variables
6. Reading and Manipulating Meshes
6.1. Mesh Topologies
6.1.1. Examples of Acceptable Mesh Topologies
6.1.2. Face-Node Connectivity in Ansys Fluent
6.1.2.1. Face-Node Connectivity for Triangular Cells
6.1.2.2. Face-Node Connectivity for Quadrilateral Cells
6.1.2.3. Face-Node Connectivity for Tetrahedral Cells
6.1.2.4. Face-Node Connectivity for Wedge Cells
6.1.2.5. Face-Node Connectivity for Pyramidal Cells
6.1.2.6. Face-Node Connectivity for Hex Cells
6.1.2.7. Face-Node Connectivity for Polyhedral Cells
6.1.3. Choosing the Appropriate Mesh Type
6.1.3.1. Setup Time
6.1.3.2. Computational Expense
6.1.3.3. Numerical Diffusion
6.2. Mesh Requirements and Considerations
6.2.1. Geometry/Mesh Requirements
6.2.2. Mesh Quality
6.2.2.1. Mesh Element Distribution
6.2.2.2. Cell Quality
6.2.2.3. Smoothness
6.2.2.4. Flow-Field Dependency
6.3. Mesh Sources
6.3.1. Ansys Meshing Mesh Files
6.3.2. Fluent Meshing Mode Mesh Files
6.3.3. Fluent Meshing Mesh Files
6.3.4. GAMBIT Mesh Files
6.3.5. GeoMesh Mesh Files
6.3.6. NASTRAN Files
6.3.6.1. Recognized NASTRAN Bulk Data Entries
6.3.6.2. Deleting Duplicate Nodes
6.3.7. CFX Files
6.3.8. Using the fe2ram Filter to Convert Files
6.3.9. Removing Hanging Nodes / Edges
6.3.9.1. Limitations
6.3.10. Fluent/UNS and RAMPANT Case Files
6.3.11. Ansys FIDAP Neutral Files
6.3.12. Reading Multiple Mesh/Case/Data Files
6.3.12.1. Reading Multiple Mesh Files via the Solution Mode of Fluent
6.3.12.2. Reading Multiple Mesh Files via the Meshing Mode of Fluent
6.3.12.3. Reading Multiple Mesh Files via tmerge
6.3.13. Reading Surface Mesh Files
6.4. Reference Frames
6.4.1. Creating and Using Reference Frames
6.5. Curvilinear Coordinate Systems
6.5.1. Defining a Curvilinear Coordinate System
6.5.2. Curvilinear Coordinate System Example
6.5.3. Limitations of Curvilinear Coordinate Systems
6.5.4. Limitations with Jump Boundary
6.6. Non-Conformal Meshes
6.6.1. Non-Conformal Mesh Calculations
6.6.1.1. The Periodic Boundary Condition Option
6.6.1.2. The Periodic Repeats Option
6.6.1.3. The Coupled Wall Option
6.6.1.4. Matching Option
6.6.1.5. The Mapped Option
6.6.1.6. The Static Option
6.6.1.7. Interface Zones Automatic Naming Conventions
6.6.1.7.1. Default (No Options Enabled)
6.6.1.7.2. Periodic Boundary Condition
6.6.1.7.3. Periodic Repeats
6.6.1.7.4. Coupled Wall
6.6.1.7.5. Matching
6.6.1.7.6. Mapped
6.6.1.7.7. Static
6.6.2. Non-Conformal Interface Algorithm
6.6.3. Requirements and Limitations of Non-Conformal Meshes
6.6.4. Using a Non-Conformal Mesh in Ansys Fluent
6.6.4.1. Manually Creating Many-to-Many Mesh Interfaces
6.6.4.2. Manually Creating Many Non-Overlapping Mesh Interfaces
6.6.4.3. Transferring Motion Across a Mesh Interface
6.7. Overset Meshes
6.7.1. Introduction
6.7.2. Overset Topologies
6.7.3. Overset Domain Connectivity
6.7.3.1. Hole Cutting
6.7.3.1.1. Hole Cutting Control
6.7.3.2. Overlap Minimization
6.7.3.3. Donor Search
6.7.4. Diagnosing Overset Interface Issues
6.7.4.1. Flood Filling Fails During Hole Cutting
6.7.4.1.1. Incorrect Seed Cells
6.7.4.1.2. Leakage Between Overlapping Boundaries
6.7.4.2. Donor Search Fails Due to Orphan Cells
6.7.5. Overset Mesh Adaption
6.7.5.1. Marking for Orphan Adaption
6.7.5.2. Marking for Size Adaption
6.7.5.3. Marking for Gap Adaption
6.7.5.4. Using Manual Overset Adaption
6.7.5.5. Using Automatic Overset Adaption
6.7.5.6. Overset Adaption Controls
6.7.6. Overset Meshing Best Practices
6.7.7. Overset Meshing Limitations and Compatibilities
6.7.7.1. Limitations
6.7.7.2. Compatibilities
6.7.8. Setting up an Overset Interface
6.7.9. Postprocessing Overset Meshes
6.7.9.1. Overset Mesh Display
6.7.9.2. Overset Field Functions
6.7.9.3. Overset Cell Marks
6.7.9.4. Overset Interface Listing
6.7.9.5. Overset Postprocessing Limitations
6.7.10. Writing and Reading Overset Files
6.8. Controlling Flow in Narrow Gaps for Valves and Pumps
6.8.1. The Gap Model Approach
6.8.2. Limitations of the Gap Model
6.8.3. Recommendations for the Setup of a Simulation with Gaps
6.8.4. Using the Gap Model
6.9. Checking the Mesh
6.9.1. Mesh Check Report
6.9.2. Repairing Meshes
6.10. Reporting Mesh Statistics
6.10.1. Mesh Size
6.10.2. Memory Usage
6.10.2.1. Linux Systems
6.10.2.2. Windows Systems
6.10.3. Mesh Zone Information
6.10.4. Partition Statistics
6.11. Converting the Mesh to a Polyhedral Mesh
6.11.1. Converting the Domain to a Polyhedra
6.11.1.1. Limitations
6.11.2. Converting Skewed Cells to Polyhedra
6.11.2.1. Limitations
6.11.3. Converting Cells with Hanging Nodes / Edges to Polyhedra
6.11.3.1. Limitations
6.12. Modifying the Mesh
6.12.1. Merging Zones
6.12.1.1. When to Merge Zones
6.12.1.2. Using the Merge Zones Dialog Box
6.12.2. Separating Zones
6.12.2.1. Separating Face Zones
6.12.2.1.1. Methods for Separating Face Zones
6.12.2.1.2. Inputs for Separating Face Zones
6.12.2.2. Separating Cell Zones
6.12.2.2.1. Methods for Separating Cell Zones
6.12.2.2.2. Inputs for Separating Cell Zones
6.12.3. Fusing Face Zones
6.12.3.1. Inputs for Fusing Face Zones
6.12.3.1.1. Fusing Zones on Branch Cuts
6.12.4. Creating Periodic Zones and Interfaces
6.12.5. Decoupling Periodic Zones
6.12.6. Slitting Face Zones
6.12.6.1. Inputs for Slitting Face Zones
6.12.7. Orienting Face Zones
6.12.8. Extruding Face Zones
6.12.8.1. Specifying Extrusion by Displacement Distances
6.12.8.2. Specifying Extrusion by Parametric Coordinates
6.12.9. Replacing, Deleting, Deactivating, and Activating Zones
6.12.9.1. Replacing Zones
6.12.9.2. Deleting Zones
6.12.9.3. Deactivating Zones
6.12.9.4. Activating Zones
6.12.10. Copying Cell Zones
6.12.11. Replacing the Mesh
6.12.11.1. Inputs for Replacing the Mesh
6.12.11.2. Limitations
6.12.12. Managing Adjacent Zones
6.12.12.1. Renaming Zones Using the Adjacency Dialog Box
6.12.13. Reordering the Domain
6.12.14. Scaling the Mesh
6.12.14.1. Scaling the Entire Mesh
6.12.14.1.1. Changing the Unit of Length
6.12.14.1.2. Unscaling the Mesh
6.12.14.1.3. Changing the Physical Size of the Mesh
6.12.14.2. Scaling Individual Cell Zones
6.12.15. Translating the Mesh
6.12.15.1. Translating the Entire Mesh
6.12.15.2. Translating Individual Cell Zones
6.12.16. Rotating the Mesh
6.12.16.1. Rotating the Entire Mesh
6.12.16.2. Rotating Individual Cell Zones
6.12.17. Improving the Mesh by Smoothing and Swapping
6.12.17.1. Smoothing
6.12.17.1.1. Quality-Based Smoothing
6.12.17.1.2. Laplacian Smoothing
6.12.17.1.3. Skewness-Based Smoothing
6.12.17.2. Face Swapping
6.12.17.2.1. Triangular Meshes
6.12.17.2.2. Tetrahedral Meshes
6.12.17.3. Combining Skewness-Based Smoothing and Face Swapping
6.12.18. Boundary Layer Redistribution
6.12.19. Deleting Cells
7. Cell Zone and Boundary Conditions
7.1. Overview
7.1.1. Available Cell Zone and Boundary Types
7.1.2. The Cell Zone and Boundary Conditions Task Pages
7.1.3. Changing Cell and Boundary Zone Types
7.1.4. Setting Cell Zone and Boundary Conditions
7.1.5. Copying Cell Zone and Boundary Conditions
7.1.6. Exporting Boundary Zones in CSV Format
7.1.7. Changing Cell or Boundary Zone Names
7.1.8. Defining Non-Uniform Cell Zone and Boundary Conditions
7.1.9. Defining and Viewing Parameters
7.1.9.1. Creating a New Parameter
7.1.9.2. Working With Advanced Parameter Options
7.1.9.2.1. Defining Scheme Procedures With Input Parameters
7.1.9.2.2. Defining UDFs With Input Parameters
7.1.9.2.3. Using the Text User Interface to Define UDFs and Scheme Procedures With Input Parameters
7.1.10. Selecting Cell or Boundary Zones in the Graphics Display
7.1.11. Operating and Periodic Conditions
7.1.12. Saving and Reusing Cell Zone and Boundary Conditions
7.2. Cell Zone Conditions
7.2.1. Fluid Conditions
7.2.1.1. Inputs for Fluid Zones
7.2.1.1.1. Defining the Fluid Material
7.2.1.1.2. Defining Sources
7.2.1.1.3. Defining Fixed Values
7.2.1.1.4. Specifying a Laminar Zone
7.2.1.1.5. Specifying a Reaction Mechanism
7.2.1.1.6. Specifying the Rotation Axis
7.2.1.1.7. Defining Zone Motion
7.2.1.1.8. Defining Radiation Parameters
7.2.2. Solid Conditions
7.2.2.1. Inputs for Solid Zones
7.2.2.1.1. Defining the Solid Material
7.2.2.1.2. Defining a Heat Source
7.2.2.1.3. Defining a Fixed Temperature
7.2.2.1.4. Specifying the Rotation Axis for Boundary Zones
7.2.2.1.5. Defining Zone Motion
7.2.2.1.6. Defining Radiation Parameters
7.2.3. Porous Media Conditions
7.2.3.1. Limitations and Assumptions of the Porous Media Model
7.2.3.2. Momentum Equations for Porous Media
7.2.3.2.1. Darcy’s Law in Porous Media
7.2.3.2.2. Inertial Losses in Porous Media
7.2.3.3. Relative Viscosity in Porous Media
7.2.3.4. Treatment of the Energy Equation in Porous Media
7.2.3.4.1. Equilibrium Thermal Model Equations
7.2.3.4.2. Non-Equilibrium Thermal Model Equations
7.2.3.5. Treatment of Turbulence in Porous Media
7.2.3.6. Effect of Porosity on Transient Scalar Equations
7.2.3.7. Modeling Porous Media Based on Physical Velocity
7.2.3.7.1. Single Phase Porous Media
7.2.3.7.2. Multiphase Porous Media
7.2.3.7.2.1. The Continuity Equation
7.2.3.7.2.2. The Momentum Equation
7.2.3.7.2.3. The Energy Equation
7.2.3.8. User Inputs for Porous Media
7.2.3.8.1. Defining the Porous Zone
7.2.3.8.2. Defining the Porous Velocity Formulation
7.2.3.8.3. Defining the Fluid Passing Through the Porous Medium
7.2.3.8.4. Enabling Reactions in a Porous Zone
7.2.3.8.5. Including the Relative Velocity Resistance Formulation
7.2.3.8.6. Defining the Viscous and Inertial Resistance Coefficients
7.2.3.8.7. Deriving Porous Media Inputs Based on Superficial Velocity, Using a Known Pressure Loss
7.2.3.8.8. Using the Ergun Equation to Derive Porous Media Inputs for a Packed Bed
7.2.3.8.9. Using an Empirical Equation to Derive Porous Media Inputs for Turbulent Flow Through a Perforated Plate
7.2.3.8.10. Using Tabulated Data to Derive Porous Media Inputs for Laminar Flow Through a Fibrous Mat
7.2.3.8.11. Deriving the Porous Coefficients Based on Experimental Pressure and Velocity Data
7.2.3.8.12. Using the Power-Law Model
7.2.3.8.13. Defining Porosity
7.2.3.8.14. Specifying the Heat Transfer Settings
7.2.3.8.14.1. Equilibrium Thermal Model
7.2.3.8.14.2. Non-Equilibrium Thermal Model
7.2.3.8.15. Specifying the Relative Viscosity
7.2.3.8.16. Specifying the Relative Permeability
7.2.3.8.17. Specifying the Capillary Pressure
7.2.3.8.17.1. Brooks-Corey Model
7.2.3.8.17.2. Van-Genuchten Model
7.2.3.8.17.3. Leverett J-Function
7.2.3.8.17.4. Skjaeveland Model
7.2.3.8.17.5. Capillary Pressure Data in a Tabular Format
7.2.3.8.17.6. Capillary Pressure Usage
7.2.3.8.17.7. Modeling Capillary Pressure as Diffusion
7.2.3.8.18. Defining Sources
7.2.3.8.19. Defining Fixed Values
7.2.3.8.20. Suppressing the Turbulent Viscosity in the Porous Region
7.2.3.8.21. Specifying the Rotation Axis and Defining Zone Motion
7.2.3.9. Solution Strategies for Porous Media
7.2.3.10. Postprocessing for Porous Media
7.2.4. 3D Fan Zones
7.2.4.1. Momentum Equations for 3D Fan Zones
7.2.4.2. User Inputs for 3D Fan Zones
7.2.4.2.1. Defining the Geometry of a 3D Fan Zone
7.2.4.2.2. Defining the Properties of a 3D Fan Zone
7.2.4.3. 3D Fan Zone Limitations
7.2.5. Fixing the Values of Variables
7.2.5.1. Overview of Fixing the Value of a Variable
7.2.5.1.1. Variables That Can Be Fixed
7.2.5.2. Procedure for Fixing Values of Variables in a Zone
7.2.5.2.1. Fixing Velocity Components
7.2.5.2.2. Fixing Temperature and Enthalpy
7.2.5.2.3. Fixing Species Mass Fractions
7.2.5.2.4. Fixing Turbulence Quantities
7.2.5.2.5. Fixing User-Defined Scalars
7.2.6. Locking the Temperature for Solid and Shell Zones
7.2.7. Defining Mass, Momentum, Energy, and Other Sources
7.2.7.1. Sign Conventions and Units
7.2.7.2. Procedure for Defining Sources
7.2.7.2.1. Mass Sources
7.2.7.2.2. Momentum Sources
7.2.7.2.3. Energy Sources
7.2.7.2.4. Turbulence Sources
7.2.7.2.4.1. Turbulence Sources for the k- ε Model
7.2.7.2.4.2. Turbulence Sources for the Spalart-Allmaras Model
7.2.7.2.4.3. Turbulence Sources for the k- ω Model
7.2.7.2.4.4. Turbulence Sources for the Reynolds Stress Model
7.2.7.2.5. Mean Mixture Fraction and Variance Sources
7.2.7.2.6. P-1 Radiation Sources
7.2.7.2.7. Progress Variable Sources
7.2.7.2.8. NO, HCN, and NH3 Sources for the NOx Model
7.2.7.2.9. Discrete Bin Fraction Sources for the Population Balance Model
7.2.7.2.10. User-Defined Scalar (UDS) Sources
7.3. Operating Conditions
7.3.1. Buoyancy-Driven Flows and Natural Convection
7.3.1.1. Modeling Natural Convection in a Closed Domain
7.3.1.2. The Boussinesq Model
7.3.1.3. Limitations of the Boussinesq Model
7.3.1.4. Steps in Solving Buoyancy-Driven Flow Problems
7.3.1.5. If you are using the incompressible ideal gas law, check the Operating Density
7.3.1.5.1. Setting the Operating Density for a Single Phase Flow
7.3.1.5.2. Setting the Operating Density for a Multiphase Flow
7.3.1.6. Solution Strategies for Buoyancy-Driven Flows
7.3.1.6.1. Guidelines for Solving High-Rayleigh-Number Flows
7.4. Boundary Conditions
7.4.1. Flow Inlet and Exit Boundary Conditions
7.4.2. Using Flow Boundary Conditions
7.4.2.1. Determining Turbulence Parameters
7.4.2.1.1. Specification of Turbulence Quantities Using Profiles
7.4.2.1.2. Uniform Specification of Turbulence Quantities
7.4.2.1.3. Turbulence Intensity
7.4.2.1.4. Turbulence Length Scale and Hydraulic Diameter
7.4.2.1.5. Turbulent Viscosity Ratio
7.4.2.1.6. Relationships for Deriving Turbulence Quantities
7.4.2.1.7. Estimating Modified Turbulent Viscosity from Turbulence Intensity and Length Scale
7.4.2.1.8. Estimating Turbulent Kinetic Energy from Turbulence Intensity
7.4.2.1.9. Estimating Turbulent Dissipation Rate from a Length Scale
7.4.2.1.10. Estimating Turbulent Dissipation Rate from Turbulent Viscosity Ratio
7.4.2.1.11. Estimating Turbulent Dissipation Rate for Decaying Turbulence
7.4.2.1.12. Estimating Specific Dissipation Rate from a Length Scale
7.4.2.1.13. Estimating Specific Dissipation Rate from Turbulent Viscosity Ratio
7.4.2.1.14. Estimating Reynolds Stress Components from Turbulent Kinetic Energy
7.4.2.1.15. Specifying Inlet Turbulence for Scale Resolving Simulations
7.4.3. Pressure Inlet Boundary Conditions
7.4.3.1. Inputs at Pressure Inlet Boundaries
7.4.3.1.1. Summary
7.4.3.1.1.1. Pressure Inputs and Hydrostatic Head
7.4.3.1.1.2. Defining Total Pressure and Temperature
7.4.3.1.1.3. Defining the Flow Direction
7.4.3.1.1.4. Defining Static Pressure
7.4.3.1.1.5. Prevent Reverse Flow
7.4.3.1.1.6. Defining Turbulence Parameters
7.4.3.1.1.7. Defining Radiation Parameters
7.4.3.1.1.8. Defining Species Mass or Mole Fractions
7.4.3.1.1.9. Defining Non-Premixed Combustion Parameters
7.4.3.1.1.10. Defining Premixed Combustion Boundary Conditions
7.4.3.1.1.11. Defining Discrete Phase Boundary Conditions
7.4.3.1.1.12. Defining Multiphase Boundary Conditions
7.4.3.1.1.13. Defining Open Channel Boundary Conditions
7.4.3.2. Default Settings at Pressure Inlet Boundaries
7.4.3.3. Calculation Procedure at Pressure Inlet Boundaries
7.4.3.3.1. Incompressible Flow Calculations at Pressure Inlet Boundaries
7.4.3.3.2. Compressible Flow Calculations at Pressure Inlet Boundaries
7.4.4. Velocity Inlet Boundary Conditions
7.4.4.1. Inputs at Velocity Inlet Boundaries
7.4.4.1.1. Summary
7.4.4.1.2. Defining the Velocity
7.4.4.1.3. Setting the Velocity Magnitude and Direction
7.4.4.1.4. Setting the Velocity Magnitude Normal to the Boundary
7.4.4.1.5. Setting the Velocity Components
7.4.4.1.6. Setting the Angular Velocity
7.4.4.1.7. Defining Static Pressure
7.4.4.1.8. Defining the Temperature
7.4.4.1.9. Defining Outflow Gauge Pressure
7.4.4.1.10. Defining Turbulence Parameters
7.4.4.1.11. Defining Radiation Parameters
7.4.4.1.12. Defining Species Mass or Mole Fractions
7.4.4.1.13. Defining Non-Premixed Combustion Parameters
7.4.4.1.14. Defining Premixed Combustion Boundary Conditions
7.4.4.1.15. Defining Discrete Phase Boundary Conditions
7.4.4.1.16. Defining Multiphase Boundary Conditions
7.4.4.2. Default Settings at Velocity Inlet Boundaries
7.4.4.3. Calculation Procedure at Velocity Inlet Boundaries
7.4.4.3.1. Treatment of Velocity Inlet Conditions at Flow Inlets
7.4.4.3.2. Treatment of Velocity Inlet Conditions at Flow Exits
7.4.4.3.3. Density Calculation
7.4.5. Mass-Flow Inlet Boundary Conditions
7.4.5.1. Limitations and Special Considerations
7.4.5.2. Inputs at Mass-Flow Inlet Boundaries
7.4.5.2.1. Summary
7.4.5.2.2. Selecting the Reference Frame
7.4.5.2.3. Defining the Mass Flow Rate or Mass Flux
7.4.5.2.4. More About Mass Flux and Average Mass Flux
7.4.5.2.5. Defining the Total Temperature
7.4.5.2.6. Defining Static Pressure
7.4.5.2.7. Defining the Flow Direction
7.4.5.2.8. Defining Turbulence Parameters
7.4.5.2.9. Defining Radiation Parameters
7.4.5.2.10. Defining Species Mass or Mole Fractions
7.4.5.2.11. Defining Non-Premixed Combustion Parameters
7.4.5.2.12. Defining Premixed Combustion Boundary Conditions
7.4.5.2.13. Defining Discrete Phase Boundary Conditions
7.4.5.2.14. Defining Open Channel Boundary Conditions
7.4.5.3. Default Settings at Mass-Flow Inlet Boundaries
7.4.5.4. Calculation Procedure at Mass-Flow Inlet Boundaries
7.4.5.4.1. Flow Calculations at Mass Flow Boundaries for Ideal Gases
7.4.5.4.2. Flow Calculations at Mass Flow Boundaries for Incompressible Flows
7.4.5.4.3. Flux Calculations at Mass Flow Boundaries
7.4.6. Mass-Flow Outlet Boundary Conditions
7.4.6.1. Limitations
7.4.6.2. Inputs at Mass-Flow Outlet Boundaries
7.4.6.2.1. Summary
7.4.6.2.2. Selecting the Reference Frame
7.4.6.2.3. Defining the Mass Flow Rate or Mass Flux
7.4.6.2.4. Defining Radiation Parameters
7.4.6.2.5. Defining Discrete Phase Boundary Conditions
7.4.6.3. Calculation Procedure at Mass-Flow Outlet Boundaries
7.4.6.3.1. Exit Corrected Mass Flow Rate
7.4.7. Inlet Vent Boundary Conditions
7.4.7.1. Inputs at Inlet Vent Boundaries
7.4.7.1.1. Specifying the Loss Coefficient
7.4.8. Intake Fan Boundary Conditions
7.4.8.1. Inputs at Intake Fan Boundaries
7.4.8.1.1. Specifying the Pressure Jump
7.4.9. Pressure Outlet Boundary Conditions
7.4.9.1. Inputs at Pressure Outlet Boundaries
7.4.9.1.1. Summary
7.4.9.1.2. Defining Static Pressure
7.4.9.1.3. Defining Backflow Conditions
7.4.9.1.3.1. Prevent Reverse Flow
7.4.9.1.4. Defining Radiation Parameters
7.4.9.1.5. Defining Discrete Phase Boundary Conditions
7.4.9.1.6. Defining Open Channel Boundary Conditions
7.4.9.2. Default Settings at Pressure Outlet Boundaries
7.4.9.3. Calculation Procedure at Pressure Outlet Boundaries
7.4.9.3.1. Average Pressure Specification
7.4.9.3.1.1. Strong Averaging
7.4.9.3.1.2. Weak Averaging
7.4.9.4. Other Optional Inputs at Pressure Outlet Boundaries
7.4.9.4.1. Non-Reflecting Boundary Conditions Option
7.4.9.4.2. Target Mass Flow Rate Option
7.4.10. Pressure Far-Field Boundary Conditions
7.4.10.1. Limitations
7.4.10.2. Inputs at Pressure Far-Field Boundaries
7.4.10.2.1. Summary
7.4.10.2.2. Defining Static Pressure, Mach Number, and Static Temperature
7.4.10.2.3. Defining the Flow Direction
7.4.10.2.4. Defining Turbulence Parameters
7.4.10.2.5. Defining Radiation Parameters
7.4.10.2.6. Defining Species Transport Parameters
7.4.10.3. Defining Discrete Phase Boundary Conditions
7.4.10.4. Default Settings at Pressure Far-Field Boundaries
7.4.10.5. Calculation Procedure at Pressure Far-Field Boundaries
7.4.10.6. Flux-based Pressure Far-Field
7.4.10.7. Tangency Correction
7.4.11. Outflow Boundary Conditions
7.4.11.1. Ansys Fluent’s Treatment at Outflow Boundaries
7.4.11.2. Using Outflow Boundaries
7.4.11.3. Mass Flow Split Boundary Conditions
7.4.11.4. Other Inputs at Outflow Boundaries
7.4.11.4.1. Radiation Inputs at Outflow Boundaries
7.4.11.4.2. Defining Discrete Phase Boundary Conditions
7.4.12. Outlet Vent Boundary Conditions
7.4.12.1. Inputs at Outlet Vent Boundaries
7.4.12.1.1. Specifying the Loss Coefficient
7.4.13. Exhaust Fan Boundary Conditions
7.4.13.1. Inputs at Exhaust Fan Boundaries
7.4.13.1.1. Specifying the Pressure Jump
7.4.14. Degassing Boundary Conditions
7.4.14.1. Limitations
7.4.14.2. Inputs at Degassing Boundaries
7.4.15. Wall Boundary Conditions
7.4.15.1. Inputs at Wall Boundaries
7.4.15.1.1. Summary
7.4.15.2. Stationary Wall
7.4.15.3. Wall Roughness Effects in Turbulent Wall-Bounded Flows
7.4.15.3.1. Setting the Roughness Parameters
7.4.15.3.2. Additional Roughness Models for Icing Simulations
7.4.15.3.2.1. Specified Roughness
7.4.15.3.2.2. NASA Correlation
7.4.15.3.2.3. Shin-et-al
7.4.15.3.2.4. ICE3D Roughness File
7.4.15.4. Wall Motion
7.4.15.4.1. Velocity Conditions for Moving Walls
7.4.15.4.2. Shear Conditions at Walls
7.4.15.4.3. No-Slip Walls
7.4.15.4.4. Specified Shear
7.4.15.4.5. Specularity Coefficient
7.4.15.4.6. Marangoni Stress
7.4.15.4.7. Partial Slip for Rarefied Gases
7.4.15.5. Thermal Boundary Conditions at Walls
7.4.15.5.1. Heat Flux Boundary Conditions
7.4.15.5.2. Temperature Boundary Conditions
7.4.15.5.3. Convective Heat Transfer Boundary Conditions
7.4.15.5.4. External Radiation Boundary Conditions
7.4.15.5.5. Combined Convection and External Radiation Boundary Conditions
7.4.15.5.6. Augmented Heat Transfer
7.4.15.5.7. Thin-Wall Thermal Resistance Parameters
7.4.15.5.8. Thermal Conditions for Two-Sided Walls
7.4.15.5.8.1. Orthogonality-Based Secondary Gradient Limiting at Coupled Two-Sided Walls
7.4.15.5.9. Boundary Advection for Solid Motion
7.4.15.5.10. Shell Conduction
7.4.15.5.11. Heat Transfer Boundary Conditions Through System Coupling
7.4.15.5.12. Heat Transfer Boundary Conditions Across a Mapped Interface
7.4.15.5.13. Temperature Jump for Rarefied Gases
7.4.15.6. Species Boundary Conditions for Walls
7.4.15.6.1. Partial Catalytic Boundary Conditions for Walls
7.4.15.7. Radiation Boundary Conditions for Walls
7.4.15.8. Discrete Phase Model (DPM) Boundary Conditions for Walls
7.4.15.8.1. Wall Adhesion Contact Angle for VOF Model
7.4.15.9. User-Defined Scalar (UDS) Boundary Conditions for Walls
7.4.15.10. Wall Film Conditions for Walls
7.4.15.11. Structural Model Conditions for Walls
7.4.15.12. Default Settings at Wall Boundaries
7.4.15.13. Shear-Stress Calculation Procedure at Wall Boundaries
7.4.15.13.1. Shear-Stress Calculation in Laminar Flow
7.4.15.13.2. Shear-Stress Calculation in Turbulent Flows
7.4.15.14. Heat Transfer Calculations at Wall Boundaries
7.4.15.14.1. Temperature Boundary Conditions
7.4.15.14.2. Heat Flux Boundary Conditions
7.4.15.14.3. Convective Heat Transfer Boundary Conditions
7.4.15.14.4. External Radiation Boundary Conditions
7.4.15.14.5. Combined External Convection and Radiation Boundary Conditions
7.4.15.14.6. Calculation of the Fluid-Side Heat Transfer Coefficient
7.4.16. Perforated Wall Boundary Conditions
7.4.16.1. Overview and Limitations
7.4.16.2. Modeling Concept
7.4.16.3. Setting Perforated Walls
7.4.16.4. Procedure for Manual Setup of Perforated Walls
7.4.16.5. Perforated Wall File Format
7.4.16.6. Postprocessing for Perforated Walls
7.4.17. Symmetry Boundary Conditions
7.4.17.1. Examples of Symmetry Boundaries
7.4.17.2. Calculation Procedure at Symmetry Boundaries
7.4.18. Periodic Boundary Conditions
7.4.18.1. Examples of Periodic Boundaries
7.4.18.2. Inputs for Periodic Boundaries
7.4.18.3. Default Settings at Periodic Boundaries
7.4.18.4. Calculation Procedure at Periodic Boundaries
7.4.19. Axis Boundary Conditions
7.4.19.1. Calculation Procedure at Axis Boundaries
7.4.20. Fan Boundary Conditions
7.4.20.1. Limitations of Fan Boundary Conditions
7.4.20.2. Fan Equations
7.4.20.2.1. Modeling the Pressure Rise Across the Fan
7.4.20.2.2. Modeling the Fan Swirl Velocity
7.4.20.3. User Inputs for Fans
7.4.20.3.1. Identifying the Fan Zone
7.4.20.3.2. Defining the Pressure Jump
7.4.20.3.2.1. Polynomial, Piecewise-Linear, or Piecewise-Polynomial Function
7.4.20.3.2.2. Constant Value
7.4.20.3.2.3. User-Defined Function or Profile
7.4.20.3.2.4. Example: Determining the Pressure Jump Function
7.4.20.3.3. Defining Discrete Phase Boundary Conditions for the Fan
7.4.20.3.4. Defining the Fan Swirl Velocity
7.4.20.3.4.1. Polynomial Function
7.4.20.3.4.2. Constant Value
7.4.20.3.4.3. User-Defined Function or Profile
7.4.20.4. Postprocessing for Fans
7.4.20.4.1. Reporting the Pressure Rise Through the Fan
7.4.20.4.2. Graphical Plots
7.4.21. Radiator Boundary Conditions
7.4.21.1. Radiator Equations
7.4.21.1.1. Modeling the Pressure Loss Through a Radiator
7.4.21.1.2. Modeling the Heat Transfer Through a Radiator
7.4.21.1.2.1. Calculating the Heat Transfer Coefficient
7.4.21.2. User Inputs for Radiators
7.4.21.2.1. Identifying the Radiator Zone
7.4.21.2.2. Defining the Pressure Loss Coefficient Function
7.4.21.2.2.1. Polynomial, Piecewise-Linear, or Piecewise-Polynomial Function
7.4.21.2.2.2. Constant Value
7.4.21.2.2.3. Example: Calculating the Loss Coefficient
7.4.21.2.3. Defining the Heat Flux Parameters
7.4.21.2.3.1. Polynomial, Piecewise-Linear, or Piecewise-Polynomial Function
7.4.21.2.3.2. Constant Value
7.4.21.2.3.3. Example: Determining the Heat Transfer Coefficient Function
7.4.21.2.4. Defining Discrete Phase Boundary Conditions for the Radiator
7.4.21.3. Postprocessing for Radiators
7.4.21.3.1. Reporting the Radiator Pressure Drop
7.4.21.3.2. Reporting Heat Transfer in the Radiator
7.4.21.3.3. Graphical Plots
7.4.22. Porous Jump Boundary Conditions
7.4.22.1. User Inputs for the Porous Jump Model
7.4.22.1.1. Identifying the Porous Jump Zone
7.4.22.1.2. Defining Discrete Phase Boundary Conditions for the Porous Jump
7.4.22.2. Postprocessing for the Porous Jump
7.5. Editing Multiple Boundary Conditions at Once
7.6. Transient Cell Zone and Boundary Conditions
7.6.1. Standard Transient Profiles
7.6.2. Tabular Transient Profiles
7.6.3. Profiles for Moving and Deforming Meshes
7.7. Boundary Acoustic Wave Models
7.7.1. Turbo-Specific Non-Reflecting Boundary Conditions
7.7.1.1. Overview
7.7.1.2. Limitations
7.7.1.3. Theory
7.7.1.3.1. Equations in Characteristic Variable Form
7.7.1.3.2. Inlet Boundary
7.7.1.3.3. Outlet Boundary
7.7.1.3.4. Updated Flow Variables
7.7.1.4. Using Turbo-Specific Non-Reflecting Boundary Conditions
7.7.1.4.1. Using the NRBCs with the Mixing-Plane Model
7.7.1.4.2. Using the NRBCs in Parallel Ansys Fluent
7.7.2. General Non-Reflecting Boundary Conditions
7.7.2.1. Overview
7.7.2.2. Restrictions and Limitations
7.7.2.3. Theory
7.7.2.4. Using the General Non-Reflecting Boundary Condition
7.7.3. Impedance Boundary Conditions
7.7.3.1. Restrictions and Limitations
7.7.3.2. Theory
7.7.3.3. Using the Impedance Boundary Condition
7.7.3.4. Calculating Impedance Parameters
7.7.4. Transparent Flow Forcing Boundary Conditions
7.7.4.1. Restrictions and Limitations
7.7.4.2. Theory
7.7.4.3. Using the Transparent Flow Forcing Boundary Condition
7.8. User-Defined Fan Model
7.8.1. Steps for Using the User-Defined Fan Model
7.8.2. Example of a User-Defined Fan
7.8.2.1. Setting the User-Defined Fan Parameters
7.8.2.2. Sample User-Defined Fan Program
7.8.2.3. Initializing the Flow Field and Profile Files
7.8.2.4. Selecting the Profiles
7.8.2.5. Performing the Calculation
7.8.2.6. Results
7.9. Profiles
7.9.1. Profile Specification Types
7.9.2. Profile File Formats
7.9.2.1. Standard Profiles
7.9.2.1.1. Example
7.9.2.2. CSV Profiles
7.9.3. Using Profiles
7.9.3.1. Checking and Deleting Profiles
7.9.3.2. Viewing Profile Data
7.9.3.3. Example
7.9.3.4. Reorienting Profiles
7.9.3.4.1. Steps for Changing the Profile Orientation
7.9.3.4.2. Profile Orienting Example
7.9.3.5. Replicating Profiles
7.9.3.5.1. Steps for Replicating a Profile
7.9.3.5.2. Complex Mode Shape Profile Replication
7.9.3.5.2.1. Steps for Replicating a Complex Mode Shape Profile
7.10. Coupling Boundary Conditions with GT-POWER
7.10.1. Requirements and Restrictions
7.10.2. User Inputs
7.10.3. Torque-Speed Coupling with GT-POWER
7.11. Coupling Boundary Conditions with WAVE
7.11.1. Requirements and Restrictions
7.11.2. User Inputs
8. Physical Properties
8.1. Defining Materials
8.1.1. Physical Properties for Solid Materials
8.1.2. Material Types and Databases
8.1.3. Using the Create/Edit Materials Dialog Box
8.1.3.1. Modifying Properties of an Existing Material
8.1.3.2. Renaming an Existing Material
8.1.3.3. Copying Materials from the Ansys Fluent Database
8.1.3.4. Copying Materials from the Ansys GRANTA MDS Database
8.1.3.5. Creating a New Material
8.1.3.6. Saving Materials and Properties
8.1.3.7. Deleting a Material
8.1.3.8. Changing the Order of the Materials List
8.1.4. Using a User-Defined Materials Database
8.1.4.1. Opening a User-Defined Database
8.1.4.2. Viewing Materials in a User-Defined Database
8.1.4.3. Copying Materials from a User-Defined Database
8.1.4.4. Copying Materials from the Case to a User-Defined Database
8.1.4.5. Modifying Properties of an Existing Material
8.1.4.6. Creating a New Materials Database and Materials
8.1.4.7. Deleting Materials from a Database
8.2. Defining Properties Using Temperature-Dependent Functions
8.2.1. Inputs for Polynomial Functions
8.2.2. Inputs for Piecewise-Linear Functions
8.2.3. Inputs for Piecewise-Polynomial Functions
8.2.4. Inputs for NASA-9-Piecewise-Polynomial Functions
8.2.5. Checking and Modifying Existing Profiles
8.3. Density
8.3.1. Defining Density for Various Flow Regimes
8.3.1.1. Mixing Density Relationships in Multiple-Zone Models
8.3.2. Input of Constant Density
8.3.3. Inputs for the Boussinesq Approximation
8.3.4. Compressible Liquid Density Method
8.3.4.1. Compressible Liquid Inputs
8.3.4.2. Compressible Liquid Density Method Availability
8.3.5. Density as a Profile Function of Temperature
8.3.6. Incompressible Ideal Gas Law
8.3.6.1. Density Inputs for the Incompressible Ideal Gas Law
8.3.7. Ideal Gas Law for Compressible Flows
8.3.7.1. Density Inputs for the Ideal Gas Law for Compressible Flows
8.3.8. Composition-Dependent Density for Multicomponent Mixtures
8.4. Viscosity
8.4.1. Input of Constant Viscosity
8.4.2. Viscosity as a Function of Temperature
8.4.2.1. Sutherland Viscosity Law
8.4.2.1.1. Inputs for Sutherland’s Law
8.4.2.2. Power-Law Viscosity Law
8.4.2.2.1. Inputs for the Power Law
8.4.3. Defining the Viscosity Using Kinetic Theory
8.4.4. Defining Viscosity Using Gupta Curve Fits
8.4.5. Composition-Dependent Viscosity for Multicomponent Mixtures
8.4.6. Viscosity for Non-Newtonian Fluids
8.4.6.1. Temperature Dependent Viscosity
8.4.6.2. Power Law for Non-Newtonian Viscosity
8.4.6.2.1. Inputs for the Non-Newtonian Power Law
8.4.6.3. The Carreau Model for Pseudo-Plastics
8.4.6.3.1. Inputs for the Carreau Model
8.4.6.4. Cross Model
8.4.6.4.1. Inputs for the Cross Model
8.4.6.5. Herschel-Bulkley Model for Bingham Plastics
8.4.6.5.1. Inputs for the Herschel-Bulkley Model
8.5. Thermal Conductivity
8.5.1. Constant Thermal Conductivity
8.5.2. Thermal Conductivity as a Function of Temperature
8.5.3. Thermal Conductivity Using Kinetic Theory
8.5.4. Defining Thermal Conductivity Using Gupta Curve Fits
8.5.5. Composition-Dependent Thermal Conductivity for Multicomponent Mixtures
8.5.6. Anisotropic Thermal Conductivity for Solids
8.5.6.1. Anisotropic Thermal Conductivity
8.5.6.2. Biaxial Thermal Conductivity
8.5.6.3. Orthotropic Thermal Conductivity
8.5.6.4. Cylindrical Orthotropic Thermal Conductivity
8.5.6.5. Principal Axes and Principal Values
8.5.6.6. User-Defined Anisotropic Thermal Conductivity
8.6. User-Defined Scalar (UDS) Diffusivity
8.6.1. Isotropic Diffusion
8.6.2. Anisotropic Diffusion
8.6.2.1. Anisotropic Diffusivity
8.6.2.2. Orthotropic Diffusivity
8.6.2.3. Cylindrical Orthotropic Diffusivity
8.6.3. User-Defined Anisotropic Diffusivity
8.7. Specific Heat Capacity
8.7.1. Input of Constant Specific Heat Capacity
8.7.2. Specific Heat Capacity as a Function of Temperature
8.7.3. Defining Specific Heat Capacity Using Kinetic Theory
8.7.4. Specific Heat Capacity as a Function of Composition
8.8. Radiation Properties
8.8.1. Absorption Coefficient
8.8.1.1. Inputs for a Constant Absorption Coefficient
8.8.1.2. Inputs for a Composition-Dependent Absorption Coefficient
8.8.1.2.1. Path Length Inputs
8.8.1.2.1.1. Inputs for a Non-Gray Radiation Absorption Coefficient
8.8.1.2.1.2. Effect of Particles and Soot on the Absorption Coefficient
8.8.2. Scattering Coefficient
8.8.2.1. Inputs for a Constant Scattering Coefficient
8.8.2.2. Inputs for the Scattering Phase Function
8.8.2.2.1. Isotropic Phase Function
8.8.2.2.2. Linear-Anisotropic Phase Function
8.8.2.2.3. Delta-Eddington Phase Function
8.8.2.2.4. User-Defined Phase Function
8.8.3. Refractive Index
8.8.4. Reporting the Radiation Properties
8.9. Mass Diffusion Coefficients
8.9.1. Mass Diffusion Coefficient Inputs
8.9.1.1. Constant Dilute Approximation Inputs
8.9.1.2. Dilute Approximation Inputs
8.9.1.3. Multicomponent Method Inputs
8.9.2. Mass Diffusion Coefficient Inputs for Turbulent Flow
8.9.3. Anisotropic Species Diffusion
8.9.4. Thermal Diffusion Coefficient Inputs
8.10. Standard State Enthalpies
8.11. Standard State Entropies
8.12. Unburnt Thermal Diffusivity
8.13. Kinetic Theory Parameters
8.13.1. Inputs for Kinetic Theory
8.14. Operating Pressure
8.14.1. The Significance of Operating Pressure
8.14.2. Operating Pressure, Gauge Pressure, and Absolute Pressure
8.14.3. Setting the Operating Pressure
8.15. Using a Reference Pressure to Adjust the Gauge Pressure Field
8.16. Real Gas Models
8.16.1. Introduction
8.16.2. Choosing a Real Gas Model
8.16.3. Cubic Equation of State Models
8.16.3.1. Overview and Limitations
8.16.3.2. Equation of State
8.16.3.3. Enthalpy, Entropy, and Specific Heat Calculations
8.16.3.4. Critical Constants for Pure Components
8.16.3.5. Calculations for Mixtures
8.16.3.5.1. Using the Cubic Equation of State Real Gas Models
8.16.3.5.2. Solution Strategies and Considerations for Cubic Equations of State Real Gas Models
8.16.3.5.3. Using the Cubic Equation of State Models with the Lagrangian Dispersed Phase Models
8.16.3.5.4. Postprocessing the Cubic Equations of State Real Gas Model
8.16.4. The NIST Real Gas Models
8.16.4.1. Limitations of the NIST Real Gas Models
8.16.4.2. The REFPROP v10.0 Database
8.16.4.3. Using the NIST Real Gas Models
8.16.4.3.1. Creating NIST Look-up Tables
8.16.4.3.1.1. Capabilities and Limitations with NIST Look-up Tables
8.16.4.4. Legacy TUI for the NIST Real Gas Models
8.16.4.4.1. Limitations of the Legacy TUI NIST Real Gas Models
8.16.4.4.2. Activating the NIST Real Gas Model
8.16.4.4.3. Creating Full NIST Look-up Tables
8.16.4.4.4. Creating Binary Mixture Saturation Tables for Binary Mixtures
8.16.4.5. Solution Strategies and Considerations for NIST Real Gas Model Simulation
8.16.4.5.1. Writing Your Case File
8.16.4.5.2. Postprocessing
8.16.5. The User-Defined Real Gas Model
8.16.5.1. Limitations of the User-Defined Real Gas Model
8.16.5.2. Writing the UDRGM C Function Library
8.16.5.3. Compiling Your UDRGM C Functions and Building a Shared Library File
8.16.5.3.1. Compiling the UDRGM Using the Graphical Interface
8.16.5.3.2. Compiling the UDRGM Using the Text Interface
8.16.5.3.3. Loading the UDRGM Shared Library File
8.16.5.4. UDRGM Example: Ideal Gas Equation of State
8.16.5.4.1. Ideal Gas UDRGM Code Listing
8.16.5.5. Additional UDRGM Examples
8.16.6. Using Real Gas Property (RGP) Table Files
8.16.6.1. Overview
8.16.6.2. Defining Material Properties Using RGP Tables
8.16.6.3. Defining Saturation Properties via RGP Tables
9. Modeling Basic Fluid Flow
9.1. User-Defined Scalar (UDS) Transport Equations
9.1.1. Introduction
9.1.2. UDS Theory
9.1.2.1. Single Phase Flow
9.1.2.2. Multiphase Flow
9.1.3. Setting Up UDS Equations in Ansys Fluent
9.1.3.1. Single Phase Flow
9.1.3.2. Multiphase Flow
9.2. Periodic Flows
9.2.1. Overview and Limitations
9.2.1.1. Overview
9.2.1.2. Limitations for Modeling Streamwise-Periodic Flow
9.2.2. User Inputs for the Pressure-Based Solver
9.2.2.1. Setting Parameters for the Calculation of β
9.2.3. User Inputs for the Density-Based Solvers
9.2.4. Monitoring the Value of the Pressure Gradient
9.2.5. Postprocessing for Streamwise-Periodic Flows
9.3. Swirling and Rotating Flows
9.3.1. Overview of Swirling and Rotating Flows
9.3.1.1. Axisymmetric Flows with Swirl or Rotation
9.3.1.1.1. Momentum Conservation Equation for Swirl Velocity
9.3.1.2. Three-Dimensional Swirling Flows
9.3.1.3. Flows Requiring a Moving Reference Frame
9.3.2. Turbulence Modeling in Swirling Flows
9.3.3. Mesh Setup for Swirling and Rotating Flows
9.3.3.1. Coordinate System Restrictions
9.3.3.2. Mesh Sensitivity in Swirling and Rotating Flows
9.3.4. Modeling Axisymmetric Flows with Swirl or Rotation
9.3.4.1. Problem Setup for Axisymmetric Swirling Flows
9.3.4.2. Solution Strategies for Axisymmetric Swirling Flows
9.3.4.2.1. Step-By-Step Solution Procedures for Axisymmetric Swirling Flows
9.3.4.2.2. Improving Solution Stability by Gradually Increasing the Rotational or Swirl Speed
9.3.4.2.2.1. Postprocessing for Axisymmetric Swirling Flows
9.4. Compressible Flows
9.4.1. When to Use the Compressible Flow Model
9.4.2. Physics of Compressible Flows
9.4.2.1. Basic Equations for Compressible Flows
9.4.2.2. The Compressible Form of the Gas Law
9.4.3. Modeling Inputs for Compressible Flows
9.4.3.1. Boundary Conditions for Compressible Flows
9.4.4. Floating Operating Pressure
9.4.4.1. Limitations
9.4.4.2. Theory
9.4.4.3. Enabling Floating Operating Pressure
9.4.4.4. Setting the Initial Value for the Floating Operating Pressure
9.4.4.5. Storage and Reporting of the Floating Operating Pressure
9.4.4.6. Monitoring Absolute Pressure
9.4.5. Solution Strategies for Compressible Flows
9.4.6. Reporting of Results for Compressible Flows
9.5. Inviscid Flows
9.5.1. Setting Up an Inviscid Flow Model
9.5.2. Solution Strategies for Inviscid Flows
9.5.3. Postprocessing for Inviscid Flows
10. Modeling Flows with Moving Reference Frames
10.1. Introduction
10.2. Flow in Single Moving Reference Frames (SRF)
10.2.1. Mesh Setup for a Single Moving Reference Frame
10.2.2. Setting Up a Single Moving Reference Frame Problem
10.2.2.1. Choosing the Relative or Absolute Velocity Formulation
10.2.2.1.1. Example
10.2.3. Solution Strategies for a Single Moving Reference Frame
10.2.3.1. Gradual Increase of the Rotational Speed to Improve Solution Stability
10.2.4. Postprocessing for a Single Moving Reference Frame
10.3. Flow in Multiple Moving Reference Frames
10.3.1. The Multiple Reference Frame Model
10.3.1.1. Overview
10.3.1.2. Limitations
10.3.2. Mesh Setup for a Multiple Moving Reference Frame
10.3.3. Setting Up a Multiple Moving Reference Frame Problem
10.3.3.1. Setting Up Multiple Reference Frames
10.3.4. Solution Strategies for MRF and Problems
10.3.5. Postprocessing for MRF Problems
11. Managing Motion Definitions
12. Managing Auxiliary Geometry Definitions
13. Modeling Flows Using Sliding and Dynamic Meshes
13.1. Introduction
13.2. Sliding Mesh Examples
13.3. The Sliding Mesh Technique
13.4. Sliding Mesh Interface Shapes
13.5. Using Sliding Meshes
13.5.1. Requirements, Constraints, and Considerations
13.5.2. Setting Up the Sliding Mesh Problem
13.5.3. Solution Strategies for Sliding Meshes
13.5.3.1. Saving Case and Data Files
13.5.3.2. Time-Periodic Solutions
13.5.4. Postprocessing for Sliding Meshes
13.6. Using Dynamic Meshes
13.6.1. Setting Dynamic Mesh Modeling Parameters
13.6.2. Dynamic Mesh Update Methods
13.6.2.1. Smoothing Methods
13.6.2.1.1. Diffusion-Based Smoothing
13.6.2.1.1.1. Diffusivity Based on Boundary Distance
13.6.2.1.1.2. Diffusivity Based on Cell Volume
13.6.2.1.1.3. Applicability of the Diffusion-Based Smoothing Method
13.6.2.1.2. Spring-Based Smoothing
13.6.2.1.2.1. Applicability of the Spring-Based Smoothing Method
13.6.2.1.3. Linearly Elastic Solid Based Smoothing Method
13.6.2.1.3.1. Applicability of the Linearly Elastic Solid Based Smoothing Method
13.6.2.1.4. Radial Basis Function Smoothing
13.6.2.1.4.1. Local Smoothing with the Radial Basis Function Smoothing Method
13.6.2.1.5. Smoothing from a Reference Position
13.6.2.1.6. Laplacian Smoothing Method
13.6.2.1.7. Boundary Layer Smoothing Method
13.6.2.2. Dynamic Layering
13.6.2.2.1. Applicability of the Dynamic Layering Method
13.6.2.3. Remeshing
13.6.2.3.1. Methods-Based Remeshing
13.6.2.3.1.1. Local Remeshing Method
13.6.2.3.1.1.1. Local Cell Remeshing Method
13.6.2.3.1.1.2. Local Face Remeshing Method
13.6.2.3.1.1.3. Local Remeshing Based on Sizing Function
13.6.2.3.1.2. Cell Zone Remeshing Method
13.6.2.3.1.2.1. Limitations of the Cell Zone Remeshing Method
13.6.2.3.1.3. Face Region Remeshing Method
13.6.2.3.1.3.1. Face Region Remeshing with Wedge Cells in Prism Layers
13.6.2.3.1.3.2. Applicability of the Face Region Remeshing Method
13.6.2.3.1.4. 2.5D Surface Remeshing Method
13.6.2.3.1.4.1. Applicability of the 2.5D Surface Remeshing Method
13.6.2.3.1.4.2. Using the 2.5D Model
13.6.2.3.2. Unified Remeshing
13.6.2.3.2.1. Sizing Controls
13.6.2.3.2.2. Prism Controls
13.6.2.4. Volume Mesh Update Procedure
13.6.2.5. Transient Considerations for Remeshing and Layering
13.6.3. Feature Detection
13.6.3.1. Applicability of Feature Detection
13.6.4. In-Cylinder Settings
13.6.4.1. Using the In-Cylinder Option
13.6.4.1.1. Overview
13.6.4.1.2. Defining the Mesh Topology
13.6.4.1.3. Defining Motion/Geometry Attributes of Mesh Zones
13.6.4.1.4. Defining Valve Opening and Closure
13.6.5. Six DOF Solver Settings
13.6.5.1. Setting Rigid Body Motion Attributes for the Six DOF Solver
13.6.6. Implicit Update Settings
13.6.7. Contact Detection Settings
13.6.7.1. Flow Control Using Contact Zones
13.6.7.2. Flow Control Using Contact Marks
13.6.7.2.1. Selecting Parameters for Flow Control
13.6.7.2.2. Modifying and Displaying Contact Cell Marks
13.6.8. Defining Dynamic Mesh Events
13.6.8.1. Procedure for Defining Events
13.6.8.2. Defining Events for In-Cylinder Applications
13.6.8.2.1. Events
13.6.8.2.2. Changing the Zone Type
13.6.8.2.3. Copying Zone Boundary Conditions
13.6.8.2.4. Activating a Cell Zone
13.6.8.2.5. Deactivating a Cell Zone
13.6.8.2.6. Creating a Sliding Interface
13.6.8.2.7. Deleting a Sliding Interface
13.6.8.2.8. Changing the Motion Attribute of a Dynamic Zone
13.6.8.2.9. Changing the Time Step Size
13.6.8.2.10. Changing the Under-Relaxation Factor
13.6.8.2.11. Inserting a Boundary Zone Layer
13.6.8.2.12. Removing a Boundary Zone Layer
13.6.8.2.13. Inserting an Interior Zone Layer
13.6.8.2.14. Removing an Interior Zone Layer
13.6.8.2.15. Inserting a Cell Layer
13.6.8.2.16. Removing a Cell Layer
13.6.8.2.17. Executing a Command
13.6.8.2.18. Replacing the Mesh
13.6.8.2.19. Resetting Inert EGR
13.6.8.2.20. Diesel Unsteady Flamelet Reset
13.6.8.3. Exporting and Importing Events
13.6.9. Specifying the Motion of Dynamic Zones
13.6.9.1. General Procedure
13.6.9.1.1. Creating a Dynamic Zone
13.6.9.1.2. Modifying a Dynamic Zone
13.6.9.1.3. Checking the Center of Gravity
13.6.9.1.4. Deleting a Dynamic Zone
13.6.9.2. Stationary Zones
13.6.9.3. Rigid Body Motion
13.6.9.4. Deforming Motion
13.6.9.5. User-Defined Motion
13.6.9.5.1. Specifying Boundary Layer Deformation Smoothing
13.6.9.6. System Coupling Motion
13.6.9.7. Intrinsic FSI Motion
13.6.9.8. Solution Stabilization for Dynamic Mesh Boundary Zones
13.6.9.9. Solid-Body Kinematics
13.6.10. Previewing the Dynamic Mesh
13.6.10.1. Previewing Zone Motion
13.6.10.2. Previewing Mesh Motion
13.6.11. Steady-State Dynamic Mesh Applications
13.6.11.1. An Example of Steady-State Dynamic Mesh Usage
14. Modeling Turbomachinery Flows
14.1. Using the Turbomachinery Guided Workflow
14.1.1. Describing the Components of the Turbo Machine
14.1.2. Defining Your Blade Row Scope
14.1.3. Importing Your Mesh
14.1.4. Associating Your Mesh
14.1.5. Mapping Your Regions
14.1.6. Creating the CFD Model
14.1.7. Defining the Turbomachinery Physics
14.1.8. Defining the Turbomachinery Regions and Zones
14.1.9. Defining the Turbomachinery Topology
14.1.10. Defining Turbomachinery Surfaces
14.1.11. Creating Turbomachinery Report Definitions and Monitors
14.1.12. Text Command List for the Turbo Workflow
14.1.13. Editing Tasks in the Turbo Workflow
14.1.14. Saving and Loading Turbo Workflows
14.1.15. Applying Preferences to the Turbo Workflow
14.2. Frozen Gust / Inlet Disturbance Flow Modeling
14.3. Blade Row Interaction Modeling
14.3.1. Pitch-Change Models
14.3.1.1. Pitch-Scale interface
14.3.1.2. No Pitch-Scale interface
14.3.1.3. Mixing-Plane interface
14.3.2. Modeling an Ensemble of Blades Per Row using GTI
14.3.3. Creating and Editing General Turbo Interfaces
14.3.4. Legacy Mixing Plane Model
14.3.4.1. Limitations
14.3.4.2. Setting Up the Legacy Mixing Plane Model
14.3.4.2.1. Modeling Options
14.3.4.2.1.1. Fixing the Pressure Level for an Incompressible Flow
14.3.4.2.1.2. Conserving Swirl Across the Mixing Plane
14.3.4.2.1.3. Conserving Total Enthalpy Across the Mixing Plane
14.3.4.3. Solution Strategies for Mixing Plane Problems
14.4. Aerodynamic Damping (Blade Flutter Analysis)
14.4.1. Common Settings for a Blade Flutter Case
14.4.1.1. Reading the Mode Shapes
14.4.1.2. Configuring Run Calculation Settings
14.4.1.3. Using Dynamic Mesh Zones in a Blade Flutter Simulation
14.4.1.3.1. Turning on Dynamic Mesh
14.4.1.3.2. Defining the Periodic Displacement of the Blades
14.4.1.3.3. Creating and Applying Dynamic Mesh Zones
14.4.2. Traveling Wave Method (TWM)
14.4.2.1. Setup Specific to the TWM Method
14.4.2.2. Visualizing and Exporting Blade Flutter Harmonics with TWM
14.4.2.3. TWM Method Post-processing
14.4.3. Influence Coefficient Method (ICM)
14.4.3.1. Setup Specific to the ICM Method
14.4.3.1.1. Limitations of the ICM Method
14.4.3.2. ICM Method Post-processing
14.4.4. Common Postprocessing for a Blade Flutter Case
14.5. Phase-lag Method
14.5.1. Phase-lag Theory
14.5.2. Phase-lag Capabilities and Limitations
14.5.3. Using the Phase-lag Method
14.5.3.1. Pre-requisites and Recommendations
14.5.3.2. Creating the Phase-lag Interface
14.5.3.3. Phase-lag Spectral Description
14.5.3.3.1. Inlet/Outlet Disturbance Specific Phase-lag Method Workflow
14.5.3.3.2. Blade Flutter (TWM) Specific Phase-lag Workflow
14.5.3.3.3. Additional Commands for Phase-lag Spectral Descriptions
14.5.3.4. Initializing and Running Phase-lag Simulations
14.5.3.5. 21.2.3.6. Fourier Coefficient Postprocessing for Inlet/Outlet Disturbance and Blade Flutter Use-Cases
14.6. Non-equilibrium Wet Steam Model for Steam Turbines
14.7. Blade Film Cooling for Gas Turbines
14.7.1. Specifying the Virtual Hole Geometry
14.7.2. Specifying the Boundary Interface
14.7.2.1. Hole Locations for Rotationally Periodic Interface Pairs
14.7.3. Boundary Interface Definitions
14.7.4. Specifying Overlap Boundary Conditions
14.7.5. Limitations for Boundary Interfaces and their Geometries
14.8. Turbomachinery Description
14.9. Turbomachinery-Specific Numerics
14.10. Turbomachinery Postprocessing
14.10.1. Defining the Turbomachinery Topology
14.10.1.1. Boundary Types
14.10.1.2. Turbomachinery-Specific Variables
14.10.2. Contours and Vectors Visualization for Turbomachinery
14.10.2.1. Creating Turbo Surfaces
14.10.2.2. Periodic Instancing
14.10.3. General Fourier Coefficient Postprocessing for Turbomachinery Cases
14.10.3.1. Fourier Coefficient Postprocessing Theory
14.10.3.2. Fourier Coefficient Postprocessing Pre-requisites
14.10.3.3. Fourier Coefficient Postprocessing Use-Cases
14.10.3.4. Creating Graphics Spectral Content
14.10.3.5. Extra Settings
14.10.3.6. Graphical Postprocessing of Fourier Coefficients
14.10.4. Circumferential-Averaged Profile Extraction
14.10.5. Turbo Post
14.10.5.1. Generating Reports of Turbomachinery Data
14.10.5.1.1. Computing Turbomachinery Quantities
14.10.5.1.1.1. Mass Flow
14.10.5.1.1.2. Swirl Number
14.10.5.1.1.3. Average Total Pressure
14.10.5.1.1.4. Average Total Temperature
14.10.5.1.1.5. Average Flow Angles
14.10.5.1.1.6. Passage Loss Coefficient
14.10.5.1.1.7. Axial Force
14.10.5.1.1.8. Torque
14.10.5.1.1.9. Efficiencies for Pumps and Compressors
14.10.5.1.1.9.1. Incompressible Flows
14.10.5.1.1.9.2. Compressible Flows
14.10.5.1.1.10. Efficiencies for Turbines
14.10.5.1.1.10.1. Incompressible Flows
14.10.5.1.1.10.2. Compressible Flows
14.10.5.2. Displaying Turbomachinery Averaged Contours
14.10.5.2.1. Steps for Generating Turbomachinery Averaged Contour Plots
14.10.5.2.2. Contour Plot Options
14.10.5.3. Displaying Turbomachinery 2D Contours
14.10.5.3.1. Steps for Generating Turbo 2D Contour Plots
14.10.5.3.2. Contour Plot Options
14.10.5.4. Generating Averaged XY Plots of Turbomachinery Solution Data
14.10.5.4.1. Steps for Generating Turbo Averaged XY Plots
14.10.5.5. Globally Setting the Turbomachinery Topology
14.10.6. Calculating Turbomachine Performance
14.10.6.1. Turbo Performance
14.10.6.2. Calculating Efficiency using Named Expressions
14.10.6.2.1. Limitations
14.10.6.3. Calculating Efficiency using Turbo Report
14.10.6.4. Calculating Total Pressure and Total Temperature Ratios using Named Expressions
14.10.6.5. Calculating Mass Flow Rates using Named Expressions
15. Modeling Turbulence
15.1. Introduction
15.2. Choosing a Turbulence Model
15.2.1. Reynolds Averaged Navier-Stokes (RANS) Turbulence Models
15.2.1.1. Spalart-Allmaras One-Equation Model
15.2.1.2. k-ε Models
15.2.1.3. k-ω Models
15.2.1.4. Generalized k-ω (GEKO) Model
15.2.1.5. Reynold Stress Models
15.2.1.6. Laminar-Turbulent Transition Models
15.2.1.7. Curvature Correction for the Spalart-Allmaras and Two-Equation Models
15.2.1.8. Corner Flow Correction
15.2.1.9. Production Limiters for Two-Equation Models
15.2.1.10. Model Enhancements
15.2.1.11. Wall Treatment for RANS Models
15.2.1.12. Grid Resolution for RANS Models
15.2.2. Scale-Resolving Simulation (SRS) Models
15.2.2.1. Large Eddy Simulation (LES)
15.2.2.2. Hybrid RANS-LES Models
15.2.2.2.1. Scale-Adaptive Simulation (SAS)
15.2.2.2.2. Detached Eddy Simulation (DES)
15.2.2.2.3. Shielded Detached Eddy Simulation (SDES) and Stress-Blended Eddy Simulation (SBES)
15.2.2.3. Zonal Modeling and Embedded LES (ELES)
15.2.3. Grid Resolution SRS Models
15.2.3.1. Wall Boundary Layers
15.2.3.2. Free Shear Flows
15.2.4. Numerics Settings for SRS Models
15.2.4.1. Time Discretization
15.2.4.2. Spatial Discretization
15.2.4.3. Iterative Scheme
15.2.4.3.1. Convergence Control
15.2.5. Model Hierarchy
15.3. Steps in Using a Turbulence Model
15.4. Setting Up the Spalart-Allmaras Model
15.5. Setting Up the k-ε Model
15.5.1. Setting Up the Standard or Realizable k-ε Model
15.5.2. Setting Up the RNG k-ε Model
15.6. Setting Up the k-ω Model
15.6.1. Setting Up the Standard k-ω Model
15.6.2. Setting up the Generalized k-ω (GEKO) Model
15.6.3. Setting Up the Baseline (BSL) k-ω Model
15.6.4. Setting Up the Shear-Stress Transport k-ω Model
15.6.5. Setting up the WJ-BSL-EARSM Model
15.7. Setting Up the Transition k-kl-ω Model
15.8. Setting Up the Transition SST Model
15.9. Setting Up the Algebraic or Intermittency Transition Model
15.10. Setting Up the Reynolds Stress Model
15.11. Setting Up Scale-Adaptive Simulation (SAS) Modeling
15.12. Setting Up the Detached Eddy Simulation Model
15.12.1. Setting Up DES with the Spalart-Allmaras Model
15.12.2. Setting Up DES with the Realizable k-ε Model
15.12.3. Setting Up DES with the SST k-ω Model
15.12.4. Setting Up DES with the BSL k-ω Model
15.12.5. Setting Up DES with the Transition SST Model
15.13. Setting Up the Large Eddy Simulation Model
15.14. Model Constants
15.15. Setting Up the Embedded Large Eddy Simulation (ELES) Model
15.16. Setup Options for All Turbulence Modeling
15.16.1. Including the Viscous Heating Effects
15.16.2. Including Buoyancy Effects on Turbulence
15.16.3. Including the Curvature Correction for the Spalart-Allmaras and Two-Equation Turbulence Models
15.16.4. Including Corner Flow Correction
15.16.5. Including the Compressibility Effects Option
15.16.6. Including Production Limiters for Two-Equation Models
15.16.7. Vorticity- and Strain/Vorticity-Based Production
15.16.8. Delayed Detached Eddy Simulation (DDES)
15.16.9. Differential Viscosity Modification
15.16.10. Swirl Modification
15.16.11. Low-Re Corrections
15.16.12. Shear Flow Corrections
15.16.13. Turbulence Damping
15.16.14. Including Pressure Gradient Effects
15.16.15. Including Thermal Effects
15.16.16. Including the Wall Reflection Term
15.16.17. Solving the k Equation to Obtain Wall Boundary Conditions
15.16.18. Quadratic Pressure-Strain Model
15.16.19. Stress-Omega and Stress-BSL Models
15.16.20. Subgrid-Scale Model
15.16.21. Customizing the Turbulent Viscosity
15.16.22. Customizing the Turbulent Prandtl and Schmidt Numbers
15.16.23. Modeling Turbulence with Non-Newtonian Fluids
15.16.24. Including Scale-Adaptive Simulation with ω-Based URANS Models
15.16.25. Including Detached Eddy Simulation with the Transition SST Model
15.16.26. Including the SDES or SBES Model with RANS Models
15.16.27. Shielding Functions for the BSL / SST / Transition SST Detached Eddy Simulation Model
15.17. Defining Turbulence Boundary Conditions
15.17.1. Wall Roughness Effects
15.17.2. The Spalart-Allmaras Model
15.17.3. k-ε Models and k-ω Models
15.17.4. Reynolds Stress Model
15.17.5. Scale Resolving Simulations
15.18. Providing an Initial Guess for k and ε (or k and ω)
15.19. Solution Strategies for Turbulent Flow Simulations
15.19.1. Mesh Generation
15.19.2. Accuracy
15.19.3. Convergence
15.19.4. RSM-Specific Solution Strategies
15.19.4.1. Under-Relaxation of the Reynolds Stresses
15.19.4.2. Disabling Calculation Updates of the Reynolds Stresses
15.19.4.3. Residual Reporting for the RSM
15.19.5. LES-Specific Solution Strategies
15.19.5.1. Temporal Discretization
15.19.5.2. Spatial Discretization
15.20. Postprocessing for Turbulent Flows
15.20.1. Custom Field Functions for Turbulence
15.20.2. Postprocessing Turbulent Flow Statistics
15.20.3. Troubleshooting
16. Modeling Thermal Energy
16.1. Introduction
16.2. Modeling Conductive and Convective Heat Transfer
16.2.1. Solving Heat Transfer Problems
16.2.1.1. Limiting the Predicted Temperature Range
16.2.1.2. Modeling Heat Transfer in Two Separated Fluid Regions
16.2.2. Solution Strategies for Heat Transfer Modeling
16.2.2.1. Under-Relaxation of the Energy Equation
16.2.2.2. Under-Relaxation of Temperature When the Enthalpy Equation is Solved
16.2.2.3. Disabling the Species Diffusion Term
16.2.2.4. Step-by-Step Solutions
16.2.2.4.1. Decoupled Flow and Heat Transfer Calculations
16.2.2.4.2. Coupled Flow and Heat Transfer Calculations
16.2.2.5. Conjugate Heat Transfer
16.2.2.5.1. Specifying the Solid Time Step Size
16.2.2.5.1.1. Automatic Time Step Size Calculation
16.2.2.5.2. Loosely Coupled Conjugate Heat Transfer
16.2.2.5.3. Time Averaged Explicit Thermal Coupling
16.2.2.5.4. Settings for Anisotropic Solid Zones
16.2.3. Postprocessing Heat Transfer Quantities
16.2.3.1. Available Variables for Postprocessing
16.2.3.2. Definition of Enthalpy and Energy in Reports and Displays
16.2.3.3. Reporting Heat Transfer Through Boundaries
16.2.3.4. Reporting Heat Transfer Through a Surface
16.2.3.5. Reporting Averaged Heat Transfer Coefficients
16.2.3.6. Exporting Heat Flux Data
16.2.4. Natural Convection
16.2.5. Shell Conduction
16.2.5.1. Introduction
16.2.5.2. Physical Treatment
16.2.5.3. Limitations of Shell Conduction Walls
16.2.5.4. Managing Conduction Walls
16.2.5.5. Initializing Shells
16.2.5.6. Locking the Temperature for Shells
16.2.5.7. Postprocessing Shells
16.2.6. Anisotropic Thermal Conductivity with Curvilinear Coordinate System (CCS)
16.2.6.1. Workflow for Anisotropic Thermal Conductivity with CCS
16.3. Modeling Radiation
16.3.1. Using the Radiation Models
16.3.2. Setting Up the P-1 Model with Non-Gray Radiation
16.3.3. Setting Up the DTRM
16.3.3.1. Defining the Rays
16.3.3.2. Controlling the Clusters
16.3.3.3. Controlling the Rays
16.3.3.4. Writing and Reading the DTRM Ray File
16.3.3.5. Displaying the Clusters
16.3.4. Setting Up the S2S Model
16.3.4.1. View Factors and Clustering Settings
16.3.4.1.1. Forming Surface Clusters
16.3.4.1.1.1. Setting the Split Angle for Clusters
16.3.4.1.2. Setting Up the View Factor Calculation
16.3.4.1.2.1. Selecting the Basis for Computing View Factors
16.3.4.1.2.2. Selecting the Method for Computing View Factors
16.3.4.1.2.3. Accounting for Blocking Surfaces
16.3.4.1.2.4. Specifying Boundary Zone Participation
16.3.4.2. Computing View Factors
16.3.4.3. Reading View Factors into Ansys Fluent
16.3.5. Setting Up the DO Model
16.3.5.1. Angular Discretization
16.3.5.2. Defining Non-Gray Radiation for the DO Model
16.3.5.3. Enabling DO/Energy Coupling
16.3.6. Setting Up the MC Model
16.3.7. Defining Material Properties for Radiation
16.3.7.1. Absorption Coefficient for a Non-Gray Model
16.3.7.2. Refractive Index for a Non-Gray Model
16.3.8. Defining Boundary Conditions for Radiation
16.3.8.1. Inlet and Outlet Boundary Conditions
16.3.8.1.1. Emissivity
16.3.8.1.2. Black Body Temperature
16.3.8.1.3. Inlet and Outlet Boundary Conditions for the DO and MC Models
16.3.8.2. Wall Boundary Conditions for the DTRM, P-1, S2S, and Rosseland Models
16.3.8.2.1. Boundary Conditions for the S2S Model
16.3.8.3. Wall Boundary Conditions for the DO Model
16.3.8.3.1. Opaque Wall for the DO Model
16.3.8.3.2. Semi-Transparent Walls for the DO Model
16.3.8.4. Wall Boundary Conditions for the MC Model
16.3.8.4.1. Opaque Walls for the MC Model
16.3.8.4.2. Semi-Transparent Walls for the MC Model
16.3.8.5. Solid Cell Zones Conditions for the DO or MC Models
16.3.8.6. Thermal Boundary Conditions
16.3.9. Solution Strategies for Radiation Modeling
16.3.9.1. P-1 Model Solution Parameters
16.3.9.2. DTRM Solution Parameters
16.3.9.3. S2S Solution Parameters
16.3.9.4. DO Solution Parameters
16.3.9.5. MC Solution Parameters
16.3.9.6. Iteration Parameters For Radiation Solve Frequency
16.3.9.7. Running the Calculation
16.3.9.7.1. Residual Reporting for the P-1 Model
16.3.9.7.2. Residual Reporting for the DO Model
16.3.9.7.3. Residual Reporting for the DTRM
16.3.9.7.4. Residual Reporting for the S2S Model
16.3.9.7.5. Disabling the Update of the Radiation Fluxes
16.3.10. Postprocessing Radiation Quantities
16.3.10.1. Available Variables for Postprocessing
16.3.10.2. Reporting Radiative Heat Transfer Through Boundaries
16.3.10.3. Overall Heat Balances When Using the DTRM
16.3.10.4. Displaying Rays and Clusters for the DTRM
16.3.10.4.1. Displaying Clusters
16.3.10.4.2. Displaying Rays
16.3.10.4.3. Including the Mesh in the Display
16.3.10.5. Reporting Radiation in the S2S Model
16.3.11. Solar Load Model
16.3.11.1. Introduction
16.3.11.2. Solar Ray Tracing
16.3.11.2.1. Shading Algorithm
16.3.11.2.2. Glazing Materials
16.3.11.2.3. Inputs
16.3.11.3. Solar Irradiation
16.3.11.4. Solar Calculator
16.3.11.4.1. Inputs/Outputs
16.3.11.4.2. Theory
16.3.11.4.3. Computation of Load Distribution
16.3.11.5. Using the Solar Load Model
16.3.11.5.1. User-Defined Functions (UDFs) for Solar Load
16.3.11.5.2. Setting Up the Solar Load Model
16.3.11.5.3. Setting Boundary Conditions for Solar Loading
16.3.11.5.4. Solar Ray Tracing
16.3.11.5.5. Solar Irradiation
16.3.11.5.6. Text Interface-Only Commands
16.3.11.5.6.1. Automatically Saving Solar Ray Tracing Data
16.3.11.5.6.2. Automatically Reading Solar Data
16.3.11.5.6.3. Aligning the Camera Direction With the Position of the Sun
16.3.11.5.6.4. Specifying the Scattering Fraction
16.3.11.5.6.5. Applying the Solar Load on Adjacent Fluid Cells
16.3.11.5.6.6. Specifying Quad Tree Refinement Factor
16.3.11.5.6.7. Specifying Ground Reflectivity
16.3.11.5.6.8. Reverting to Single Band Implementation of DO Model
16.3.11.5.6.9. Additional Text Interface Commands
16.3.11.6. Postprocessing Solar Load Quantities
16.3.11.6.1. Solar Load Animation at Different Sun Positions
16.3.11.6.2. Reporting and Displaying Solar Load Quantities
16.4. Modeling Periodic Heat Transfer
16.4.1. Overview and Limitations
16.4.1.1. Overview
16.4.1.2. Constraints for Periodic Heat Transfer Predictions
16.4.2. Theory
16.4.2.1. Definition of the Periodic Temperature for Constant- Temperature Wall Conditions
16.4.2.2. Definition of the Periodic Temperature Change σ for Specified Heat Flux Conditions
16.4.3. Using Periodic Heat Transfer
16.4.4. Solution Strategies for Periodic Heat Transfer
16.4.5. Monitoring Convergence
16.4.6. Postprocessing for Periodic Heat Transfer
16.5. Modeling Heat Exchangers
16.5.1. Choosing a Heat Exchanger Model
16.5.2. The Dual Cell Model
16.5.2.1. Restrictions
16.5.2.2. Using the Dual Cell Heat Exchanger Model
16.5.3. The Macro Heat Exchanger Models
16.5.3.1. Restrictions
16.5.3.2. Using the Ungrouped Macro Heat Exchanger Model
16.5.3.2.1. Selecting the Zone for the Heat Exchanger
16.5.3.2.2. Specifying Heat Exchanger Performance Data
16.5.3.2.3. Specifying the Auxiliary Fluid Inlet and Pass-to-Pass Directions
16.5.3.2.4. Defining the Macros
16.5.3.2.4.1. Viewing the Macros
16.5.3.2.5. Specifying the Auxiliary Fluid Properties and Conditions
16.5.3.2.6. Setting the Pressure-Drop Parameters and Effectiveness
16.5.3.2.6.1. Using the Default Core Porosity Model
16.5.3.2.6.2. Defining a New Core Porosity Model
16.5.3.2.6.3. Reading Heat Exchanger Parameters from an External File
16.5.3.2.6.4. Viewing the Parameters for an Existing Core Model
16.5.3.3. Using the Grouped Macro Heat Exchanger Model
16.5.3.3.1. Selecting the Fluid Zones for the Heat Exchanger Group
16.5.3.3.2. Selecting the Upstream Heat Exchanger Group
16.5.3.3.3. Specifying the Auxiliary Fluid Inlet and Pass-to-Pass Directions
16.5.3.3.4. Specifying the Auxiliary Fluid Properties
16.5.3.3.5. Specifying Supplementary Auxiliary Fluid Streams
16.5.3.3.6. Initializing the Auxiliary Fluid Temperature
16.5.4. Postprocessing for the Heat Exchanger Model
16.5.4.1. Heat Exchanger Reporting
16.5.4.1.1. Computed Heat Rejection
16.5.4.1.2. Inlet/Outlet Temperature
16.5.4.1.3. Mass Flow Rate
16.5.4.1.4. Specific Heat
16.5.4.2. Total Heat Rejection Rate
16.5.5. Useful Reporting TUI Commands
16.6. Thermal Analysis of Printed Circuit Boards
16.6.1. PCB Model Workflow with ECAD File
16.6.1.1. Using the PCB Model with ECAD File
16.6.2. PCB Model Workflow with Board Configuration File
16.6.2.1. Using the PCB Model with Board Configuration File
16.6.3. Postprocessing for the PCB Model
16.6.4. Limitations for the PCB Model
17. Modeling Hypersonic Flow
17.1. Introduction to Hypersonic Flows
17.2. High Speed Numerics
17.3. Modeling Non-Equilibrium Gas Dissociation Using Finite Rate Chemistry
17.4. Modeling Transport Properties Using Gupta Curve Fits
17.4.1. Using Gupta Curve Fits
17.5. Modeling Hypersonic Flows Using the Two-Temperature Model
17.5.1. Using the Two-Temperature Model
17.6. Partial Slip for Rarefied Gases
17.7. Temperature Jump for Rarefied Gases
17.8. Partial Catalytic Boundary Condition for Walls
17.9. The Ablation Condition at Wall Boundaries
17.10. Best Practices
17.10.1. Setting Up Gas Properties
17.10.2. Solver Settings
17.10.3. Solution Initialization
17.10.4. Solution Monitoring and Postprocessing
18. Fluent’s Virtual Blade Model
18.1. Introduction
18.2. The Virtual Blade Model (VBM)
18.2.1. VBM Mode
18.2.2. Rotor Disks
18.2.3. Blade Geometry
18.2.4. Blade Pitch
18.2.5. Blade Flapping
18.2.6. Rotor Trimming
18.2.7. Tip Losses
18.3. Meshing Guidelines and Creating the VBM Disk
18.3.1. Embedded Disk
18.3.2. Floating Disk
18.3.3. General Considerations
18.4. Airfoil File Format
18.5. Enabling the VBM
18.6. VBM Configuration
18.7. VBM Field Variables
18.8. VBM Monitoring and Report Definition
18.9. References
19. Modelling with Finite-Rate Chemistry
19.1. Modeling Species Transport and Finite-Rate Chemistry
19.1.1. Volumetric Reactions
19.1.1.1. Overview of User Inputs for Modeling Species Transport and Reactions
19.1.1.1.1. Mixture Materials
19.1.1.2. Enabling Species Transport and Reactions and Choosing the Mixture Material
19.1.1.3. Importing a Volumetric Kinetic Mechanism in CHEMKIN Format
19.1.1.3.1. Using Ansys Encrypted Mechanisms
19.1.1.3.2. Procedure for Importing Volumetric CHEMKIN Mechanisms
19.1.1.3.3. CHEMKIN Mechanisms Included with Ansys Fluent
19.1.1.4. Defining Properties for the Mixture and Its Constituent Species
19.1.1.4.1. Defining the Species in the Mixture
19.1.1.4.1.1. Overview of the Species Dialog Box
19.1.1.4.1.2. Adding Species to the Mixture
19.1.1.4.1.3. Removing Species from the Mixture
19.1.1.4.1.4. Assigning the Last Species
19.1.1.4.1.5. The Naming and Ordering of Species
19.1.1.4.2. Defining Reactions
19.1.1.4.2.1. Inputs for Reaction Definition
19.1.1.4.2.2. Defining Species and Reactions for Fuel Mixtures
19.1.1.4.3. Defining Zone-Based Reaction Mechanisms
19.1.1.4.3.1. Inputs for Reaction Mechanism Definition
19.1.1.4.4. Defining Physical Properties for the Mixture
19.1.1.4.5. Defining Physical Properties for the Species in the Mixture
19.1.1.5. Setting up Coal Simulations with the Coal Calculator Dialog Box
19.1.1.6. Defining Cell Zone and Boundary Conditions for Species
19.1.1.6.1. Diffusion at Inlets with the Pressure-Based Solver
19.1.1.7. Defining Other Sources of Chemical Species
19.1.1.8. Solution Procedures for Chemical Mixing and Finite-Rate Chemistry
19.1.1.8.1. Stability and Convergence in Reacting Flows
19.1.1.8.2. Two-Step Solution Procedure (Steady-state Only)
19.1.1.8.3. Density Under-Relaxation
19.1.1.8.4. Ignition in Steady-State Combustion Simulations
19.1.1.8.5. Solution of Stiff Chemistry Systems
19.1.1.8.6. Eddy-Dissipation Concept Model Solution Procedure
19.1.1.9. Postprocessing for Species Calculations
19.1.1.9.1. Averaged Species Concentrations
19.1.2. Wall Surface Reactions and Chemical Vapor Deposition
19.1.2.1. Overview of Surface Species and Wall Surface Reactions
19.1.2.2. Importing a Surface Kinetic Mechanism in CHEMKIN Format
19.1.2.2.1. Compatibility and Limitations for Gas Phase Reactions
19.1.2.2.2. Compatibility and Limitations for Surface Reactions
19.1.2.3. Manual Inputs for Wall Surface Reactions
19.1.2.4. Including Mass Transfer To Surfaces in the Continuity Equation
19.1.2.5. Wall Surface Mass Transfer Effects in the Energy Equation
19.1.2.6. Modeling the Heat Release Due to Wall Surface Reactions
19.1.2.7. Solution Procedures for Wall Surface Reactions
19.1.2.8. Postprocessing for Surface Reactions
19.1.3. Particle Reactions
19.1.3.1. Combusting Particle Surface Reactions
19.1.3.1.1. Limitations
19.1.3.1.2. User Inputs for Particle Surface Reactions
19.1.3.1.3. Modeling Gaseous Solid Catalyzed Reactions
19.1.3.1.4. Using the Multiple Surface Reactions Model for Discrete-Phase Particle Combustion
19.1.3.2. Multicomponent Particles with Chemical Reactions
19.1.4. Electrochemical Reactions
19.1.4.1. Overview and Limitation of Electrochemical Reactions
19.1.4.2. User Inputs for Electrochemical Reactions
19.1.4.3. Electrochemical Reaction Effects in the Energy Equation
19.1.4.4. Electrochemical Reaction Effects in the Species Transport Equation
19.1.4.5. Including Mass Transfer in Continuity
19.1.4.6. Solution Procedures for Electrochemical Reactions
19.1.4.7. Modeling Corrosion with the Water Corrosion Pre Tool
19.1.4.7.1. Background
19.1.4.7.2. Procedure for Setting Corrosion Simulations using the Water Corrosion Pre Tool
19.1.5. Species Transport Without Reactions
19.1.6. Reacting Channel Model
19.1.6.1. Overview and Limitations of the Reacting Channel Model
19.1.6.2. Enabling the Reacting Channel Model
19.1.6.3. Boundary Conditions for Channel Walls
19.1.6.4. Postprocessing for Reacting Channel Model Calculations
19.1.7. Reactor Network Model
19.1.7.1. Overview and Limitations of the Reactor Network Model
19.1.7.2. Solving Reactor Networks
19.1.7.3. Postprocessing Reactor Network Calculations
19.2. Modeling a Composition PDF Transport Problem
19.2.1. Limitation
19.2.2. Steps for Using the Composition PDF Transport Model
19.2.3. Enabling the Lagrangian Composition PDF Transport Model
19.2.4. Enabling the Eulerian Composition PDF Transport Model
19.2.4.1. Defining Species Boundary Conditions
19.2.4.1.1. Equilibrating Inlet Streams
19.2.5. Initializing the Solution
19.2.6. Monitoring the Solution
19.2.6.1. Running Unsteady Composition PDF Transport Simulations
19.2.6.2. Running Compressible Lagrangian PDF Transport Simulations
19.2.6.3. Running Lagrangian PDF Transport Simulations with Conjugate Heat Transfer
19.2.7. Postprocessing for Lagrangian PDF Transport Calculations
19.2.7.1. Reporting Options
19.2.7.2. Particle Tracking Options
19.2.8. Postprocessing for Eulerian PDF Transport Calculations
19.2.8.1. Reporting Options
19.3. Using Chemistry Acceleration
19.3.1. Using ISAT
19.3.1.1. ISAT Parameters
19.3.1.2. Monitoring ISAT
19.3.1.3. Using ISAT Efficiently
19.3.1.4. Reading and Writing ISAT Tables
19.3.2. Using Dynamic Mechanism Reduction
19.3.2.1. Mechanism Reduction Parameters
19.3.2.2. Monitoring and Postprocessing Dynamic Mechanism Reduction
19.3.2.3. Using Dynamic Mechanism Reduction Effectively
19.3.3. Using Chemistry Agglomeration
19.3.4. Dimension Reduction
19.3.5. Using Dynamic Cell Clustering
19.3.6. Using Dynamic Adaptive Chemistry with Ansys Fluent CHEMKIN-CFD Solver
20. Modelling of Turbulent Combustion With Reduced Order
20.1. Modeling Non-Premixed Combustion
20.1.1. Steps in Using the Non-Premixed Model
20.1.1.1. Preliminaries
20.1.1.2. Defining the Problem Type
20.1.1.3. Overview of the Problem Setup Procedure
20.1.2. Setting Up the Equilibrium Chemistry Model
20.1.2.1. Choosing Adiabatic or Non-Adiabatic Options
20.1.2.2. Specifying the Operating Pressure for the System
20.1.2.3. Enabling a Secondary Inlet Stream
20.1.2.4. Choosing to Define the Fuel Stream(s) Empirically
20.1.2.5. Enabling the Rich Flammability Limit (RFL) Option
20.1.3. Setting Up the Steady and Unsteady Diffusion Flamelet Models
20.1.3.1. Choosing Adiabatic or Non-Adiabatic Options
20.1.3.2. Specifying the Operating Pressure for the System
20.1.3.3. Specifying a Chemical Mechanism File for Flamelet Generation
20.1.3.4. Importing a Flamelet
20.1.3.5. Using the Unsteady Diffusion Flamelet Model
20.1.3.6. Using the Diesel Unsteady Laminar Flamelet Model
20.1.3.6.1. Recommended Settings for Internal Combustion Engines
20.1.3.7. Resetting Diesel Unsteady Flamelets
20.1.4. Defining the Stream Compositions
20.1.4.1. Setting Boundary Stream Species
20.1.4.1.1. Including Condensed Species
20.1.4.2. Modifying the Database
20.1.4.3. Composition Inputs for Empirically-Defined Fuel Streams
20.1.4.4. Modeling Liquid Fuel Combustion Using the Non-Premixed Model
20.1.4.5. Modeling Coal Combustion Using the Non-Premixed Model
20.1.4.5.1. Defining the Coal Composition: Single-Mixture-Fraction Models
20.1.4.5.2. Defining the Coal Composition: Two-Mixture-Fraction Models
20.1.4.5.3. Additional Coal Modeling Inputs in Ansys Fluent
20.1.4.5.4. Postprocessing Non-Premixed Models of Coal Combustion
20.1.4.5.5. The Coal Calculator
20.1.5. Setting Up Control Parameters
20.1.5.1. Forcing the Exclusion and Inclusion of Equilibrium Species
20.1.5.2. Defining the Flamelet Controls
20.1.5.3. Zeroing Species in the Initial Unsteady Flamelet
20.1.6. Calculating the Flamelets
20.1.6.1. Steady Diffusion Flamelet
20.1.6.2. Unsteady Diffusion Flamelet
20.1.6.3. Saving the Flamelet Data
20.1.6.4. Postprocessing the Flamelet Data
20.1.7. Calculating the Look-Up Tables
20.1.7.1. Full Tabulation of the Two-Mixture-Fraction Model
20.1.7.2. Stability Issues in Calculating Chemical Equilibrium Look-Up Tables
20.1.7.3. Saving the Look-Up Tables
20.1.7.4. Postprocessing the Look-Up Table Data
20.1.8. Standard Files for Diffusion Flamelet Modeling
20.1.8.1. Sample Standard Diffusion Flamelet File
20.1.8.2. Missing Species
20.1.9. Setting Up the Inert Model
20.1.9.1. Setting Boundary Conditions for Inert Transport
20.1.9.2. Initializing the Inert Stream
20.1.9.2.1. Inert Fraction
20.1.9.2.2. Inert Composition
20.1.9.3. Resetting Inert EGR
20.1.10. Defining Non-Premixed Boundary Conditions
20.1.10.1. Input of Mixture Fraction Boundary Conditions
20.1.10.2. Diffusion at Inlets
20.1.10.3. Input of Thermal Boundary Conditions and Fuel Inlet Velocities
20.1.11. Defining Non-Premixed Physical Properties
20.1.12. Solution Strategies for Non-Premixed Modeling
20.1.12.1. Single-Mixture-Fraction Approach
20.1.12.2. Two-Mixture-Fraction Approach
20.1.12.3. Starting a Non-Premixed Calculation From a Previous Case File
20.1.12.3.1. Retrieving the PDF File During Case File Reads
20.1.12.4. Solving the Flow Problem
20.1.12.4.1. Under-Relaxation Factors for PDF Equations
20.1.12.4.2. Density Under-Relaxation
20.1.12.4.3. Tuning the PDF Parameters for Two-Mixture-Fraction Calculations
20.1.13. Enabling Robust Numerics for Combustion with a PDF Table
20.1.14. Postprocessing the Non-Premixed Model Results
20.1.14.1. Postprocessing for Inert Calculations
20.2. Modeling Premixed Combustion
20.2.1. Limitations of the Premixed Combustion Model
20.2.2. Using the Premixed Combustion Model
20.2.2.1. Enabling the Premixed Combustion Model
20.2.2.2. Choosing an Adiabatic or Non-Adiabatic Model
20.2.3. Setting Up the C-Equation and G-Equation Models
20.2.3.1. Modifying the Constants for the Zimont Flame Speed Model
20.2.3.2. Modifying the Constants for the Peters Flame Speed Model
20.2.3.3. Additional Options for the G-Equation Model
20.2.3.4. Defining Physical Properties for the Unburnt Mixture
20.2.3.5. Setting Boundary Conditions for the Progress Variable
20.2.3.6. Initializing the Progress Variable
20.2.4. Postprocessing for Premixed Combustion Calculations
20.2.4.1. Computing Species Concentrations
20.3. Modeling Partially Premixed Combustion
20.3.1. Limitations
20.3.2. Using the Partially Premixed Combustion Model
20.3.2.1. Setup and Solution Procedure
20.3.2.2. Importing a Flamelet
20.3.2.3. Flamelet Generated Manifold
20.3.2.3.1. Premixed Flamelet Generated Manifolds
20.3.2.3.1.1. Editing the Flamelet Grid Distribution
20.3.2.3.2. Diffusion Flamelet Generated Manifolds
20.3.2.3.3. Using the Heat Loss Modeling Capability for Nonadiabatic FGM
20.3.2.4. Calculating the Look-Up Tables
20.3.2.4.1. Postprocessing the Look-Up Tables with Flamelet Generated Manifolds
20.3.2.5. Standard Files for Flamelet Generated Manifold Modeling
20.3.2.5.1. Sample Standard FGM File
20.3.2.6. Setting Premix Flame Propagation Parameters
20.3.2.7. Modifying the Unburnt Mixture Property Polynomials
20.3.2.8. Modeling Strained Laminar Flame Speed
20.3.2.9. Modeling In Cylinder Combustion
20.3.2.10. Postprocessing for FGM Scalar Transport Calculations
21. Modeling Engine Ignition
21.1. Using the Spark Model
21.2. Using the Autoignition Models
21.3. Using the Crevice Model
21.3.1. Setup Procedure
21.3.2. Crevice Model Solution Details
21.3.3. Postprocessing for the Crevice Model
21.3.3.1. Using the Crevice Output File
22. Modeling Pollutant Formation
22.1. NOx Formation
22.1.1. Using the NOx Model
22.1.1.1. Decoupled Analysis: Overview
22.1.1.2. Enabling the NOx Models
22.1.1.3. Defining the Fuel Streams
22.1.1.4. Specifying a User-Defined Function for the NOx Rate
22.1.1.5. Setting Thermal NOx Parameters
22.1.1.6. Setting Prompt NOx Parameters
22.1.1.7. Setting Fuel NOx Parameters
22.1.1.7.1. Setting Gaseous and Liquid Fuel NOx Parameters
22.1.1.7.2. Setting Solid (Coal) Fuel NOx Parameters
22.1.1.8. Setting N2O Pathway Parameters
22.1.1.9. Setting Parameters for NOx Reburn
22.1.1.10. Setting SNCR Parameters
22.1.1.11. Setting Turbulence Parameters
22.1.1.12. Defining Boundary Conditions for the NOx Model
22.1.2. Solution Strategies
22.1.3. Postprocessing
22.2. Soot Formation
22.2.1. Using the Soot Models
22.2.1.1. Setting Up the One-Step Model
22.2.1.2. Setting Up the Two-Step Model
22.2.1.3. Setting Up the Moss-Brookes Model and the Hall Extension
22.2.1.3.1. Specifying a User-Defined Function for the Soot Oxidation Rate
22.2.1.3.2. Specifying a User-Defined Function for the Soot Precursor Concentration
22.2.1.3.3. Species Definition for the Moss-Brookes Model with a User-Defined Precursor Correlation
22.2.1.4. Setting Up the Method of Moments Soot Model
22.2.1.5. Defining Boundary Conditions for the Soot Model
22.2.1.6. Reporting Soot Quantities
22.3. Using the Decoupled Detailed Chemistry Model
23. Predicting Aerodynamically Generated Noise
23.1. Overview
23.1.1. Direct Method
23.1.2. Integral Method by Ffowcs Williams and Hawkings
23.1.3. Method Based on Wave Equation
23.1.4. Broadband Noise Source Models
23.2. Using the Ffowcs Williams and Hawkings Acoustics Model
23.2.1. Enabling the FW-H Acoustics Model
23.2.1.1. Setting Model Constants
23.2.1.2. Computing Sound “on the Fly”
23.2.1.3. Writing Source Data Files
23.2.1.3.1. Exporting Source Data Without Enabling the FW-H Model: Using the Ansys Fluent ASD Format
23.2.1.3.2. Exporting Source Data Without Enabling the FW-H Model: Using the CGNS Format
23.2.2. Specifying Source Surfaces
23.2.2.1. Saving Source Data
23.2.3. Specifying Acoustic Receivers
23.2.4. Specifying the Time Step Size
23.2.5. Postprocessing the FW-H Acoustics Model Data
23.2.5.1. Writing Acoustic Signals
23.2.5.2. Reading Unsteady Acoustic Source Data
23.2.5.2.1. Pruning the Signal Data Automatically
23.2.5.3. Reporting the Static Pressure Time Derivative
23.2.5.4. Using the FFT Capabilities for Sound Pressure Signals
23.2.6. FFT of Acoustic Sources: Band Analysis and Export of Surface Pressure Spectra
23.2.6.1. Using the FFT of Acoustic Sources
23.3. Using the Acoustics Wave Equation Model
23.3.1. Specifying Source Mask and Sponge Regions
23.3.2. Solution Controls for the Acoustics Wave Equation
23.3.3. Solution Initialization
23.3.4. Postprocessing
23.3.5. Using the Kirchhoff Integral Model
23.4. Using the Broadband Noise Source Models
23.4.1. Enabling the Broadband Noise Source Models
23.4.1.1. Setting Model Constants
23.4.2. Postprocessing the Broadband Noise Source Model Data
23.5. Sponge Layers
24. Modeling Discrete Phase
24.1. Introduction
24.1.1. Concepts
24.1.1.1. Uncoupled vs. Coupled DPM
24.1.1.2. Steady vs. Unsteady Tracking
24.1.1.3. Parcels
24.1.2. Limitations
24.1.2.1. Limitation on the Particle Volume Fraction
24.1.2.2. Limitation on the Particle Knudsen Number
24.1.2.3. Limitation on Modeling Continuous Suspensions of Particles
24.1.2.4. Limitations on Modeling Particle Rotation
24.1.2.5. Limitations on Using the Discrete Phase Model with Other Ansys Fluent Models
24.1.2.6. Limitations on Using the Hybrid Parallel Method
24.2. Steps for Using the Discrete Phase Models
24.2.1. Options for Interaction with the Continuous Phase
24.2.2. Steady/Transient Treatment of Particles
24.2.3. Tracking Settings for the Discrete Phase Model
24.2.4. Drag Laws
24.2.5. Physical Models for the Discrete Phase Model
24.2.5.1. Including Radiation Heat Transfer Effects on the Particles
24.2.5.2. Including Thermophoretic Force Effects on the Particles
24.2.5.3. Including Saffman Lift Force Effects on the Particles
24.2.5.4. Including the Virtual Mass Force and Pressure Gradient Effects on Particles
24.2.5.5. Monitoring Erosion/Accretion of Particles at Walls
24.2.5.6. Pressure Options for Vaporization Models
24.2.5.7. Considering Pressure Dependence in Boiling
24.2.5.8. Including the Effect of Droplet Temperature on Latent Heat
24.2.5.9. Including the Effect of Particles on Turbulent Quantities
24.2.5.10. Including Collision and Droplet Coalescence
24.2.5.11. Including the DEM Collision Model
24.2.5.12. Including Droplet Breakup
24.2.5.13. Modeling Collision Using the DEM Model
24.2.5.13.1. Limitations
24.2.5.13.2. Numeric Recommendations
24.2.5.14. Including the Volume Displacement of Particles
24.2.6. User-Defined Functions
24.2.7. Numerics of the Discrete Phase Model
24.2.7.1. Numerics for Tracking of the Particles
24.2.7.2. Including Coupled Heat-Mass Solution Effects on the Particles
24.2.7.3. Tracking in a Reference Frame
24.2.7.4. Node Based Averaging of Particle Data
24.2.7.5. Linearized Source Terms
24.2.7.6. Using the Dynamic Interaction Range
24.2.7.7. Staggering of Particles in Space and Time
24.2.7.8. Packing Limit
24.2.7.9. Under-Relaxing Lagrangian Wall Film Height
24.3. Setting Initial Conditions for the Discrete Phase
24.3.1. Injection Types
24.3.2. Particle Types
24.3.3. Point Properties for Single Injections
24.3.4. Point Properties for Group Injections
24.3.5. Point Properties for Cone Injections
24.3.6. Point Properties for Surface Injections
24.3.6.1. Using the Rosin-Rammler Diameter Distribution Method for Surface Injections
24.3.6.2. Injecting Wall Film Particles
24.3.7. Point Properties for Volume Injections
24.3.7.1. Using the Rosin-Rammler Diameter Distribution Method for Volume Injections
24.3.8. Point Properties for Plain-Orifice Atomizer Injections
24.3.9. Point Properties for Pressure-Swirl Atomizer Injections
24.3.10. Point Properties for Air-Blast/Air-Assist Atomizer Injections
24.3.11. Point Properties for Flat-Fan Atomizer Injections
24.3.12. Point Properties for Effervescent Atomizer Injections
24.3.13. Point Properties for File Injections
24.3.13.1. Steady File Format
24.3.13.2. Unsteady File Format
24.3.13.3. User Input for File Injections
24.3.14. Point Properties for Condensate Injections
24.3.15. Using the Rosin-Rammler Diameter Distribution Method
24.3.15.1. The Stochastic Rosin-Rammler Diameter Distribution Method
24.3.16. Using the Tabulated (Discrete) Diameter Distribution
24.3.17. Creating and Modifying Injections
24.3.17.1. Creating Injections
24.3.17.2. Modifying Injections
24.3.17.3. Copying Injections
24.3.17.4. Deleting Injections
24.3.17.5. Listing Injection Initial Conditions
24.3.17.6. Listing Injection Properties
24.3.17.7. Reading and Writing Injections
24.3.18. Defining Injection Properties
24.3.19. Specifying Injection-Specific Physical Models
24.3.19.1. Drag Laws
24.3.19.2. Heat Transfer Coefficient
24.3.19.3. Particle Rotation
24.3.19.4. Rough Wall Model
24.3.19.5. Brownian Motion Effects
24.3.19.6. Breakup
24.3.20. Specifying Turbulent Dispersion of Particles
24.3.20.1. Stochastic Tracking
24.3.21. Custom Particle Laws
24.3.22. Defining Properties Common to More than One Injection
24.3.22.1. Modifying Properties
24.3.22.2. Modifying Properties Common to a Subset of Selected Injections
24.3.23. Point Properties for Transient Injections
24.4. Setting Boundary Conditions for the Discrete Phase
24.4.1. Discrete Phase Boundary Condition Types
24.4.1.1. The reflect Boundary Condition
24.4.1.2. The trap Boundary Condition
24.4.1.3. The escape Boundary Condition
24.4.1.4. The wall-jet Boundary Condition
24.4.1.5. The wall-film Boundary Condition
24.4.1.6. The interior Boundary Condition
24.4.1.7. The reinject Boundary Condition
24.4.1.8. The user-defined Boundary Condition
24.4.2. Default Discrete Phase Boundary Conditions
24.4.3. Coefficients of Restitution
24.4.4. Friction Coefficient
24.4.5. Particle-Wall Impingement Heat Transfer
24.4.6. Setting Particle Erosion and Accretion Parameters
24.5. Particle Erosion Coupled with Dynamic Meshes
24.5.1. Preliminaries
24.5.2. Limitations
24.5.3. Procedure for the Erosion Coupled with Dynamic Mesh Setup and Solution
24.5.4. Postprocessing for Erosion Dynamic Mesh Calculations
24.6. Modeling Lagrangian Wall Films
24.6.1. Limitations on Using the Lagrangian Wall Film Model
24.6.2. Setting the Lagrangian Wall Film Model
24.6.2.1. Setting the Film-to-Wall Heat Transfer Model
24.6.2.2. Removing the Wall Temperature Limiter for Lagrangian Wall-Film Walls
24.6.3. Film Condensation Model
24.6.4. Gas-Side Boundary Layer Model
24.6.5. Patching the Wall Film
24.7. Setting Material Properties for the Discrete Phase
24.7.1. Summary of Property Inputs
24.7.2. Setting Discrete-Phase Physical Properties
24.7.2.1. The Concept of Discrete-Phase Materials
24.7.2.1.1. Defining Additional Discrete-Phase Materials
24.7.2.2. Description of the Properties
24.8. Solution Strategies for the Discrete Phase
24.8.1. Performing Trajectory Calculations
24.8.1.1. Uncoupled Calculations
24.8.1.2. Coupled Calculations
24.8.1.2.1. Procedures for a Coupled Two-Phase Flow
24.8.1.2.2. Stochastic Tracking in Coupled Calculations
24.8.1.2.3. Under-Relaxation of the Interphase Exchange Terms
24.8.2. Resetting the Interphase Exchange Terms
24.8.3. Random Trajectories
24.9. Postprocessing for the Discrete Phase
24.9.1. Displaying of Trajectories
24.9.1.1. Options for Particle Trajectory Plots
24.9.1.2. Controlling the Particle Tracking Style
24.9.1.3. Controlling the Vector Style of Particle Tracks
24.9.1.4. Importing Particle Data
24.9.1.5. Particle Filtering
24.9.1.6. Graphical Display for Axisymmetric Geometries
24.9.2. Particle Tracking Statistics
24.9.3. Summary Reports
24.9.3.1. Trajectory Fates
24.9.3.2. Elapsed Time
24.9.3.3. Mass Transfer Summary
24.9.3.4. Energy Transfer Summary
24.9.3.5. Heat Rate and Energy Reporting
24.9.3.5.1. Change of Heat and Change of Energy Reporting
24.9.3.6. Combusting Particles
24.9.3.7. Combusting Particles with the Multiple Surface Reaction Model
24.9.3.8. Multicomponent Particles
24.9.3.9. Reinjected Particles
24.9.3.10. Evaporated Mass
24.9.4. Step-by-Step Reporting of Trajectories
24.9.5. Reporting of Current Positions for Unsteady Tracking
24.9.6. Reporting of Interphase Exchange Terms (Discrete Phase Sources)
24.9.7. Reporting of Particle Variables
24.9.8. Reporting of Discrete Phase Variables
24.9.9. Reporting of Unsteady DPM Statistics
24.9.10. Sampling of Trajectories
24.9.11. Histogram Reporting of Samples
24.9.11.1. Analysis, Investigation, and Reporting of Samples
24.9.11.2. Data Reduction of Samples
24.9.12. Contour Plots of DPM Particle Sampling Results on a Planar Surface
24.9.13. Summary Reporting of Current Particles
24.9.14. Postprocessing of Erosion/Accretion Rates
24.9.15. Assessing the Risk for Solids Deposit Formation During Selective Catalytic Reduction Process
24.10. Parallel Processing for the Discrete Phase Model
25. Modeling Macroscopic Particles
25.1. Overview and Limitations
25.2. Loading the MPM add-on Module
25.3. Setting up Macroscopic Particle Model Simulations
25.4. Modeling Macroscopic Particles
25.4.1. Specifying Particle Tracking Parameters
25.4.2. Specifying the Drag Law
25.4.3. Defining Parameters for Particle-Particle and Particle-Wall Collisions
25.4.4. Specifying Deposition Parameters
25.4.5. Specifying Injection Parameters
25.4.5.1. Defining MPM Injection Properties
25.4.5.2. Inputs for point Injections
25.4.5.3. Inputs for plane Injections
25.4.5.4. Inputs for packing Injections
25.4.5.5. Inputs for from-file Injections
25.4.6. Defining Field Forces
25.4.7. Initializing the MPM
26. Modeling Multiphase Flows
26.1. Introduction
26.2. Steps for Using a Multiphase Model
26.2.1. Enabling the Multiphase Model
26.2.1.1. Inputs for the VOF Model
26.2.1.2. Inputs for the Mixture Multiphase Model
26.2.1.3. Inputs for the Eulerian Multiphase Model
26.2.2. Choosing Volume Fraction Formulation
26.2.2.1. Interface Modeling Type
26.2.2.2. Spatial Discretization Schemes for Volume Fraction
26.2.2.3. Volume Fraction Limits
26.2.2.4. Expert Options
26.2.3. Solving a Homogeneous Multiphase Flow
26.2.4. Modeling Buoyancy-Driven Multiphase Flow
26.2.4.1. Setting the Operating Density for a Buoyancy-Driven Multiphase Flow
26.2.4.2. The Boussinesq Approximation in a Multiphase Flow
26.2.5. Modeling Compressible Flows
26.2.6. Defining the Phases
26.2.7. Including Body Forces
26.2.8. Modeling Multiphase Species Transport
26.2.9. Specifying Heterogeneous Reactions
26.2.10. Including Mass Transfer Effects
26.2.10.1. Alternative Modeling of Energy Sources
26.2.10.2. Mass Transfer Mechanisms
26.2.10.2.1. Constant-Rate Option
26.2.10.2.2. User-Defined Option
26.2.10.2.3. Population-Balance Mechanism
26.2.10.2.4. Cavitation Mechanism
26.2.10.2.5. Evaporation-Condensation Mechanism
26.2.10.2.6. Species-Mass-Transfer Mechanism
26.2.10.2.7. Boiling Mechanism
26.2.11. Defining Multiphase Cell Zone and Boundary Conditions
26.2.11.1. Steps for Setting Boundary Conditions
26.2.11.2. Steps for Setting Cell Zone Conditions
26.2.11.3. Boundary and Cell Zone Conditions for the Mixture and the Individual Phases
26.2.11.3.1. VOF Model
26.2.11.3.2. Mixture Model
26.2.11.3.3. Eulerian Model
26.2.11.4. Steps for Copying Cell Zone and Boundary Conditions
26.2.12. Setting Initial Conditions
26.2.12.1. Setting Initial Volume Fractions
26.2.12.1.1. Options for Patching Volume Fraction
26.2.12.2. Setting the Initial Turbulence Field
26.3. Setting Up the VOF Model
26.3.1. Solving Steady-State VOF Problems
26.3.2. Guidelines for Using the Multiphase Pseudo Time Method
26.3.3. Including Coupled Level Set with the VOF Model
26.3.4. Mesh Adaption with the VOF Model
26.3.5. Modeling Open Channel Flows
26.3.5.1. Defining Inlet Groups
26.3.5.2. Defining Outlet Groups
26.3.5.3. Setting the Inlet Group
26.3.5.4. Setting the Outlet Group
26.3.5.5. Determining the Free Surface Level
26.3.5.6. Determining the Bottom Level
26.3.5.7. Specifying the Total Height
26.3.5.8. Determining the Velocity Magnitude
26.3.5.9. Determining the Secondary Phase for the Inlet
26.3.5.10. Determining the Secondary Phase for the Outlet
26.3.5.11. Choosing the Pressure Specification Method
26.3.5.12. Choosing the Density Interpolation Method
26.3.5.13. Open Channel Flow Compatibility with Velocity Inlet
26.3.5.13.1. Velocity Inlet, Open Channel Flow, Steady-State
26.3.5.13.2. Velocity Inlet, Open Channel Flow, Transient
26.3.5.14. Limitations
26.3.5.15. Recommendations for Setting Up an Open Channel Flow Problem
26.3.6. Modeling Open Channel Wave Boundary Conditions
26.3.6.1. Summary Report and Regime Check
26.3.6.2. Transient Profile Support for Wave Inputs
26.3.6.3. Alternative Stokes Wave Theory Variant
26.3.7. Recommendations for Open Channel Initialization
26.3.7.1. Reporting Parameters for Open Channel Wave BC Option
26.3.8. Numerical Beach Treatment for Open Channels
26.3.8.1. Solution Strategies
26.3.9. Defining the Phases for the VOF Model
26.3.9.1. Defining the Primary Phase
26.3.9.2. Defining a Secondary Phase
26.3.10. Defining Phase Interaction Terms
26.3.10.1. Including Surface Tension and Adhesion Effects
26.3.10.2. Discretizing Using the Phase Localized Compressive Scheme
26.3.11. Setting Time-Dependent Parameters for the Explicit Volume Fraction Formulation
26.3.12. Modeling Solidification/Melting
26.3.13. Using the VOF-to-DPM Model Transition for Dispersion of Liquid in Gas
26.3.13.1. Limitations on Using the VOF-to-DPM Model Transition
26.3.13.2. Setting up the VOF-to-DPM Model Transition
26.3.13.3. Best Practice Guidelines for Considering Diffuse Lumps
26.3.13.4. Postprocessing for VOF-to-DPM Model Transition Calculations
26.3.14. Using the DPM-to-VOF Model Transition
26.3.14.1. Setting up the DPM-to-VOF Model Transition
26.3.14.2. Limitations
26.4. Setting Up the Mixture Model
26.4.1. Defining the Phases for the Mixture Model
26.4.1.1. Defining the Primary Phase
26.4.1.2. Defining a Non-Granular Secondary Phase
26.4.1.3. Defining a Granular Secondary Phase
26.4.1.4. Defining the Interfacial Area Concentration via the Transport Equation
26.4.1.5. Defining the Algebraic Interfacial Area Concentration
26.4.1.6. Defining Drag Between Phases
26.4.1.7. Defining the Slip Velocity
26.4.1.8. Including Surface Tension and Wall Adhesion Effects
26.4.2. Including Mixture Drift Force
26.4.3. Using the Flow Regime Modeling
26.4.3.1. Limitations for the Flow Regime Modeling
26.4.3.2. Setting the Flow Regime Modeling
26.4.3.3. Solution Strategies
26.4.3.4. Postprocessing for Flow Regime Modeling Simulations
26.4.4. Using the Singhal et al. Expert Cavitation Model
26.4.5. Including Semi-Mechanistic Boiling
26.4.5.1. Overview and Limitations for the Semi-Mechanistic Boiling Model
26.4.5.2. Using the Semi-Mechanistic Boiling Model
26.4.5.3. Cell Zone Specific Boiling
26.4.5.4. Expert Options for the Semi-Mechanistic Boiling Model
26.4.5.5. Solution Strategies for the Semi-Mechanistic Boiling Model
26.5. Setting Up the Eulerian Model
26.5.1. Additional Guidelines for Eulerian Multiphase Simulations
26.5.2. Defining the Phases for the Eulerian Model
26.5.2.1. Defining the Primary Phase
26.5.2.2. Defining a Non-Granular Secondary Phase
26.5.2.3. Defining a Granular Secondary Phase
26.5.2.4. Defining the Interfacial Area Concentration
26.5.2.5. Defining the Interaction Between Phases
26.5.2.5.1. Specifying the Drag Function
26.5.2.5.1.1. Drag Modification
26.5.2.5.2. Specifying the Restitution Coefficients (Granular Flow Only)
26.5.2.5.3. Including the Lift Force
26.5.2.5.4. Including the Lift Correlation
26.5.2.5.5. Including the Wall Lubrication Force
26.5.2.5.6. Including the Turbulent Dispersion Force
26.5.2.5.7. Including Surface Tension and Wall Adhesion Effects
26.5.2.5.8. Including the Virtual Mass Force
26.5.3. Modeling Turbulence
26.5.3.1. Including Turbulence Interaction Source Terms
26.5.3.2. Customizing the k- ε Multiphase Turbulent Viscosity
26.5.4. Including Heat Transfer Effects
26.5.5. Using an Algebraic Interfacial Area Model
26.5.6. Using the Algebraic Interfacial Area Density (AIAD) Model
26.5.6.1. Limitations
26.5.6.2. Procedure for Setting the AIAD Model
26.5.6.3. Solution Strategies
26.5.7. Using the Generalized Two Phase Flow (GENTOP) Model
26.5.7.1. Limitations
26.5.7.2. Steps for Using the GENTOP Model
26.5.7.3. Solution Strategies
26.5.8. Including the Dense Discrete Phase Model
26.5.8.1. Defining a Granular Discrete Phase
26.5.9. Including the Boiling Model
26.5.9.1. Limitations of the Boiling Model
26.5.9.2. Procedure for Setting the Boiling Model
26.5.9.3. Postprocessing for the Boiling Model
26.5.10. Setting Up Polydisperse Boiling
26.5.11. Including the Multi-Fluid VOF Model
26.6. Population Balance Model
26.6.1. Population Balance Model Setup
26.6.1.1. Enabling the Population Balance Model
26.6.1.1.1. Generated DQMOM Values
26.6.1.2. Defining Population Balance Boundary Conditions
26.6.1.2.1. Initializing Bin Fractions With a Log-Normal Distribution
26.6.1.3. Defining Population Balance Cell Zones Conditions
26.6.1.4. Specifying Population Balance Solution Controls
26.6.1.5. Coupling With Fluid Dynamics
26.6.1.6. Specifying Interphase Mass Transfer Due to Nucleation and Growth
26.6.1.7. Size Calculator
26.6.2. Solution Strategies
26.6.3. Postprocessing for the Population Balance Model
26.6.3.1. Population Balance Solution Variables
26.6.3.2. Reporting Derived Population Balance Variables
26.6.3.2.1. Computing Moments
26.6.3.2.2. Displaying a Number Density Function
26.6.4. UDFs for Population Balance Modeling
26.6.4.1. Population Balance Variables
26.6.4.2. Population Balance DEFINE Macros
26.6.4.2.1. DEFINE_PB_BREAK_UP_RATE_FREQ
26.6.4.2.1.1. Usage
26.6.4.2.1.2. Example
26.6.4.2.2. DEFINE_PB_BREAK_UP_RATE_PDF
26.6.4.2.2.1. Usage
26.6.4.2.2.2. Example
26.6.4.2.3. DEFINE_PB_COALESCENCE_RATE
26.6.4.2.3.1. Usage
26.6.4.2.3.2. Example
26.6.4.2.4. DEFINE_PB_NUCLEATION_RATE
26.6.4.2.4.1. Usage
26.6.4.2.4.2. Example
26.6.4.2.5. DEFINE_PB_GROWTH_RATE
26.6.4.2.5.1. Usage
26.6.4.2.5.2. Example
26.6.4.3. Hooking a Population Balance UDF to Ansys Fluent
26.6.5. DEFINE_HET_RXN_RATE Macro
26.6.5.1. Description
26.6.5.2. Usage
26.6.5.3. Example
26.6.5.4. Hooking a Heterogeneous Reaction Rate UDF to Ansys Fluent
26.7. Setting Up the Wet Steam Model
26.7.1. Using User-Defined Thermodynamic Wet Steam Properties
26.7.2. Writing the User-Defined Wet Steam Property Functions (UDWSPF)
26.7.3. Compiling Your UDWSPF and Building a Shared Library File
26.7.4. Loading the UDWSPF Shared Library File
26.7.5. UDWSPF Example
26.8. Solution Strategies for Multiphase Modeling
26.8.1. General Solution Strategies
26.8.1.1. Coupled Solution for Eulerian Multiphase Flows
26.8.1.2. Coupled Solution for VOF and Mixture Multiphase Flows
26.8.1.3. Selecting the Pressure-Velocity Coupling Method
26.8.1.3.1. Limitations and Recommendations of the Coupled with Volume Fraction Options for the VOF and Mixture Models
26.8.1.3.2. Solving N-Phase Volume Fraction Equations
26.8.1.4. Controlling the Volume Fraction Coupled Solution
26.8.1.5. Default and Stability Controls
26.8.1.5.1. Default Controls
26.8.1.5.2. VOF Solution Stability Controls
26.8.1.5.3. Text User Interface for VOF Stability Controls
26.8.1.6. Heat Transfer and Radiative Flux Distribution for Non-Eulerian Multiphase Models
26.8.1.7. Steady-State Solution Strategies
26.8.2. Model-Specific Solution Strategies
26.8.2.1. VOF Model
26.8.2.1.1. Setting the Reference Pressure Location
26.8.2.1.2. Pressure Interpolation Scheme
26.8.2.1.3. Discretization Scheme Selection
26.8.2.1.4. High-Order Rhie-Chow Face Flux Interpolation
26.8.2.1.5. Treatment of Unsteady Terms in Rhie-Chow Face Flux Interpolation
26.8.2.1.6. Pressure-Velocity Coupling and Under-Relaxation for the Time-dependent Formulations
26.8.2.1.7. Under-Relaxation for the Steady-State Formulation
26.8.2.2. Mixture Model
26.8.2.2.1. Setting the Under-Relaxation Factor for the Slip Velocity
26.8.2.2.2. Calculating an Initial Solution
26.8.2.3. Eulerian Model
26.8.2.3.1. Calculating an Initial Solution
26.8.2.3.2. Temporarily Ignoring Lift and Virtual Mass Forces
26.8.2.3.3. Using W-Cycle Multigrid
26.8.2.3.4. Including the Anisotropic Drag Law
26.8.2.3.5. Using Reference Density
26.8.2.3.6. Controlling NITA Solution Options via the Text Interface
26.8.2.4. Wet Steam Model
26.8.2.4.1. Boundary Conditions, Initialization, and Patching
26.8.2.4.2. Solution Limits for the Wet Steam Model
26.8.2.4.3. Solution Strategies for the Wet Steam Model
26.9. Multiphase Case Check
26.10. Postprocessing for Multiphase Modeling
26.10.1. Model-Specific Variables
26.10.1.1. VOF Model
26.10.1.2. Mixture Model
26.10.1.3. Eulerian Model
26.10.1.4. Multiphase Species Transport
26.10.1.5. Wet Steam Model
26.10.1.6. Dense Discrete Phase Model
26.10.2. Displaying Velocity Vectors
26.10.3. Reporting Fluxes
26.10.4. Reporting Forces on Walls
26.10.5. Reporting Flow Rates
27. Modeling Solidification and Melting
27.1. Setup Procedure
27.2. Procedures for Modeling Continuous Casting
27.3. Modeling Thermal and Solutal Buoyancy
27.4. Solution Procedure
27.5. Postprocessing
28. Modeling Fluid-Structure Interaction (FSI) Within Fluent
28.1. Overview and Limitations
28.2. Setting Up an Intrinsic Fluid-Structure Interaction (FSI) Simulation
28.2.1. Using Intrinsic FSI With Non-Conformal Interfaces
29. Modeling Eulerian Wall Films
29.1. Limitations
29.2. Overview of Using the Eulerian Wall Film Model
29.3. Setting Eulerian Wall Film Model Options
29.4. Setting Eulerian Wall Film Solution Controls
29.5. Setting Eulerian Wall Film Boundary, Initial, and Source Term Conditions
29.5.1. Specifying the Boundary Type
29.5.2. Setting the Source Terms
29.5.3. Setting the Phase Change
29.5.4. Setting the Surface Contact
29.5.5. Setting the DPM interaction
29.5.6. Setting the VOF interaction
29.6. Coupling of Eulerian Wall Film with the VOF Multiphase Model
29.7. Postprocessing the Eulerian Wall Film
30. Modeling Electric Potential Field and Electrochemistry Models
30.1. Simulating the Electric Potential Field
30.1.1. Limitation of the Electric Potential Model
30.1.2. Setting Up the Electric Potential Model
30.2. Simulating the Lithium-ion Battery
30.2.1. Limitations of the Detailed Lithium-ion Battery Model
30.2.2. Setting Up the Lithium-ion Battery Model
30.3. Setting the Electrolysis and H2 Pump Model
30.3.1. Geometry Definition for the Electrolysis and H2 Pump Model
30.3.2. Workflow for Using the Electrolysis and H2 Pump Model
30.3.3. Setting up the Electrolysis and H2 Pump Model
30.3.3.1. Specifying Model Options (Model Tab)
30.3.3.2. Specifying Model Parameters (Parameters Tab)
30.3.3.3. Specifying Anode Properties (Anode Tab)
30.3.3.3.1. Specifying Current Collector Properties for the Anode
30.3.3.3.2. Specifying Flow Channel Properties for the Anode
30.3.3.3.3. Specifying Porous Layer Properties for the Anode
30.3.3.3.4. Specifying Catalyst Layer Properties for the Anode
30.3.3.4. Specifying Electrolyte/Membrane Properties (Electrolyte Tab)
30.3.3.4.1. Resolved MEA Layer Method
30.3.3.4.2. Unresolved MEA Layer Method
30.3.3.5. Specifying Cathode Properties (Cathode Tab)
30.3.3.6. Setting the External Electrical Tabs (Electrical Tabs Tab)
30.3.3.7. (Customization Tab)
30.3.3.8. Setting Advanced Options (Advanced Tab)
30.3.4. Solution Strategies for the Electrolysis and H2 Pump Model
30.4. Postprocessing Electric Potential Field and Li-ion Battery Quantities
31. Modeling Batteries
31.1. Introduction
31.1.1. Overview
31.1.2. General Procedure
31.2. Using the MSMD-Based Battery Models
31.2.1. Limitations
31.2.2. Geometry Definition
31.2.3. Setting up the Battery Model
31.2.3.1. Specifying Battery Model Options
31.2.3.1.1. Setting the Life Model
31.2.3.1.2. Specifying a Profile or Data Table
31.2.3.1.3. Using Tables in the Battery Model
31.2.3.2. Specifying Conductive Zones
31.2.3.3. Specifying Electric Contacts
31.2.3.4. Specifying Battery Model Parameters
31.2.3.4.1. Inputs for the CHT Coupling Method
31.2.3.4.2. Inputs for the FMU-CHT Coupling Method
31.2.3.4.3. Inputs for the NTGK/DCIR Model
31.2.3.4.4. Inputs for the Equivalent Circuit Model
31.2.3.4.4.1. The HPPC Library
31.2.3.4.5. Inputs for the Newman’s P2D Model
31.2.3.4.6. Input for the User-Defined E-Model
31.2.3.5. Hooking User-Defined Functions
31.2.3.6. Specifying Advanced Options
31.2.3.6.1. Running the Standalone Echem Model
31.2.3.6.2. Simulating the Aging Process of a Battery (Standalone Mode)
31.2.3.6.3. Using the Battery Pack Builder Tool
31.2.3.6.4. Using the Battery ROM Tool Kit
31.2.3.6.4.1. Create ROM Training Data (ROM Data Creator Tab)
31.2.3.6.4.2. Computing Coefficient Matrices of the State Space Equations (LTI-ROM Generation Tab)
31.2.3.6.4.3. Postprocessing of the SVD-ROM Data (SVD-ROM Post-Processing Tab)
31.2.3.6.5. Defining Orthotropic Thermal Conductivity
31.2.3.6.6. Using the Empirical-Based Battery Swelling Model
31.2.3.6.7. Battery Venting Model
31.2.3.6.8. Including the Entropic Heat Effects
31.2.3.6.9. Using the Thermal Abuse Model
31.2.3.6.9.1. One-Equation Kinetics Model
31.2.3.6.9.2. Four-Equation Kinetics Model
31.2.3.6.9.3. Standalone Thermal Abuse Model
31.2.3.6.9.4. Running the Thermal Abuse Model Only
31.2.3.7. Specifying External and Internal Short-Circuit Resistances
31.2.3.8. Setting a Battery Swelling Case
31.2.4. Using Parameter Estimation Tools
31.2.4.1. Using Parameter Estimation Tools in the GUI
31.2.4.2. Using Parameter Estimation Tools in the TUI
31.2.4.2.1. Using the Parameter Estimation Tool for the NTGK Model in the TUI
31.2.4.2.2. Using the Parameter Estimation Tool for the ECM Model in the TUI
31.2.4.2.3. Using the Parameter Estimation Tool for the Thermal Abuse Model in the TUI
31.2.5. Initializing the Battery Model
31.2.6. Modifying Material Properties
31.2.7. Solution Controls for the MSMD Battery Model
31.2.8. Predefined Report Definitions for the Battery Model
31.2.9. Postprocessing the MSMD Battery Model
32. Modeling Fuel Cells
32.1. Using the PEMFC Model
32.1.1. Overview and Limitations
32.1.2. Geometry Definition for the PEMFC Model
32.1.3. Installing the PEMFC Model
32.1.4. Loading the PEMFC Module
32.1.5. Workflow for Using the PEMFC Module
32.1.6. Setting Up the PEMFC Module
32.1.6.1. Specifying Model Options (Model Tab)
32.1.6.2. Specifying Model Parameters (Parameters Tab)
32.1.6.3. Specifying Anode Properties (Anode Tab)
32.1.6.3.1. Specifying Current Collector Properties for the Anode
32.1.6.3.2. Specifying Flow Channel Properties for the Anode
32.1.6.3.3. Specifying Porous Electrode Properties for the Anode
32.1.6.3.4. Specifying Catalyst Layer Properties for the Anode
32.1.6.3.5. Specifying Micro Porous Layer (Optional) Properties for the Anode
32.1.6.3.6. Specifying Cell Zone Conditions for the Anode
32.1.6.4. Specifying Electrolyte/Membrane Properties (Electrolyte Tab)
32.1.6.4.1. Specifying Cell Zone Conditions for the Membrane
32.1.6.5. Specifying Cathode Properties (Cathode Tab)
32.1.6.5.1. Specifying Current Collector Properties for the Cathode
32.1.6.5.2. Specifying Flow Channel Properties for the Cathode
32.1.6.5.3. Specifying Porous Electrode Properties for the Cathode
32.1.6.5.4. Specifying Catalyst Layer Properties for the Cathode
32.1.6.5.5. Specifying Micro Porous Layer (Optional) Properties for the Cathode
32.1.6.5.6. Specifying Cell Zone Conditions for the Cathode
32.1.6.6. Setting the External Electrical Tabs (Electrical Tabs Tab)
32.1.6.7. Setting Advanced Properties (Advanced Tab)
32.1.6.7.1. Setting Contact Resistivities for the PEMFC Model
32.1.6.7.2. Setting Coolant Channel Properties for the PEMFC Model (Optional)
32.1.6.7.3. Managing Stacks for the PEMFC Model
32.1.6.8. Customizing the PEM Fuel Cell Module
32.1.6.9. Reporting on the Solution (Reports Tab)
32.1.6.10. User-Defined Functions Hooked to the PEMFC Module
32.1.7. PEMFC Model Boundary Conditions
32.1.8. Solution Guidelines for the PEMFC Model
32.1.9. Postprocessing the PEMFC Model
32.1.10. User-Accessible Functions
32.2. Using the Fuel Cell and Electrolysis Model
32.2.1. Overview and Limitations
32.2.2. Geometry Definition for the Fuel Cell and Electrolysis Model
32.2.3. Installing the Fuel Cell and Electrolysis Model
32.2.4. Loading the Fuel Cell and Electrolysis Module
32.2.5. Workflow for Using the Fuel Cell and Electrolysis Module
32.2.6. Setting Up the Fuel Cell and Electrolysis Module
32.2.6.1. Specifying Model Options (Model Tab)
32.2.6.2. Specifying Model Parameters (Parameters Tab)
32.2.6.3. Specifying Anode Properties (Anode Tab)
32.2.6.3.1. Specifying Current Collector Properties for the Anode
32.2.6.3.2. Specifying Flow Channel Properties for the Anode
32.2.6.3.3. Specifying Porous Electrode Properties for the Anode
32.2.6.3.4. Specifying Catalyst Layer Properties for the Anode
32.2.6.3.5. Specifying Cell Zone Conditions for the Anode
32.2.6.4. Specifying Electrolyte/Membrane Properties (Electrolyte Tab)
32.2.6.4.1. Specifying Cell Zone Conditions for the Membrane
32.2.6.5. Specifying Cathode Properties (Cathode Tab)
32.2.6.5.1. Specifying Current Collector Properties for the Cathode
32.2.6.5.2. Specifying Flow Channel Properties for the Cathode
32.2.6.5.3. Specifying Porous Electrode Properties for the Cathode
32.2.6.5.4. Specifying Catalyst Layer Properties for the Cathode
32.2.6.5.5. Specifying Cell Zone Conditions for the Cathode
32.2.6.6. Setting Advanced Properties (Advanced Tab)
32.2.6.6.1. Setting Contact Resistivities for the Fuel Cell and Electrolysis Model
32.2.6.6.2. Setting Coolant Channel Properties for the Fuel Cell and Electrolysis Model
32.2.6.6.3. Managing Stacks for the Fuel Cell and Electrolysis Model
32.2.6.7. Customizing the Fuel Cell and Electrolysis Module
32.2.6.8. Reporting on the Solution (Reports Tab)
32.2.7. Modeling Current Collectors
32.2.8. Fuel Cell and Electrolysis Model Boundary Conditions
32.2.9. Solution Guidelines for the Fuel Cell and Electrolysis Model
32.2.10. Postprocessing the Fuel Cell and Electrolysis Model
32.2.11. User-Accessible Functions
32.3. Using the Solid Oxide Fuel Cell With Unresolved Electrolyte Model
32.3.1. Limitation on Modeling Solid Oxide Fuel Cells
32.3.2. Installing the Solid Oxide Fuel Cell With Unresolved Electrolyte Model
32.3.3. Loading the Solid Oxide Fuel Cell With Unresolved Electrolyte Module
32.3.4. Solid Oxide Fuel Cell With Unresolved Electrolyte Module Set Up Procedure
32.3.5. Setting the SOFC Model
32.3.5.1. Setting the Parameters for the SOFC With Unresolved Electrolyte Model
32.3.5.2. Setting Up the Electrochemistry Parameters
32.3.5.3. Setting Up the Electrode-Electrolyte Interfaces
32.3.5.4. Setting Up the Electric Field Model Parameters
32.3.5.5. Customizing the SOFC Module
32.3.6. User-Accessible Functions for the Solid Oxide Fuel Cell With Unresolved Electrolyte Model
33. Modeling Magnetohydrodynamics
33.1. Introduction
33.2. Implementation
33.2.1. Solving Magnetic Induction and Electric Potential Equations
33.2.2. Calculation of MHD Variables
33.2.3. MHD Interaction with Fluid Flows
33.2.4. MHD Interaction with Discrete Phase Model
33.2.5. General User-Defined Functions
33.3. Using the Ansys Fluent MHD Module
33.3.1. MHD Module Installation
33.3.2. Loading the MHD Module
33.3.3. MHD Model Setup
33.3.3.1. Enabling the MHD Model
33.3.3.2. Selecting an MHD Method
33.3.3.3. Applying an External Magnetic Field
33.3.3.4. Setting Up Boundary Conditions
33.3.3.5. Solution Controls
33.3.4. MHD Solution and Postprocessing
33.3.4.1. MHD Model Initialization
33.3.4.2. Iteration
33.3.4.3. Postprocessing
33.3.5. Limitations
33.4. Guidelines For Using the Ansys Fluent MHD Model
33.4.1. Installing the MHD Module
33.4.2. An Overview of Using the MHD Module
33.5. Definitions of the Magnetic Field
33.6. External Magnetic Field Data Format
34. Modeling Continuous Fibers
34.1. Installing the Continuous Fiber Module
34.2. Loading the Continuous Fiber Module
34.3. Getting Started With the Continuous Fiber Module
34.3.1. User-Defined Memory and the Adjust Function Setup
34.3.2. Source Term UDF Setup
34.4. Fiber Models and Options
34.4.1. Choosing a Fiber Model
34.4.2. Including Interaction With Surrounding Flow
34.4.3. Including Lateral Drag on Surrounding Flow
34.4.4. Including Fiber Radiation Interaction
34.4.5. Viscous Heating of Fibers
34.4.6. Drag, Heat and Mass Transfer Correlations
34.5. Fiber Material Properties
34.5.1. The Concept of Fiber Materials
34.5.2. Description of Fiber Properties
34.6. Defining Fibers
34.6.1. Overview
34.6.2. Fiber Injection Types
34.6.3. Working with Fiber Injections
34.6.3.1. Creating Fiber Injections
34.6.3.2. Modifying Fiber Injections
34.6.3.3. Copying Fiber Injections
34.6.3.4. Deleting Fiber Injections
34.6.3.5. Initializing Fiber Injections
34.6.3.6. Computing Fiber Injections
34.6.3.7. Print Fiber Injections
34.6.3.8. Read Data of Fiber Injections
34.6.3.9. Write Data of Fiber Injections
34.6.3.10. Write Binary Data of Fiber Injections
34.6.3.11. List Fiber Injections
34.6.4. Defining Fiber Injection Properties
34.6.5. Point Properties Specific to Single Fiber Injections
34.6.6. Point Properties Specific to Line Fiber Injections
34.6.7. Point Properties Specific to Matrix Fiber Injections
34.6.8. Define Fiber Grids
34.6.8.1. Equidistant Fiber Grids
34.6.8.2. One-Sided Fiber Grids
34.6.8.3. Two-Sided Fiber Grids
34.6.8.4. Three-Sided Fiber Grids
34.7. User-Defined Functions (UDFs) for the Continuous Fiber Model
34.7.1. UDF Setup
34.7.1.1. Linux Systems
34.7.1.2. Windows Systems
34.7.2. Customizing the fiber_fluent_interface.c File for Your Fiber Model Application
34.7.2.1. Example: Heat Transfer Coefficient UDF
34.7.2.2. Example: Fiber Specific Heat Capacity UDF
34.7.3. Compile Fiber Model UDFs
34.7.3.1. Linux Systems
34.7.3.2. NT/Windows Systems
34.7.4. Hook UDFs to the Continuous Fiber Model
34.8. Fiber Model Solution Controls
34.9. Postprocessing for the Continuous Fibers
34.9.1. Display of Fiber Locations and Grid Points
34.9.2. Exchange Terms of Fibers
34.9.3. Analyzing Fiber Variables
34.9.3.1. XY Plots
34.9.3.2. Fiber Display
34.9.4. Running the Fiber Module in Parallel
35. Creating Reduced Order Models (ROMs)
35.1. Defining a ROM
35.2. Reduced Order Model (ROM) Evaluation in Fluent
35.3. Exporting Reduced Order Model (ROM) Results from Fluent
35.4. ROM Limitations
36. Using the Solver
36.1. Overview of Using the Solver
36.1.1. Choosing the Solver
36.2. Choosing the Spatial Discretization Scheme
36.2.1. First-Order Accuracy vs. Second-Order Accuracy
36.2.1.1. First- to Higher-Order Blending
36.2.2. Other Discretization Schemes
36.2.3. Choosing the Pressure Interpolation Scheme
36.2.4. Choosing the Density Interpolation Scheme
36.2.5. High Order Term Relaxation (HOTR)
36.2.5.1. Limitations
36.2.6. User Inputs
36.3. Pressure-Based Solver Settings
36.3.1. Choosing the Pressure-Velocity Coupling Method
36.3.1.1. SIMPLE vs. SIMPLEC
36.3.1.2. PISO
36.3.1.3. Fractional Step Method
36.3.1.4. Coupled
36.3.1.5. User Inputs
36.3.2. Mass Flux Types
36.3.3. Setting Under-Relaxation Factors
36.3.3.1. User Inputs
36.3.4. Setting Solution Controls for the Non-Iterative Solver
36.3.4.1. User Inputs
36.3.4.2. Hybrid NITA for the VOF and Mixture Multiphase Models
36.3.4.3. NITA Expert Options
36.3.4.4. Compatibility of the NITA Scheme with Other Ansys Fluent Models
36.3.5. Equation Order
36.3.6. Using the Correction Form of Momentum Discretization
36.4. Density-Based Solver Settings
36.4.1. Changing the Courant Number
36.4.1.1. Courant Numbers for the Density-Based Explicit Formulation
36.4.1.2. Courant Numbers for the Density-Based Implicit Formulation
36.4.1.3. Courant Number Monitor
36.4.1.4. User Inputs
36.4.2. Convective Flux Types
36.4.3. Convergence Acceleration for Stretched Meshes (CASM)
36.4.3.1. Enhanced Convergence Acceleration for Stretched Meshes
36.4.4. Enabling High-Speed Numerics
36.4.5. Preventing Divergence Using Local Under-Relaxation
36.4.6. Specifying the Explicit Relaxation
36.4.7. Turning On FAS Multigrid
36.4.7.1. Setting Coarse Grid Levels
36.4.7.2. Using Residual Smoothing to Increase the Courant Number
36.5. Setting Algebraic Multigrid Parameters
36.5.1. Specifying the Multigrid Cycle Type
36.5.2. Setting the Termination and Residual Reduction Parameters
36.5.3. Setting the Stabilization Method
36.5.4. Additional Algebraic Multigrid Parameters
36.5.4.1. Fixed Cycle Parameters
36.5.4.2. Coarsening Parameters
36.5.4.3. Smoother Types
36.5.4.4. Flexible Cycle Parameters
36.5.4.5. Setting the Verbosity
36.5.4.6. Returning to the Default Multigrid Parameters
36.5.5. Setting FAS Multigrid Parameters
36.5.5.1. Combating Convergence Trouble
36.5.5.2. “Industrial-Strength” FAS Multigrid
36.6. Setting Solution Limits
36.6.1. Limiting the Values of Solution Variables
36.6.2. Adjusting the Positivity Rate Limit
36.6.3. Resetting Solution Limits
36.7. Setting Multi-Stage Time-Stepping Parameters
36.7.1. Changing the Multi-Stage Scheme
36.7.1.1. Changing the Coefficients and Number of Stages
36.7.1.2. Controlling Updates to Dissipation and Viscous Stresses
36.7.1.3. Resetting the Multi-Stage Parameters
36.8. Selecting Gradient Limiters
36.9. Initializing the Solution
36.9.1. Initializing the Entire Flow Field Using Standard Initialization
36.9.1.1. Saving and Resetting Initial Values
36.9.2. Patching Values in Selected Cells
36.9.2.1. Using Registers
36.9.2.2. Using Field Functions
36.9.2.3. Using Patching Later in the Solution Process
36.10. Full Multigrid (FMG) Initialization
36.10.1. Steps in Using FMG Initialization
36.10.2. Convergence Strategies for FMG Initialization
36.10.3. Additional FMG Initialization Options with the Density-Based Solver
36.11. Hybrid Initialization
36.11.1. Steps in Using Hybrid Initialization
36.11.2. Solution Strategies for Hybrid Initialization
36.12. Performing Steady-State Calculations
36.12.1. Updating UDF Profiles and Named Expressions
36.12.2. Resetting Data
36.12.3. Data Sampling for Steady Statistics
36.13. Performing Time-Dependent Calculations
36.13.1. Inputs for Time-Dependent Problems
36.13.1.1. Additional Inputs
36.13.2. CFL-Based Time Stepping
36.13.2.1. The CFL-Based Time Stepping Algorithm
36.13.2.2. Specifying Parameters for CFL-Based Time Stepping
36.13.3. Error-Based Time Stepping
36.13.3.1. The Error-Based Time Stepping Algorithm
36.13.3.2. Specifying Parameters for Error-Based Time Stepping
36.13.4. Multiphase-Specific Time Stepping
36.13.4.1. The Multiphase-Specific Time Stepping Algorithm
36.13.4.2. Specifying Parameters for Multiphase-Specific Time Stepping
36.13.5. Postprocessing for Time-Dependent Problems
36.13.6. Runtime Discrete Fourier Transformation
36.13.6.1. Runtime DFT Formulation
36.13.6.2. Input Parameters for the Runtime DFT
36.13.6.3. DFT Field Variables for Postprocessing
36.14. Performing Calculations with a Pseudo Time Method
36.14.1. Local Time Step Method Setting
36.14.2. Global Time Step Method Settings
36.14.2.1. Pseudo Time Explicit Relaxation Factors
36.14.2.2. Advanced Solution Controls for the Pseudo Time Method
36.14.2.3. Pseudo Time Settings for the Calculation
36.15. Monitoring Solution Convergence
36.15.1. Monitoring Residuals
36.15.1.1. Definition of Residuals for the Pressure-Based Solver
36.15.1.2. Definition of Residuals for the Density-Based Solver
36.15.1.3. Overview of Using the Residual Monitors Dialog Box
36.15.1.4. Printing and Plotting Residuals
36.15.1.5. Storing Residual History Points
36.15.1.6. Controlling Normalization and Scaling
36.15.1.7. Choosing a Convergence Criterion
36.15.1.8. Modifying Convergence Criteria
36.15.1.9. Disabling Monitoring
36.15.1.10. Plot Parameters
36.15.1.11. Postprocessing Residual Values
36.15.2. Monitoring Statistics
36.15.3. Monitoring Solution Quantities
36.16. Convergence Conditions
36.16.1. Setting Up the Convergence Conditions Dialog Box
36.17. Executing Commands During the Calculation
36.17.1. Defining Macros
36.17.2. Saving Files During the Calculation
36.18. Automatic Initialization of the Solution and Case Modification
36.19. Animating the Solution
36.19.1. Creating an Animation Definition
36.19.1.1. Guidelines for Creating an Animation Definition
36.19.2. Playing an Animation Sequence
36.19.2.1. Modifying the View
36.19.2.2. Modifying the Playback Speed
36.19.2.3. Playing Back an Excerpt
36.19.2.4. “Fast-Forwarding” the Animation
36.19.2.5. Continuous Animation
36.19.2.6. Stopping the Animation
36.19.2.7. Advancing the Animation Frame by Frame
36.19.2.8. Deleting an Animation Sequence
36.19.3. Saving an Animation Sequence
36.19.3.1. Solution Animation File
36.19.3.2. Picture File
36.19.3.3. Video File
36.19.4. Reading an Animation Sequence
36.20. Checking Your Case Setup
36.20.1. Automatic Implementation
36.20.2. Manual Implementation
36.20.2.1. Checking the Mesh
36.20.2.2. Checking Model Selections
36.20.2.3. Checking Boundary and Cell Zone Conditions
36.20.2.4. Checking Material Properties
36.20.2.5. Checking the Solver Settings
36.21. Convergence and Stability
36.21.1. Judging Convergence
36.21.2. Step-by-Step Solution Processes
36.21.2.1. Selecting a Subset of the Solution Equations
36.21.2.2. Turning Reactions On and Off
36.21.3. Modifying Algebraic Multigrid Parameters
36.21.4. Modifying the Multi-Stage Parameters
36.21.5. Robustness with Meshes of Poor Quality
36.21.6. Warped-Face Gradient Correction
36.21.7. Numerical Noise Filter for the Energy Equation
36.22. Solution Steering
36.22.1. Overview of Solution Steering
36.22.2. Solution Steering Strategy
36.22.2.1. Initialization
36.22.3. Using Solution Steering
37. Using the Fluent Native GPU Solver
37.1. Introduction to the Fluent GPU Solver
37.2. Supported GPUs and Drivers
37.3. Basic Steps for CFD Analysis Using the Fluent GPU Solver
37.4. Starting the Fluent GPU Solver
37.4.1. Starting the Fluent GPU Solver Using the Fluent Launcher
37.4.2. Starting the Fluent GPU Solver from the Command Line
37.5. Exiting the Fluent GPU Solver
37.6. Graphical User Interface (GUI)
37.7. Using CPU Processes for Setup and Postprocessing
37.8. Reading Fluent Case Files Into the Fluent GPU Solver
37.9. Features Supported by the Fluent GPU Solver
37.9.1. Models
37.9.2. Material Properties
37.9.3. Solver Settings
37.9.4. Parametric Studies
37.9.5. Cell Zone and Boundary Conditions
37.9.6. Mesh Interfaces
37.9.7. Solution Monitors and Report Definitions
37.10. Fluent GPU Solver Limitations
37.11. Transitioning from a Steady-State Solution to a Transient Calculation
37.12. Troubleshooting Cases
37.13. Resolving GPU Solver Performance Issues
37.14. GPU Memory Usage
38. Adapting the Mesh
38.1. Using Adaption
38.1.1. Adaption Example
38.1.2. Adaption Guidelines
38.2. Refining and Coarsening
38.2.1. Predefined Criteria for Adaption
38.2.1.1. Boundary Layer Adaption Based on Cell Distance
38.2.1.2. Aerodynamics Adaption
38.2.1.3. Combustion Adaption
38.2.1.4. VOF Adaption
38.2.1.5. Overset Adaption
38.3. Adaption Examples
38.3.1. Boundary Cell Register
38.3.2. Region Cell Register
38.3.3. Field Variable Cell Registers (Gradients, Scaling, and So On)
38.3.4. Expression Adaption Refinement
38.4. Geometry-Based Adaption with the Hanging Node Method
38.4.1. Performing Geometry-Based Adaption with the Hanging Node Method
39. Creating Surfaces and Cell Registers for Displaying and Reporting Data
39.1. Using Surfaces
39.1.1. Zone Surfaces
39.1.2. Partition Surfaces
39.1.3. Imprint Surfaces
39.1.4. Point Surfaces
39.1.4.1. Using the Point Tool
39.1.5. Structural Point Surfaces
39.1.6. Line and Rake Surfaces
39.1.6.1. Using the Line Tool
39.1.6.1.1. Initializing the Line Tool
39.1.6.1.2. Translating the Line Tool
39.1.6.1.3. Rotating the Line Tool
39.1.6.1.4. Resizing the Line Tool
39.1.6.1.5. Resetting the Line Tool
39.1.7. Plane Surfaces
39.1.7.1. Using the Plane Tool
39.1.8. Quadric Surfaces
39.1.9. Iso-surfaces
39.1.10. Clipping Surfaces
39.1.11. Transforming Surfaces
39.1.12. Expression Volumes
39.1.13. Grouping, Prioritizing, Editing, Renaming, and Deleting Surfaces
39.1.13.1. Grouping Surfaces
39.1.13.2. Editing and Renaming Surfaces
39.1.13.3. Setting Surface Rendering Priority
39.1.13.4. Deleting Surfaces
39.1.13.5. Surface Statistics
39.2. Using Cell Registers
39.2.1. Region
39.2.1.1. Defining a Region
39.2.1.2. Setting Up a Region Cell Register
39.2.2. Boundary
39.2.3. Variable Limiter
39.2.4. Field Variable
39.2.4.1. Approaches For Deriving Field Values
39.2.4.2. Setting Up a Field Variable Cell Register
39.2.5. Residuals
39.2.6. Volume
39.2.6.1. Volume Cell Register Approach
39.2.6.2. Setting Up a Volume Cell Register
39.2.7. Yplus/Ystar
39.2.7.1. Yplus/Ystar Approach
39.2.7.2. Setting up a Yplus/Ystar Cell Register
39.2.8. Manage Cell Registers
39.2.9. Cell Register Operations
39.2.10. Copying and Renaming Cell Registers
40. Displaying Graphics
40.1. Basic Graphics Generation
40.1.1. Graphics Performance
40.1.2. Displaying the Mesh
40.1.2.1. Generating Mesh or Outline Plots
40.1.2.2. Modifying the Mesh Colors
40.1.2.3. Realistic Rendering of Materials
40.1.2.3.1. List of Default Realistic Materials
40.1.2.3.2. Creating Custom Realistic Materials
40.1.2.3.3. Limitations in Realistic Material Rendering
40.1.2.4. Controlling Mesh Transparency
40.1.2.5. Mesh and Outline Display Options
40.1.2.5.1. Adding Features to an Outline Display
40.1.2.5.2. Drawing Partition Boundaries
40.1.2.5.3. Shrinking Faces and Cells in the Display
40.1.2.6. Creating and Using Mesh Plot Definitions
40.1.3. Displaying Contours and Profiles
40.1.3.1. Quickly Coloring Surfaces by Field Variable Value
40.1.3.2. Generating Contour and Profile Plots
40.1.3.3. Contour and Profile Plot Options
40.1.3.3.1. Drawing Filled Contours or Profiles
40.1.3.3.2. Specifying the Range of Magnitudes Displayed
40.1.3.3.3. Including the Mesh in the Contour Plot
40.1.3.3.4. Choosing Node or Cell Values and Node or Boundary Values
40.1.3.3.5. Storing Contour Plot Settings
40.1.3.4. Creating and Using Contour Plot Definitions
40.1.4. Displaying Vectors
40.1.4.1. Generating Vector Plots
40.1.4.2. Displaying Relative Velocity Vectors
40.1.4.3. Vector Plot Options
40.1.4.3.1. Scaling the Vectors
40.1.4.3.2. Skipping Vectors
40.1.4.3.3. Drawing Vectors in the Plane of the Surface
40.1.4.3.4. Displaying Fixed-Length Vectors
40.1.4.3.5. Displaying Vector Components
40.1.4.3.6. Specifying the Range of Magnitudes Displayed
40.1.4.3.7. Changing the Scalar Field Used for Coloring the Vectors
40.1.4.3.8. Controlling 3D Vector Tessellation for Performance and Appearance
40.1.4.3.9. Displaying Vectors Using a Single Color
40.1.4.3.10. Including the Mesh in the Vector Plot
40.1.4.3.11. Changing the Arrow Characteristics
40.1.4.4. Creating and Managing Custom Vectors
40.1.4.4.1. Creating Custom Vectors
40.1.4.4.2. Manipulating, Saving, and Loading Custom Vectors
40.1.4.5. Creating and Using Vector Plot Definitions
40.1.5. Displaying Pathlines
40.1.5.1. Steps for Generating Pathlines
40.1.5.2. Options for Pathline Plots
40.1.5.2.1. Including the Mesh in the Pathline Display
40.1.5.2.2. Controlling the Pathline Style
40.1.5.2.3. Controlling Pathline Colors
40.1.5.2.4. “Thinning” Pathlines
40.1.5.2.5. Coarsening Pathlines
40.1.5.2.6. Reversing the Pathlines
40.1.5.2.7. Plotting Oil-Flow Pathlines
40.1.5.2.8. Controlling the Pulse Mode
40.1.5.2.9. Controlling the Accuracy
40.1.5.2.10. Plotting Relative Pathlines
40.1.5.2.11. Generating an XY Plot Along Pathline Trajectories
40.1.5.2.12. Saving Pathline Data
40.1.5.2.12.1. Standard Type
40.1.5.2.12.2. Geometry Type
40.1.5.2.12.3. EnSight Type
40.1.5.2.13. Choosing Node or Cell Values
40.1.5.3. Creating and Using Pathline Definitions
40.1.6. Displaying Line Integral Convolutions (LICs)
40.1.6.1. Generating an LIC Plot
40.1.7. Displaying a Scene
40.1.7.1. Generating a Scene
40.1.8. Displaying Results on a Sweep Surface
40.1.8.1. Steps for Generating a Plot Using a Sweep Surface
40.1.8.2. Animating a Sweep Surface Display
40.1.9. Hiding the Graphics Window Display
40.2. Customizing the Graphics Display
40.2.1. Embedded Graphics Window Dashboards
40.2.1.1. Automatically Embedding Windows in the Solution View
40.2.1.2. Embedding Windows with the Dashboard Definition Dialog Box
40.2.1.3. Manually Embedding Windows
40.2.1.4. Animating Embedded Window Dashboards
40.2.1.5. Limitations for Embedded Windows
40.2.2. Advanced Graphics Overlays
40.2.3. Managing Multiple Graphics Windows
40.2.3.1. Setting the Active Window
40.2.3.2. Synchronizing Window Views
40.2.4. Showing Boundary Markers
40.2.5. Changing the Legend Display
40.2.5.1. Controlling the Titles, Axes, Ruler, Logo, and Colormap
40.2.5.2. Editing the Legend
40.2.5.3. Adding a Title to the Caption
40.2.5.4. Enabling/Disabling the Axes
40.2.5.5. Enabling/Disabling the Ruler
40.2.5.6. Modifying and Displaying/Hiding the Logo
40.2.5.7. Colormap Alignment
40.2.6. Adding Text to the Graphics Window
40.2.6.1. Adding Text Using the Annotate Dialog Box
40.2.6.2. Editing Existing Annotation Text
40.2.6.3. Clearing Annotation Text
40.2.7. Changing the Colormap and Range
40.2.7.1. Colormap Nomenclature
40.2.7.2. Predefined Colormaps
40.2.7.3. Selecting a Colormap
40.2.7.3.1. Specifying the Colormap Size and Scale
40.2.7.3.2. Changing the Number Format
40.2.7.4. Displaying Colormap Labels and Titles
40.2.7.5. Creating a Customized Colormap
40.2.7.6. Colormap References
40.2.8. Adding Lights
40.2.8.1. Controlling Lighting Effects with the Display Options Dialog Box
40.2.8.2. Controlling Lighting Effects with the Lights Dialog Box
40.2.8.3. Defining Light Sources
40.2.8.3.1. Removing a Light
40.2.8.3.2. Resetting the Light Definitions
40.2.9. Modifying the Rendering Options
40.2.9.1. Graphics Device Information
40.3. Enhanced Graphics Visual Effects
40.3.1. Optimizing Graphical Priorities
40.3.2. Graphics Effects Options
40.4. Realistic Rendering Using Raytracing
40.4.1. Animating with Realistic Raytracer Images
40.4.1.1. Realistic Raytracer Images Captured at Runtime
40.4.1.2. Raytracer Image Conversion Using the Playback Dialog Box
40.4.2. Saving Pictures with Realistic Raytracer Images
40.4.3. Listing of Realistic Environments and Backplates
40.4.4. Limitations with Realistic Raytracing
40.5. Controlling the Mouse Button Functions
40.6. Viewing the Application Window
40.7. Measuring Distance and Angle
40.8. Controlling the Display State and Modifying the View
40.8.1. Specifying a Display State
40.8.2. Selecting a View
40.8.3. Manipulating the Display
40.8.3.1. Scaling and Centering
40.8.3.2. Rotating the Display
40.8.3.2.1. Spinning the Display with the Mouse
40.8.3.3. Translating the Display
40.8.3.4. Zooming the Display
40.8.4. Controlling Perspective and Camera Parameters
40.8.4.1. Perspective and Orthographic Views
40.8.4.2. Modifying Camera Parameters
40.8.5. Saving and Restoring Views
40.8.5.1. Restoring the Default View
40.8.5.2. Returning to Previous Views
40.8.5.3. Saving Views
40.8.5.4. Reading View Files
40.8.5.5. Deleting Views
40.8.6. Mirroring and Periodic Repeats
40.8.6.1. Periodic Repeats for Graphics
40.8.6.2. Mirroring for Graphics
40.9. Advanced Scene Composition
40.9.1. Selecting the Object(s) to be Manipulated
40.9.2. Changing an Object’s Display Properties
40.9.2.1. Controlling Visibility
40.9.2.2. Controlling Object Color and Transparency
40.9.3. Transforming Geometric Objects in a Scene
40.9.3.1. Translating Objects
40.9.3.2. Rotating Objects
40.9.3.3. Scaling Objects
40.9.3.4. Displaying the Meridional View
40.9.4. Modifying Iso-Values
40.9.4.1. Steps for Modifying Iso-Values
40.9.5. Modifying Pathline Attributes
40.9.6. Deleting an Object from the Scene
40.9.7. Adding a Bounding Frame
40.10. Animating Graphics
40.10.1. Creating an Animation
40.10.1.1. Deleting Key Frames
40.10.2. Playing an Animation
40.10.2.1. Playing Back an Excerpt
40.10.2.2. "Fast-Forwarding" the Animation
40.10.2.3. Continuous Animation
40.10.2.4. Stopping the Animation
40.10.2.5. Advancing the Animation Frame by Frame
40.10.3. Saving an Animation
40.10.3.1. Animation File
40.10.3.2. Picture File
40.10.3.3. MPEG File
40.10.4. Reading an Animation File
40.10.5. Notes on Animation
40.11. Histogram and XY Plots
40.11.1. Plot Types
40.11.1.1. XY Plots
40.11.1.2. Histograms
40.11.1.3. Enhanced Interactive Plots
40.11.2. XY Plots of Solution Data
40.11.2.1. Steps for Generating Solution XY Plots
40.11.2.2. Options for Solution XY Plots
40.11.2.2.1. Including External Data in the Solution XY Plot
40.11.2.2.2. Choosing Node or Cell Values
40.11.2.2.3. Saving the Plot Data to a File
40.11.3. Creating an XY Plot From Multiple Data Sources (Including Files)
40.11.3.1. Steps for Generating XY Plots of Data from Multiple Sources
40.11.4. XY Plots of Profiles
40.11.4.1. Steps for Generating Plots of Profile Data
40.11.4.2. Steps for Generating Plots of Interpolated Profile Data
40.11.5. XY Plots of Circumferential Averages
40.11.5.1. Steps for Generating an XY Plot of Circumferential Averages
40.11.5.2. Customizing the Appearance of the Plot
40.11.6. XY Plot File Format
40.11.7. Residual Plots
40.11.8. Histograms
40.11.8.1. Steps for Generating Histogram Plots
40.11.8.2. Options for Histogram Plots
40.11.8.2.1. Specifying the Range of Values Plotted
40.11.8.2.2. Adding Histograms to Your Simulation Reports
40.11.9. Modifying Axis Attributes
40.11.9.1. Using the Axes Dialog Box
40.11.9.1.1. Changing the Axis Title and Font Size
40.11.9.1.2. Changing the Format of the Data Labels
40.11.9.1.3. Choosing Logarithmic or Decimal Scaling
40.11.9.1.4. Resetting the Range of the Axis
40.11.9.1.5. Controlling the Major and Minor Rules
40.11.10. Modifying Curve Attributes
40.11.10.1. Using the Curves Dialog Box
40.11.10.1.1. Changing the Line Style
40.11.10.1.2. Changing the Marker Style
40.11.10.1.3. Previewing the Curve Style
40.12. Fast Fourier Transform (FFT) Postprocessing
40.12.1. Limitations of the FFT Algorithm
40.12.2. Windowing
40.12.3. Fast Fourier Transform (FFT)
40.12.4. Using the FFT Utility
40.12.4.1. Loading Data for Spectral Analysis
40.12.4.2. Customizing the Input and Defining the Spectrum Smoothing
40.12.4.2.1. Customizing the Input Signal Data Set
40.12.4.2.2. Spectrum Smoothing Through Signal Segmentation
40.12.4.2.3. Viewing Data Statistics
40.12.4.2.4. Customizing Titles and Labels
40.12.4.2.5. Applying the Changes in the Input Signal Data
40.12.4.3. Customizing the Output
40.12.4.3.1. Specifying a Function for the Y Axis
40.12.4.3.2. Specifying a Function for the X Axis
40.12.4.3.3. Specifying Output Options
40.12.4.3.4. Specifying a Windowing Technique
40.12.4.3.5. Specifying Labels and Titles
40.12.4.4. Performing an Ansys Sound Analysis
40.13. Cumulative Force, Moment, and Coefficients Plots
40.13.1. Steps for Generating Cumulative Plots
41. Reporting Alphanumeric Data
41.1. Reporting Conventions
41.2. Monitoring and Reporting Solution Data
41.2.1. Creating Report Definitions
41.2.1.1. Surface Report Definitions
41.2.1.2. Volume Report Definitions
41.2.1.3. Force and Moment Report Definitions
41.2.1.4. Flux Report Definition
41.2.1.5. Mesh Report Definitions
41.2.1.6. Aerodamping (Travelling Wave Method) Report Definition
41.2.1.7. DPM Report Definition
41.2.1.8. User Defined Report Definition
41.2.1.8.1. User Defined Report Definition Function
41.2.1.8.2. User Defined Report Definition Function Hooking
41.2.1.9. Expression Report Definition
41.2.2. Report Files and Report Plots
41.2.2.1. Creating Report Files
41.2.2.2. Creating Report Plots
41.2.2.3. Moving Average Monitors
41.2.2.4. Clearing File and Plot Histories
41.3. Creating Output Parameters
41.4. Fluxes Through Boundaries
41.4.1. Generating a Flux Report
41.4.2. Flux Reporting for Reacting Flows
41.4.3. Flux Reporting with Particles
41.4.4. Flux Reporting with Multiphase
41.4.5. Flux Reporting with the DDPM
41.4.6. Flux Reporting with the Potential Solver
41.4.7. Flux Reporting with Other Volumetric Sources
41.5. Forces on Boundaries
41.5.1. Generating a Force, Moment, or Center of Pressure Report
41.5.1.1. Example
41.6. Projected Surface Area Calculations
41.7. Surface Integration
41.7.1. Generating a Surface Integral Report
41.8. Volume Integration
41.8.1. Generating a Volume Integral Report
41.9. Efficiency Calculations
41.9.1. Device Efficiency
41.9.2. Calculating Efficiency using Named Expressions
41.9.3. Limitations
41.10. Histogram Reports
41.11. Discrete Phase
41.12. S2S Information
41.13. Reference Values
41.13.1. Setting Reference Values
41.13.2. Setting the Reference Zone
41.14. Summary Reports of Case Settings
41.14.1. Modified Settings Summary
41.14.2. Generating a Summary Report
41.15. System Resource Usage
41.15.1. Processor Information
41.15.2. Memory Information
41.15.3. Process and Model Timers
42. Field Function Definitions
42.1. Node, Cell, and Facet Values
42.1.1. Cell Values
42.1.2. Node Values
42.1.2.1. Vertex Values for Points That Are Not Mesh Nodes
42.1.3. Facet Values
42.1.3.1. Facet Values on Zone Surfaces
42.1.3.2. Facet Values on Postprocessing Surfaces
42.2. Velocity Reporting Options
42.3. Field Variables Listed by Category
42.4. Alphabetical Listing of Field Variables and Their Definitions
42.5. Custom Field Functions
42.5.1. Creating a Custom Field Function
42.5.1.1. Using the Calculator Buttons
42.5.1.2. Using the Field Functions List
42.5.2. Manipulating, Saving, and Loading Custom Field Functions
42.5.3. Sample Custom Field Functions
43. Parallel Processing
43.1. Introduction to Parallel Processing
43.1.1. Recommended Usage of Parallel Ansys Fluent
43.2. Starting Parallel Ansys Fluent Using Fluent Launcher
43.2.1. Setting Parallel Scheduler Options in Fluent Launcher
43.2.2. Setting Additional Options When Running on Remote Linux Machines
43.2.2.1. Setting Job Scheduler Options When Running on Remote Linux Machines
43.3. Starting Parallel Ansys Fluent on a Windows System
43.3.1. Starting Parallel Ansys Fluent on a Windows System Using Command Line Options
43.3.1.1. Starting Parallel Ansys Fluent with the Microsoft Job Scheduler
43.4. Starting Parallel Ansys Fluent on a Linux System
43.4.1. Starting Parallel Ansys Fluent on a Linux System Using Command Line Options
43.4.2. Setting Up Your Secure Shell Clients
43.4.2.1. Configuring the ssh Client
43.5. Mesh Partitioning and Load Balancing
43.5.1. Overview of Mesh Partitioning
43.5.2. Partitioning the Mesh Automatically
43.5.2.1. Preferences for Advanced Auto-Partitioning Methods
43.5.2.2. Reporting During Auto Partitioning
43.5.3. Partitioning the Mesh Manually and Balancing the Load
43.5.3.1. Guidelines for Partitioning the Mesh
43.5.4. Using the Partitioning and Load Balancing Dialog Box
43.5.4.1. Partitioning
43.5.4.1.1. Example of Setting Selected Cell Registers to Specified Partition IDs
43.5.4.1.2. Partitioning Within Zones or Registers
43.5.4.1.3. Reporting During Partitioning
43.5.4.1.4. Resetting the Partition Parameters
43.5.4.2. Load Balancing
43.5.5. Mesh Partitioning Methods
43.5.5.1. Partition Methods
43.5.5.2. Optimizations
43.5.5.3. Pretesting
43.5.5.4. Using the Partition Filter
43.5.6. Checking the Partitions
43.5.6.1. Interpreting Partition Statistics
43.5.6.2. Examining Partitions Graphically
43.5.7. Load Distribution
43.5.8. Troubleshooting
43.6. Using General Purpose Graphics Processing Units (GPGPUs) With the Algebraic Multigrid (AMG) Solver
43.6.1. Requirements
43.6.2. Limitations
43.6.3. Using and Managing GPGPUs
43.7. Controlling the Threads
43.8. Checking Network Connectivity
43.9. Checking and Improving Parallel Performance
43.9.1. Parallel Check
43.9.2. Checking Parallel Performance
43.9.2.1. Checking Latency and Bandwidth
43.9.3. Optimizing the Parallel Solver
43.9.3.1. Increasing the Report Interval
43.9.3.2. Accelerating View Factor Calculations Using General Purpose Graphics Processing Units (GPGPUs)
43.9.3.3. Accelerating Discrete Ordinates (DO) Radiation Calculations
43.9.3.3.1. Accelerated DO Model Limitations
43.9.4. Clearing the Linux File Cache Buffers
44. Running Ansys Fluent on Arm Compute Nodes
44.1. Setting up Fluent for Arm
44.2. Message Passing Interface (MPI) Supported with Fluent for Arm
44.3. Starting Fluent for Arm
44.4. Running Fluent for Arm with a Job Scheduler
44.5. Fluent for Arm Known Limitations
45. Using Simulation Reports
45.1. Overview of Simulation Reports
45.1.1. Limitations for Simulations Reports
45.2. Preparing Simulation Reports
45.2.1. Setting General Report Properties
45.2.2. Organizing Your Simulation Report
45.3. Generating Simulation Reports
45.4. Viewing Simulation Reports
45.4.1. Viewing System Information
45.4.2. Viewing Geometry and Mesh Information
45.4.3. Viewing Simulation Setup Information
45.4.4. Viewing Run Information
45.4.5. Viewing Solution Status
45.4.6. Viewing Named Expression Information
45.4.7. Viewing Report Definition Information
45.4.8. Viewing Plot Information
45.4.9. Viewing Contours, Vectors, Pathlines, LICs, XY Plots, Scenes, Histograms, and Animations
45.5. Saving Simulation Reports
45.6. Additional Simulation Report Options
45.7. Customizing Simulation Reports
45.7.1. Customizing Your Report Image Settings
45.7.2. Changing the Layout of Your Results
45.7.3. Customizing Your Report Settings Using Templates
45.7.4. Adding Additional Graphics to Your Report
45.7.5. Hiding and Showing Report Sections
45.8. Generating Reports Using the Text User Interface (TUI)
46. Performing Parametric Studies
46.1. Prerequisites
46.2. Limitations
46.3. Getting Started With Your Parametric Study
46.4. Using the Parametric Ribbon
46.5. Using the Outline View for Parametric Studies
46.6. Working With the Design Point Table
46.6.1. Customizing the Design Point Table
46.6.2. Updating Design Points
46.6.2.1. Updating Design Points in the Same Session Versus a New Session
46.6.2.1.1. Running Locally Concurrent Design Point Updates with GPUs
46.6.2.2. Updating the Current Design Point
46.6.2.3. Updating All Design Points
46.6.3. Adding Design Points
46.6.3.1. Manually Adding Design Points
46.6.3.2. Automatically Adding Design Points
46.6.3.2.1. Creating Designs of Experiments for optiSLang
46.6.3.2.2. Creating and Optimizing Designs of Experiments for optiSLang
46.6.3.2.2.1. Configuring optiSLang AMOP Settings
46.6.3.2.2.2. Configuring optiSLang One-Click Settings
46.6.4. Operating on Design Points
46.6.5. Importing and Exporting Design Point Tables
46.6.6. Saving Journals When Updating Design Points
46.6.7. Accounting for Mesh Morphing During Parametric Updates
46.6.8. Parametric Design Point Process Details and Case Change Considerations
46.6.8.1. Initializing Design Point Data
46.6.8.2. Reusing Your Case File
46.6.8.3. Managing Case File Changes
46.6.8.4. Managing Case Changes During Design Point Updates
46.7. Monitoring and Viewing Design Point Update Status
46.7.1. Exporting Parametric Designs to optiSLang
46.7.2. Comparing Parametric Plots
46.7.3. Customizing Graphical Plots
46.8. Creating Simulation Reports for Design Points and Parametric Studies
46.8.1. Creating Design Point Reports for Your Simulation
46.8.1.1. Accessing Design Point Report Settings
46.8.1.2. Overview of Design Point Report Settings
46.8.1.3. Generating, Viewing, and Saving Your Design Point Reports
46.8.2. Creating Parametric Reports for Your Simulation
46.8.2.1. Accessing Parametric Report Settings
46.8.2.2. Overview of Parametric Report Settings
46.8.2.3. Comparing Parametric Results
46.8.2.4. Generating, Viewing, and Saving Your Parametric Reports
46.9. Setting Preferences for Parametric Studies
46.10. Viewing the Current Case Parameters
46.11. Managing Files for Your Parametric Studies
46.11.1. Organizing Parametric Studies Using Projects
46.11.1.1. Reading and Writing Project Files
46.11.1.2. Using the Parametric Project View
46.11.2. Managing Design Point Files
46.11.3. Using Lightweight Parametric Projects
47. Remotely Accessing Your Simulations Using Ansys Fluent's Web Interface
47.1. Overview
47.1.1. Requirements
47.1.2. Limitations
47.2. Getting Started With Ansys Fluent's Web Interface
47.2.1. Specifying Web Server Details
47.2.2. Connecting to Your Simulation Web Sessions
47.3. Using Ansys Fluent's Web Interface
47.3.1. Overview of the Graphical Interface
47.3.1.1. The Main Menu
47.3.1.2. The Outline View
47.3.1.3. The Graphics Window
47.3.1.4. The View Arc
47.3.1.5. The Status Bar
47.3.1.6. The Stage Navigator
47.3.1.7. The Console Panel
47.3.1.7.1. Using the Console to Interact with Your Session Using Python
47.3.1.8. The Results Arc
47.3.1.9. The Plots View
47.3.1.10. Property Panels
47.3.1.11. Working with Units
47.3.1.12. Working with Expressions
47.3.1.13. Editing Multiple Objects at Once
47.3.2. Interacting with Your Simulation Setup
47.3.2.1. Accessing General Settings
47.3.2.2. Accessing Model Settings
47.3.2.3. Accessing Material Settings
47.3.2.4. Accessing Cell Zone Settings
47.3.2.5. Accessing Boundary Condition Settings
47.3.2.6. Accessing Reference Values Settings
47.3.2.7. Accessing Reference Frame Settings
47.3.2.8. Accessing Named Expression Settings
47.3.3. Interacting with Your Solution Settings
47.3.3.1. Setting Solution Methods
47.3.3.2. Setting Solution Controls
47.3.3.3. Setting Report Definitions
47.3.3.4. Setting Solution Monitors
47.3.3.5. Initializing the Solution
47.3.3.6. Running the Calculations
47.3.3.7. Interrupting and Pausing Calculations
47.3.4. Interacting with the Results of Your Simulation
47.3.4.1. Working With Surfaces and Your Simulation Results
47.3.4.1.1. Creating and Displaying Point Surfaces
47.3.4.1.2. Creating and Displaying Line Surfaces
47.3.4.1.3. Creating and Displaying Rake Surfaces
47.3.4.1.4. Creating and Displaying Plane Surfaces
47.3.4.1.5. Creating and Displaying Iso Surfaces
47.3.4.1.6. Creating and Displaying Iso-Clip Surfaces
47.3.4.1.7. Creating and Displaying Transform Surfaces
47.3.4.1.8. Creating and Displaying Plane Slice Surfaces
47.3.4.1.9. Creating and Displaying Sphere Slice Surfaces
47.3.4.1.10. Creating and Displaying Quadric Surfaces
47.3.4.2. Working With Graphics Objects and Your Simulation Results
47.3.4.2.1. Creating and Displaying Mesh Objects
47.3.4.2.2. Creating and Displaying Contours Objects
47.3.4.2.3. Creating and Displaying Vector Objects
47.3.4.2.4. Creating and Displaying Pathline Objects
47.3.4.2.5. Creating and Displaying Mirror Plane Objects
47.3.4.2.5.1. Creating New Mirror Planes
47.3.4.2.5.2. Applying Your Mirror Planes
47.3.4.3. Working With Plots and Your Simulation Results
47.3.4.3.1. Creating and Displaying XY Plots
47.3.4.3.2. Generating Histogram Data
47.3.4.3.3. Generating Cumulative Data
47.3.4.3.4. Viewing Residual Plots
47.3.4.3.5. Viewing Report Definition Plots
47.3.4.3.6. Displaying Multiple Plots
47.3.4.3.7. Analyzing Data in Plots
47.3.4.4. Creating and Displaying Scenes and Your Simulation Results
47.3.4.5. Creating and Displaying Reports for Your Simulation Results
47.3.5. Working With Parameters
47.4. Setting Up Your Environment (System Administrators)
47.4.1. Supporting HTTPS
48. Design Analysis and Optimization
48.1. The Adjoint Solver
48.1.1. General Observables
48.1.2. General Operations
48.1.3. Discrete Versus Continuous Adjoint Solver
48.1.4. Discrete Adjoint Solver Overview
48.1.5. Adjoint Solver Stabilization
48.1.6. Solution-Based Adaption
48.1.7. Using The Data To Improve A Design
48.1.7.1. Smoothing and Mesh Morphing
48.1.7.1.1. Polynomials-Based Approach
48.1.7.1.2. Direct Interpolation Method
48.1.7.1.3. Radial Basis Function
48.2. Using the Adjoint Solver
48.2.1. Model Considerations for Using Adjoint Solver
48.2.1.1. Basic Assumptions and Consistency Checks
48.2.1.2. User-Defined Sources
48.2.2. Defining Observables
48.2.2.1. Creating New Observables
48.2.2.2. Editing Observable Definitions
48.2.2.3. Defining Observables Using Expressions
48.2.2.4. Selecting an Observable for Sensitivity Calculation
48.2.2.5. Defining Observables for Turbulence Model Optimization
48.2.3. Solving the Adjoint
48.2.3.1. Using the Adjoint Solution Methods Dialog Box
48.2.3.2. Using the Adjoint Solution Controls Dialog Box
48.2.3.2.1. Stabilization Strategies, Schemes, and Settings
48.2.3.2.1.1. Dissipation Scheme
48.2.3.2.1.2. Residual Minimization Scheme
48.2.3.3. Working with Adjoint Residual Monitors
48.2.3.4. Printing and Postprocessing the Adjoint Equation Residuals
48.2.3.5. Running the Adjoint Calculation
48.2.3.5.1. Automatic Saving of Case and Data Files During an Adjoint Calculation
48.2.4. Postprocessing of Adjoint Solutions
48.2.4.1. Using the Adjoint Postprocess Options Dialog Box
48.2.4.2. Field Data
48.2.4.3. Scalar Data
48.2.5. Modifying the Geometry Using the Design Tool
48.2.5.1. Defining the Region for the Design Change
48.2.5.2. Defining Region Conditions
48.2.5.3. Defining Observable Objectives
48.2.5.4. Defining Conditions for the Deformation
48.2.5.5. Design Tool Numerics
48.2.5.6. Shape Modification
48.2.6. Using the Gradient-Based Optimizer
48.2.6.1. Using the Turbulence Model Design Tool
48.2.6.1.1. Turbulence Model Optimization Strategies
48.2.6.1.1.1. Online Mode Optimization
48.2.6.1.1.2. Offline Mode Optimization
48.2.6.1.2. Defining the Design Region
48.2.6.1.3. Defining Optimizer Design Variable Settings
48.2.6.1.3.1. Defining Design Variables for Optimization
48.2.6.1.3.2. Defining the Model for Design Variables
48.2.6.1.3.2.1. Defining Neural Network Model Settings
48.2.6.1.3.2.2. Defining Offline Training Settings
48.2.6.1.3.3. Verifying the Trained Turbulence Model
48.2.6.1.3.4. Managing Trained Turbulence Models
48.3. Geometry Parameterization and Exploration
48.4. The Mesh Morpher/Optimizer
48.4.1. Limitations
48.4.2. The Optimization Process
48.4.3. Optimizers
48.4.3.1. The Compass Optimizer
48.4.3.2. The NEWUOA Optimizer
48.4.3.3. The Simplex Optimizer
48.4.3.4. The Torczon Optimizer
48.4.3.5. The Powell Optimizer
48.4.3.6. The Rosenbrock Optimizer
48.5. Using the Mesh Morpher/Optimizer
49. Performing System Coupling Simulations Using Fluent
49.1. Supported Capabilities and Limitations
49.2. Performing System Coupling in the GUI or CLI
49.2.1. Generating a System Coupling Setup File
49.2.2. Using Custom Input Files in System Coupling's User Interfaces
49.2.2.1. Setting the Fluent Input Option
49.2.2.2. Generating a Fluent Journal Script
49.3. Performing System Coupling in Ansys Workbench
49.4. Variables Available for System Coupling
49.4.1. Force transferred to System Coupling from a Wall Boundary
49.4.2. Force transferred to System Coupling from a Porous Jump Boundary
49.4.3. Displacement transferred from System Coupling
49.4.4. Displacement transferred from System Coupling to a Sliding Mesh Zone
49.4.5. Absolute Pressure Example
49.5. System Coupling Related Settings in Fluent
49.6. FSI Setup Recommendations for Fluent-Mechanical Couplings
49.6.1. Using Contact Detection for Fluent-Mechanical FSI Problems
49.6.2. Recommendations for Dynamic Mesh Settings for Fluent-Mechanical FSI
49.6.3. Pathologies & Candidate Resolutions for Fluent-Mechanical FSI
49.6.3.1. Mesh Folds within the First Coupling Steps
49.6.3.2. Deformed Prism Layers
49.6.3.2.1. Using Boundary Layer Smoothing and Region Face Remeshing
49.6.3.2.2. Overset Meshes
49.6.3.3. Interior Elements have High Skewness or Are Too Large/small
49.6.3.4. Divergence if Flow Block-Off is Established at the Beginning of a Run
49.7. How Fluent's Execution is Affected by System Couplings
49.8. Restarting Fluent Analyses as Part of System Couplings
49.8.1. Generating Fluent Restart Files
49.8.2. Specify a Restart Point in Fluent
49.8.3. Making Setup Changes Before Restarting
49.8.4. Recovering the Fluent Restart Point after a Workbench Crash
49.9. System Coupling case with Fluent using Patched Data
49.10. Running Fluent as a Participant from System Coupling's GUI or CLI
49.11. Troubleshooting Two-Way Coupled Analysis Problems
49.12. Product Licensing Considerations when using System Coupling
50. Customizing Fluent
51. Task Page Reference Guide
51.1. Meshing Task Page
51.2. Setup Task Page
51.3. General Task Page
51.3.1. Scale Mesh Dialog Box
51.3.2. Mesh Display Dialog Box
51.3.3. Set Units Dialog Box
51.3.4. Define Unit Dialog Box
51.3.5. Mesh Colors Dialog Box
51.4. Models Task Page
51.4.1. Multiphase Model Dialog Box
51.4.2. Energy Dialog Box
51.4.3. Viscous Model Dialog Box
51.4.4. Radiation Model Dialog Box
51.4.5. View Factors and Clustering Dialog Box
51.4.6. Participating Boundary Zones Dialog Box
51.4.7. Solar Calculator Dialog Box
51.4.8. Heat Exchanger Model Dialog Box
51.4.9. Dual Cell Heat Exchanger Dialog Box
51.4.10. Set Dual Cell Heat Exchanger Dialog Box
51.4.11. Heat Transfer Data Table Dialog Box
51.4.12. NTU Table Dialog Box
51.4.13. Copy From Dialog Box
51.4.14. Ungrouped Macro Heat Exchanger Dialog Box
51.4.15. Velocity Effectiveness Curve Dialog Box
51.4.16. Core Porosity Model Dialog Box
51.4.17. Macro Heat Exchanger Group Dialog Box
51.4.18. Species Model Dialog Box
51.4.19. Coal Calculator Dialog Box
51.4.20. Integration Parameters Dialog Box
51.4.21. Flamelet 3D Surfaces Dialog Box
51.4.22. Flamelet 2D Curves Dialog Box
51.4.23. Unsteady Flamelet Parameters Dialog Box
51.4.24. Flamelet Fluid Zones Dialog Box
51.4.25. Select Transported Scalars Dialog Box
51.4.26. Distribution of Points Dialog Box
51.4.27. PDF Table Dialog Box
51.4.28. Spark Ignition Dialog Box
51.4.29. Set Spark Ignition Dialog Box
51.4.30. Autoignition Model Dialog Box
51.4.31. Inert Dialog Box
51.4.32. NOx Model Dialog Box
51.4.33. Soot Model Dialog Box
51.4.34. Sticking Coefficients Dialog Box
51.4.35. Mechanism Dialog Box
51.4.36. Reactor Network Dialog Box
51.4.37. Decoupled Detailed Chemistry Dialog Box
51.4.38. Reacting Channel Model Dialog Box
51.4.39. Reacting Channel 2D Curves Dialog Box
51.4.40. Discrete Phase Model Dialog Box
51.4.41. DEM Collisions Dialog Box
51.4.42. Create Collision Partner Dialog Box
51.4.43. Copy Collision Partner Dialog Box
51.4.44. Rename Collision Partner Dialog Box
51.4.45. DEM Collision Settings Dialog Box
51.4.46. Solidification and Melting Dialog Box
51.4.47. Acoustics Model Dialog Box
51.4.48. Acoustic Sources Dialog Box
51.4.49. Acoustic Receivers Dialog Box
51.4.50. Basic Shapes Dialog Box
51.4.51. Integration Surface Dialog Box
51.4.52. Interior Cell Zone Selection Dialog Box
51.4.53. Structural Model Dialog Box
51.4.54. Eulerian Wall Film Dialog Box
51.4.55. Battery Model Dialog Box
51.4.56. Standalone Echem Model Dialog Box
51.4.57. Potential/Electrochemistry Dialog Box
51.5. Materials Task Page
51.5.1. Create/Edit Materials Dialog Box
51.5.2. Fluent Database Materials Dialog Box
51.5.3. GRANTA MDS Materials Dialog Box
51.5.4. Open Database Dialog Box
51.5.5. User-Defined Database Materials Dialog Box
51.5.6. Copy Case Material Dialog Box
51.5.7. Material Properties Dialog Box
51.5.8. Edit Property Methods Dialog Box
51.5.9. New Material Name Dialog Box
51.5.10. Polynomial Profile Dialog Box
51.5.11. Piecewise-Linear Profile Dialog Box
51.5.12. Piecewise-Polynomial Profile Dialog Box
51.5.13. NASA-9-Coefficient Piecewise-Polynomial Profile Dialog Box
51.5.14. Model Options Dialog Box
51.5.15. Compressible Liquid Dialog Box
51.5.16. User-Defined Functions Dialog Box
51.5.17. Sutherland Law Dialog Box
51.5.18. Power Law Dialog Box
51.5.19. Non-Newtonian Power Law Dialog Box
51.5.20. Carreau Model Dialog Box
51.5.21. Cross Model Dialog Box
51.5.22. Herschel-Bulkley Dialog Box
51.5.23. Biaxial Conductivity Dialog Box
51.5.24. Cylindrical Orthotropic Conductivity Dialog Box
51.5.25. Orthotropic Conductivity Dialog Box
51.5.26. Anisotropic Conduction - Principal Components Dialog Box
51.5.27. Anisotropic Conductivity Dialog Box
51.5.28. Species Dialog Box
51.5.29. Reactions Dialog Box
51.5.30. Backward Reaction Parameters Dialog Box
51.5.31. Third-Body Efficiency Dialog Box
51.5.32. Pressure-Dependent Reaction Dialog Box
51.5.33. Coverage-Dependent Reaction Dialog Box
51.5.34. Reference Molar Concentrations Dialog Box
51.5.35. Reaction Mechanisms Dialog Box
51.5.36. Site Parameters Dialog Box
51.5.37. Mass Diffusion Coefficients Dialog Box
51.5.38. Thermal Diffusion Coefficients Dialog Box
51.5.39. UDS Diffusion Coefficients Dialog Box
51.5.40. WSGGM User Specified Dialog Box
51.5.41. Gray-Band Absorption Coefficient Dialog Box
51.5.42. Delta-Eddington Scattering Function Dialog Box
51.5.43. Gray-Band Refractive Index Dialog Box
51.5.44. Single Rate Model Dialog Box
51.5.45. Secondary Rate Model Dialog Box
51.5.46. Two Competing Rates Model Dialog Box
51.5.47. CPD Model Dialog Box
51.5.48. Kinetics/Diffusion-Limited Combustion Model Dialog Box
51.5.49. Intrinsic Combustion Model Dialog Box
51.5.50. Multiple Surface Reactions Dialog Box
51.5.51. Edit Material Dialog Box
51.6. Cell Zone Conditions Task Page
51.6.1. Fluid Dialog Box
51.6.2. Solid Dialog Box
51.6.3. Copy Conditions Dialog Box
51.6.4. Operating Conditions Dialog Box
51.6.5. Select Input Parameter Dialog Box
51.6.6. Profiles Dialog Box
51.6.7. Replicate Profile Dialog Box
51.6.8. Orient Profile Dialog Box
51.6.9. Write Profile Dialog Box
51.6.10. Select Profiles for Writing
51.7. Boundary Conditions Task Page
51.7.1. Axis Dialog Box
51.7.2. Degassing Dialog Box
51.7.3. Exhaust Fan Dialog Box
51.7.4. Fan Dialog Box
51.7.5. Inlet Vent Dialog Box
51.7.6. Intake Fan Dialog Box
51.7.7. Interface Dialog Box
51.7.8. Interior Dialog Box
51.7.9. Mass-Flow Inlet Dialog Box
51.7.10. Mass-Flow Outlet Dialog Box
51.7.11. Outflow Dialog Box
51.7.12. Outlet Vent Dialog Box
51.7.13. Overset Dialog Box
51.7.14. Periodic Dialog Box
51.7.15. Porous Jump Dialog Box
51.7.16. Pressure Far-Field Dialog Box
51.7.17. Pressure Inlet Dialog Box
51.7.18. Pressure Outlet Dialog Box
51.7.19. Radiator Dialog Box
51.7.20. RANS/LES Interface Dialog Box
51.7.21. Symmetry Dialog Box
51.7.22. Velocity Inlet Dialog Box
51.7.23. Wall Dialog Box
51.7.24. Periodic Conditions Dialog Box
51.7.25. Perforated Walls Dialog Box
51.8. Overset Interfaces Task Page
51.8.1. Create/Edit Overset Interfaces Dialog Box
51.9. Dynamic Mesh Task Page
51.9.1. Mesh Method Settings Dialog Box
51.9.2. Mesh Smoothing Parameters Dialog Box
51.9.3. Advanced Remeshing Settings Dialog Box
51.9.4. Mesh Scale Info Dialog Box
51.9.5. Options Dialog Box
51.9.6. In-Cylinder Output Controls Dialog Box
51.9.7. Six DOF Properties Dialog Box
51.9.8. Periodic Displacement Group Dialog Box
51.9.9. Periodic Displacement Properties Dialog Box
51.9.10. Flow Control Settings Dialog Box
51.9.11. Dynamic Mesh Events Dialog Box
51.9.12. Define Event Dialog Box
51.9.13. Events Preview Dialog Box
51.9.14. Dynamic Mesh Zones Dialog Box
51.9.15. Orientation Calculator Dialog Box
51.9.16. Zone Scale Info Dialog Box
51.9.17. Zone Motion Dialog Box
51.9.18. Mesh Motion Dialog Box
51.9.19. Autosave Case During Mesh Motion Preview Dialog Box
51.10. Reference Values Task Page
51.11. Solution Task Page
51.12. Solution Methods Task Page
51.12.1. Relaxation Options Dialog Box
51.13. Solution Controls Task Page
51.13.1. Equations Dialog Box
51.13.2. Solution Limits Dialog Box
51.13.3. Advanced Solution Controls Dialog Box
51.14. Solution Initialization Task Page
51.14.1. Acoustics Initialization Dialog Box
51.14.2. Patch Dialog Box
51.14.3. Full-Multigrid (FMG) Initialization Dialog Box
51.14.4. Hybrid Initialization Dialog Box
51.15. Calculation Activities Task Page
51.15.1. Autosave Dialog Box
51.15.2. Data File Quantities Dialog Box
51.15.3. Automatic Export Dialog Box
51.15.4. Automatic Particle History Data Export Dialog Box
51.15.5. Execute Commands Manager Dialog Box
51.15.6. Execute Commands Dialog Box
51.15.7. Define Macro Dialog Box
51.15.8. Case Modification Manager Dialog Box
51.15.9. Auto Initialization Method Dialog Box
51.15.10. Modify Case Dialog Box
51.16. Run Calculation Task Page
51.16.1. Case Check Dialog Box
51.16.2. Adaptive Time Stepping Dialog Box
51.16.3. Simulation Status Dialog Box
51.16.4. Solution Steering Dialog Box
51.16.5. Acoustic Sources FFT Dialog Box
51.16.6. Acoustic Signals Dialog Box
51.16.7. Sampling Options Dialog Box
51.16.8. Zone-Specific Sampling Options Dialog Box
51.17. Results Task Page
51.18. Graphics and Animations Task Page
51.18.1. Profile Options Dialog Box
51.18.2. Vector Options Dialog Box
51.18.3. Custom Vectors Dialog Box
51.18.4. Vector Definitions Dialog Box
51.18.5. Path Style Attributes Dialog Box
51.18.6. Ribbon Attributes Dialog Box
51.18.7. Particle Filter Attributes Dialog Box
51.18.8. Reporting Variables Dialog Box
51.18.9. Track Style Attributes Dialog Box
51.18.10. Particle Sphere Style Attributes Dialog Box
51.18.11. Particle Vector Style Attributes Dialog Box
51.18.12. Sweep Surface Dialog Box
51.18.13. Create Surface Dialog Box
51.18.14. Animate Dialog Box
51.18.15. Save Picture Dialog Box
51.18.16. Playback Dialog Box
51.18.17. Video Options Dialog Box
51.18.18. Advanced Video Quality Options Dialog Box
51.18.19. Display Options Dialog Box
51.18.20. Scene Description Dialog Box
51.18.21. Display Properties Dialog Box
51.18.22. Transformations Dialog Box
51.18.23. Iso-Value Dialog Box
51.18.24. Pathline Attributes Dialog Box
51.18.25. Bounding Frame Dialog Box
51.18.26. Views Dialog Box
51.18.27. Write Views Dialog Box
51.18.28. Mirror Planes Dialog Box
51.18.29. Periodic Instancing Dialog Box
51.18.30. Camera Parameters Dialog Box
51.18.31. Lights Dialog Box
51.18.32. Colormap Dialog Box
51.18.33. Colormap Editor Dialog Box
51.18.34. Annotate Dialog Box
51.19. Plots Task Page
51.19.1. Solution XY Plot Dialog Box
51.19.2. Histogram Dialog Box
51.19.3. Plot Data Sources Dialog Box
51.19.4. Plot Profile Data Dialog Box
51.19.5. Plot Interpolated Data Dialog Box
51.19.6. Fourier Transform Dialog Box
51.19.7. Ansys Sound Analysis Dialog Box
51.19.8. Cumulative Plot Dialog Box
51.19.9. Plot/Modify Input Signal Dialog Box
51.19.10. Axes Dialog Box
51.19.11. Curves Dialog Box
51.20. Reports Task Page
51.20.1. Flux Reports Dialog Box
51.20.2. Force Reports Dialog Box
51.20.3. Projected Surface Areas Dialog Box
51.20.4. Surface Integrals Dialog Box
51.20.5. Volume Integrals Dialog Box
51.20.6. Sample Trajectories Dialog Box
51.20.7. Trajectory Sample Histograms Dialog Box
51.20.8. Particle Summary Dialog Box
51.20.9. Heat Exchanger Report Dialog Box
51.20.10. Parameters Dialog Box
51.20.11. Use Input Parameter in Scheme Procedure Dialog Box
51.20.12. Use Input Parameter for UDF Dialog Box
51.20.13. Rename Dialog Box
51.20.14. Parameter Expression Dialog Box
51.20.15. Save Output Parameter Dialog Box
51.21. Parameters and Customization Task Page
52. Ribbon Reference Guide
52.1. File Ribbon Tab
52.1.1. File/Read/Mesh...
52.1.1.1. Read Mesh Options Dialog Box
52.1.2. File/Read/Case...
52.1.3. File/Read/Data...
52.1.4. File/Read/Case & Data...
52.1.5. File/Read/Case Settings Only...
52.1.6. File/Read/Case/Mesh Info...
52.1.7. File/Read/PDF...
52.1.8. File/Read/ISAT Table...
52.1.9. File/Read/DTRM Rays...
52.1.10. File/Read/View Factors...
52.1.11. File/Read/Profile...
52.1.12. File/Read/Scheme...
52.1.13. File/Read/Journal...
52.1.14. File/Write/Case...
52.1.15. File/Write/Data...
52.1.16. File/Write/Case & Data...
52.1.17. File/Write/PDF...
52.1.18. File/Write/ISAT Table...
52.1.19. File/Write/Flamelet...
52.1.20. File/Write/Profile...
52.1.21. File/Write/Autosave...
52.1.22. File/Write/Boundary Mesh...
52.1.23. File/Write/Start Journal...
52.1.24. File/Write/Stop Journal
52.1.25. File/Write/Start Transcript...
52.1.26. File/Write/Stop Transcript
52.1.27. File/Import/ABAQUS/Input File...
52.1.28. File/Import/ABAQUS/Filbin File...
52.1.29. File/Import/ABAQUS/ODB File...
52.1.30. File/Import/CFX/Definition File...
52.1.31. File/Import/CFX/Result File...
52.1.32. File/Import/CGNS/Mesh...
52.1.33. File/Import/CGNS/Data...
52.1.34. File/Import/CGNS/Mesh & Data...
52.1.35. File/Import/EnSight...
52.1.36. File/Import/FIDAP...
52.1.37. File/Import/GAMBIT...
52.1.38. File/Import/HYPERMESH ASCII...
52.1.39. File/Import/LSTC/Input File...
52.1.40. File/Import/LSTC/State File...
52.1.41. File/Import/Marc POST...
52.1.42. File/Import/NASTRAN/Bulkdata File...
52.1.43. File/Import/NASTRAN/Op2 File...
52.1.44. File/Import/PLOT3D/Grid File...
52.1.45. File/Import/PLOT3D/Result File...
52.1.46. File/Import/Tecplot...
52.1.47. File/Import/Partition/Metis...
52.1.48. File/Import/Partition/Metis Zone...
52.1.49. File/Import/CHEMKIN Mechanism...
52.1.49.1. Import CHEMKIN Format Mechanism Dialog Box
52.1.50. File/Import/FMU...
52.1.51. File/Export/Solution Data...
52.1.51.1. Export Dialog Box
52.1.52. File/Export/Particle History Data...
52.1.52.1. Export Particle History Data Dialog Box
52.1.53. File/Export/During Calculation/Solution Data...
52.1.54. File/Export/During Calculation/Particle History Data...
52.1.55. File/Export to CFD-Post...
52.1.55.1. Export to CFD-Post Dialog Box
52.1.56. File/Table File Manager...
52.1.57. File/Solution Files...
52.1.57.1. Solution Files Dialog Box
52.1.58. File/Interpolate...
52.1.58.1. Interpolate Data Dialog Box
52.1.59. File/FSI Mapping/Volume...
52.1.59.1. Volume FSI Mapping Dialog Box
52.1.60. File/FSI Mapping/Surface...
52.1.60.1. Surface FSI Mapping Dialog Box
52.1.61. File/Save Picture...
52.1.62. File/Data File Quantities...
52.1.63. File/Batch Options...
52.1.63.1. Batch Options Dialog Box
52.1.64. File/Idle Timeout...
52.1.64.1. Set Idle Timeout Dialog Box
52.1.65. File/Exit
52.2. Dialog Boxes Available from the Ribbon
52.2.1. 1D Simulation Library Dialog Box
52.2.2. Activate Cell Zones Dialog Box
52.2.3. Adaption Criteria Settings Dialog Box
52.2.4. Adjacency Dialog Box
52.2.5. Advanced Options Dialog Box
52.2.6. Aerodamping (Influence Coefficient Method) Report Definition Dialog Box
52.2.7. Aerodamping (Travelling Wave Method) Report Definition Dialog Box
52.2.8. Animation Definition Dialog Box
52.2.9. Application About to Exit Dialog Box
52.2.10. Auto Partition Mesh Dialog Box
52.2.11. Automatic Mesh Adaption Dialog Box
52.2.12. Cell Count Report Definition Dialog Box
52.2.13. Cell Register Display Options Dialog Box
52.2.14. Compiled UDFs Dialog Box
52.2.15. Conduction Layers Dialog Box
52.2.16. Conduction Manager Dialog Box
52.2.17. Contours Dialog Box
52.2.18. Convergence Conditions Dialog Box
52.2.19. Create Mesh Interfaces
52.2.20. Create/Edit Mesh Interfaces Dialog Box
52.2.21. Create/Edit Turbo Interfaces Dialog Box
52.2.22. Curvilinear Coordinate System Dialog Box
52.2.23. Custom Field Function Calculator Dialog Box
52.2.24. Custom Laws Dialog Box
52.2.25. Dashboard Definition Dialog Box
52.2.26. Deactivate Cell Zones Dialog Box
52.2.27. Define Control Points Dialog Box
52.2.28. Delete Cell Zones Dialog Box
52.2.29. Display Options - Adaption Dialog Box
52.2.30. Display States Dialog Box
52.2.31. DPM Report Definition Dialog Box
52.2.32. DPM Source Report Definition Dialog Box
52.2.33. Drag Report Definition Dialog Box
52.2.34. DTRM Graphics Dialog Box
52.2.35. DTRM Rays Dialog Box
52.2.36. Edit Gap Region Dialog Box
52.2.37. Edit Mesh Interfaces Dialog Box
52.2.38. Edit Report File Dialog Box
52.2.39. Edit Report Plot Dialog Box
52.2.40. Execute on Demand Dialog Box
52.2.41. Expression Dialog Box
52.2.42. Expression Editor Dialog Box
52.2.43. Expression Manager Dialog Box
52.2.44. Expression Report Definition Dialog Box
52.2.45. Expression Volume Dialog Box
52.2.46. Face Count Report Definition Dialog Box
52.2.47. Field Function Definitions Dialog Box
52.2.48. Flux Report Definition Dialog Box
52.2.49. Force Report Definition Dialog Box
52.2.50. Fuse Face Zones Dialog Box
52.2.51. Gap Model Dialog Box
52.2.52. General Adaption Controls Dialog Box
52.2.53. Generalized/Modal Force Report Definition Dialog Box
52.2.54. Geometry Based Adaption Controls Dialog Box
52.2.55. Geometry Based Adaption Dialog Box
52.2.56. Import Particle Data Dialog Box
52.2.57. Imprint Surface Dialog Box
52.2.58. Improve Mesh Dialog Box
52.2.59. Injections Dialog Box
52.2.60. Input Summary Dialog Box
52.2.61. Interface Creation Options Dialog Box
52.2.62. Interpreted UDFs Dialog Box
52.2.63. Iso-Clip Dialog Box
52.2.64. Iso-Surface Dialog Box
52.2.65. Lift Report Definition Dialog Box
52.2.66. Line Integral Convolutions Dialog Box
52.2.67. Line/Rake Surface Dialog Box
52.2.68. Manual Mesh Adaption Dialog Box
52.2.69. Manage Adaption Criteria Dialog Box
52.2.70. Manage Geometry-Based Adaption Dialog Box
52.2.71. Manage Sponge Layers Dialog Box
52.2.72. Mapped Interface Options Dialog Box
52.2.73. Material Editor Dialog Box
52.2.74. Measure Dialog Box
52.2.75. Merge Zones Dialog Box
52.2.76. Mesh Interfaces Dialog Box
52.2.77. Mesh Morpher/Optimizer Dialog Box
52.2.78. Mixing Planes Dialog Box
52.2.79. Moment Report Definition Dialog Box
52.2.80. Motion Settings Dialog Box
52.2.81. Multi Edit Dialog Box
52.2.82. New Report File Dialog Box
52.2.83. New Report Plot Dialog Box
52.2.84. Objective Function Definition Dialog Box
52.2.85. Optimization History Monitor Dialog Box
52.2.86. Parallel Connectivity Dialog Box
52.2.87. Parameter Bounds Dialog Box
52.2.88. Particle Tracks Dialog Box
52.2.89. Partition Surface Dialog Box
52.2.90. Partitioning and Load Balancing Dialog Box
52.2.91. Pathlines Dialog Box
52.2.92. PCB Model Dialog Box
52.2.93. Plane Surface Dialog Box
52.2.94. Point Surface Dialog Box
52.2.95. Quadric Surface Dialog Box
52.2.96. Raytracing Display Dialog Box
52.2.97. Reduced Order Model Dialog Box
52.2.98. Reference Frame Dialog Box
52.2.99. Replace Cell Zone Dialog Box
52.2.100. Report Definitions Dialog Box
52.2.101. Report File Definitions Dialog Box
52.2.102. Report Plot Definitions Dialog Box
52.2.103. Residual Monitors Dialog Box
52.2.104. Rotate Mesh Dialog Box
52.2.105. S2S Information Dialog Box
52.2.106. Select UDM Zones Dialog Box
52.2.107. Select Window Dialog Box
52.2.108. Separate Cell Zones Dialog Box
52.2.109. Separate Face Zones Dialog Box
52.2.110. Set Injection Properties Dialog Box
52.2.111. Set Multiple Injection Properties Dialog Box
52.2.112. Sponge Layer Dialog Box
52.2.113. Structural Point Surface Dialog Box
52.2.114. Surface Meshes Dialog Box
52.2.115. Surface Rendering Properties Dialog Box
52.2.116. Surface Report Definition Dialog Box
52.2.117. Surfaces Dialog Box
52.2.118. Thread Control Dialog Box
52.2.119. Time Averaged Explicit Thermal Coupling Dialog Box
52.2.120. Transform Surface Dialog Box
52.2.121. Translate Mesh Dialog Box
52.2.122. Turbo 2D Contours Dialog Box
52.2.123. Turbo Averaged Contours Dialog Box
52.2.124. Turbo Averaged XY Plot Dialog Box
52.2.125. Turbo Options Dialog Box
52.2.126. Turbo Report Dialog Box
52.2.127. Turbo Topology Dialog Box
52.2.128. UDF Library Manager Dialog Box
52.2.129. User-Defined Fan Model Dialog Box
52.2.130. User-Defined Function Hooks Dialog Box
52.2.131. User-Defined Memory Dialog Box
52.2.132. User Defined Report Definition Dialog Box
52.2.133. User-Defined Scalars Dialog Box
52.2.134. Vectors Dialog Box
52.2.135. Volume Report Definition Dialog Box
52.2.136. Warning Dialog Box
52.2.137. Zone Surface Dialog Box
52.2.138. Zone Type Color and Material Assignment Dialog Box
A. Ansys Fluent Model Compatibility
B. Ansys Fluent File Formats
B.1. CFF File Format
B.1.1. CFF Case File Layout
B.1.2. CFF Solution Data File Layout
B.1.3. Variable Sized Data on Collected Element / Node Sets
B.2. Legacy Case and Data File Formats
B.2.1. Guidelines
B.2.2. Formatting Conventions in Binary and Formatted Files
B.2.3. Grid Sections
B.2.3.1. Comment
B.2.3.2. Header
B.2.3.3. Dimensions
B.2.3.4. Nodes
B.2.3.5. Periodic Shadow Faces
B.2.3.6. Cells
B.2.3.7. Faces
B.2.3.8. Face Tree
B.2.3.9. Cell Tree
B.2.3.10. Interface Face Parents
B.2.3.11. Example Files
B.2.3.11.1. Example 1
B.2.3.11.2. Example 2
B.2.3.11.3. Example 3
B.2.4. Other (Non-Grid) Legacy Case Sections
B.2.4.1. Zone
B.2.4.2. Partitions
B.2.5. Data Sections
B.2.5.1. Grid Size
B.2.5.2. Data Field
B.2.5.3. Residuals
B.3. Mesh Morpher/Optimizer File Formats
B.4. Conduction Settings File Format
B.5. 3D Fan Curve File Format
C. Controlling CHEMKIN-CFD Solver Parameters Using Text Commands
C.1. Advanced Parameters Used in the Steady-State Solution Algorithm
C.2. Setting Up Monitor Cells for the Ansys CHEMKIN-CFD Chemistry Solver
C.3. Diagnostic Files and Error Messages
C.4. Error Messages Printed in the Ansys Fluent Graphical User Interface
C.5. Diagnostic Messages in the KINetics-log.txt File
D. Nomenclature
Bibliography