Expand/Collapse all
What You Need to Know
1. Brake Squeal Analysis
1.1. Introduction
1.2. Problem Description
1.3. Modeling
1.3.1. Understanding the Advantages of Contact Element Technology
1.3.2. Modeling Contact Pairs
1.3.3. Generating Internal Sliding Motion
1.3.4. Meshing the Brake Disc-Pad Model
1.4. Material Properties
1.5. Boundary Conditions and Loading
1.6. Analysis and Solution Controls
1.6.1. Linear Non-prestressed Modal Analysis
1.6.2. Partial Nonlinear Perturbed Modal Analysis
1.6.3. Full Nonlinear Perturbed Modal Analysis
1.7. Results and Discussion
1.7.1. Determining the Modal Behavior of Individual Components
1.7.2. Parametric Study with Increasing Friction Coefficient
1.8. Recommendations
1.9. References
1.10. Input Files
2. Nonlinear Analysis of a 2D Hyperelastic Seal Using Rezoning
2.1. Introduction
2.2. Problem Description
2.2.1. Understanding Requirements and Physical Behaviors
2.2.2. Using Rezoning to Repair Mesh Distortions
2.3. Modeling
2.3.1. Specific Modeling Details
2.4. Material Properties
2.5. Boundary Conditions and Loading
2.6. Analysis and Solution Controls
2.6.1. Common Solution Controls
2.6.2. Solution Controls for Each Load Step
2.6.3. Rezoning Considerations
2.7. Results and Discussion
2.8. Recommendations
2.9. References
2.10. Input Files
3. Fluid-Pressure-Penetration Analysis of a Sealing System
3.1. Introduction
3.2. Problem Description
3.3. Modeling
3.4. Material Properties
3.5. Boundary Conditions and Loading
3.6. Analysis and Solution Controls
3.7. Results and Discussion
3.8. Recommendations
3.9. Acknowledgments
3.10. Input Files
4. Ring-Gear Forging Simulation with Rezoning
4.1. Introduction
4.2. Problem Description
4.3. Modeling
4.3.1. Contact
4.4. Material Properties
4.5. Boundary Conditions and Loading
4.6. Analysis and Solution Controls
4.6.1. Solution Parameters and Analysis
4.6.2. Rezoning Techniques Applied to Ring-Gear Forging
4.7. Results and Discussion
4.8. Recommendations
4.9. References
4.10. Input Files
5. Delamination of a Stiffened Composite Panel Under a Compressive Load
5.1. Introduction
5.2. Problem Description
5.3. Modeling
5.4. Material Properties and Section Definitions
5.5. Boundary Conditions and Loading
5.6. Analysis and Solution Controls
5.7. Results and Discussion
5.8. Recommendations
5.9. Input Files
6. Thermal-Stress Analysis of a Cooled Turbine Blade
6.1. Introduction
6.2. Problem Description
6.3. Modeling
6.4. Material Properties
6.5. Boundary Conditions and Loading
6.6. Analysis and Solution Controls
6.7. Results and Discussion
6.8. Recommendations
6.9. References
6.10. Input Files
7. Nonlinear Transient Analysis of a Camshaft Assembly
7.1. Introduction
7.1.1. Differences Between General Axisymmetric and Harmonic Axisymmetric Elements
7.1.2. Where to Find More Information
7.2. Problem Description
7.3. Modeling
7.3.1. Camshaft Modeling
7.3.2. Contact Modeling
7.4. Material Properties
7.5. Boundary Conditions and Loading
7.6. Analysis and Solution Controls
7.7. Results and Discussion
7.7.1. Results Comparison: General Axisymmetric Model and Full 3D Model
7.8. Recommendations
7.9. Input Files
8. Nuclear Piping System Under Seismic Loading
8.1. Introduction
8.2. Problem Description
8.3. Modeling
8.3.1. Global Nuclear Piping System Model
8.3.2. Local Elbow Model Meshed with ELBOW290 Elements
8.3.3. Local Elbow Model Meshed with SHELL281 Elements
8.4. Material Properties
8.5. Boundary Conditions and Loading
8.5.1. Global Nuclear Piping System Model
8.5.2. Local Elbow Model Meshed with ELBOW290 Elements
8.5.3. Local Elbow Model Meshed with SHELL281 Elements
8.6. Analysis and Solution Controls
8.6.1. Modal Analysis of the Global Piping System Model
8.6.2. Nonlinear Static Analyses of the Local Elbow Models
8.7. Results and Discussion
8.7.1. Global Piping System: Modal Analysis Results
8.7.2. Local Elbow Models: Nonlinear Static Analysis Results
8.8. Recommendations
8.9. References
8.10. Input Files
9. Reliability Study of a Composite Overwrapped Pressure Vessel
9.1. Introduction
9.2. Problem Description
9.3. Modeling
9.4. Material Properties
9.5. Boundary Conditions and Loading
9.6. Analysis and Solution Controls
9.7. Results and Discussion
9.8. Recommendations
9.9. References
9.10. Input Files
10. Lumbar Motion Segment Simulation
10.1. Introduction
10.2. Problem Description
10.3. Modeling
10.4. Material Properties
10.5. Boundary Conditions and Loading
10.6. Analysis and Solution Controls
10.7. Results and Discussion
10.8. References
10.9. Input Files
11. Rocket Nozzle Extension Simulation: Fabrication
11.1. Introduction
11.2. Problem Description
11.3. Modeling
11.4. Material Properties
11.5. Boundary Conditions and Loading
11.6. Analysis and Solution Controls
11.7. Results and Discussion
11.8. Recommendations
11.9. References
11.10. Input Files
12. Dynamic Simulation of a Nuclear Piping System Using RSA Methods
12.1. Introduction
12.2. Problem Description
12.3. Modeling
12.3.1. BM3 Piping System Modeling
12.3.2. Elastic Support Modeling
12.4. Material Properties
12.5. Boundary Conditions and Loading
12.6. Analysis and Solution Controls
12.6.1. Response-Spectrum Analysis Summary
12.6.2. Full-Transient Analysis Summary
12.7. Results and Discussion
12.7.1. Results Comparison of the Time-History and Response-Spectrum Analyses
12.8. Recommendations
12.9. References
12.10. Input Files
13. Centrifugal Impeller Analysis Using Cyclic Symmetry and Linear Perturbation
13.1. Introduction
13.2. Problem Description
13.3. Modeling
13.3.1. Impeller Blade Modeling
13.3.2. Contact Modeling
13.4. Material Properties
13.5. Boundary Conditions and Loading
13.6. Analysis and Solution Controls
13.6.1. Modal Cyclic Symmetry Analysis
13.6.2. Linear Prestressed Modal Cyclic Symmetry Analysis with Linear Perturbation
13.6.3. Nonlinear Prestressed Modal Cyclic Symmetry Analysis with Linear Perturbation
13.6.4. Full-Harmonic Cyclic Symmetry Analysis
13.6.5. Nonlinear Prestressed Full-Harmonic Cyclic Symmetry Analysis with Linear Perturbation
13.6.6. Nonlinear Prestressed Mode-Superposition Harmonic Cyclic Symmetry Analysis with Linear Perturbation
13.7. Results and Discussion
13.7.1. Performance Benefits of Cyclic Symmetry Analysis
13.7.2. Performance Benefits of the Frequency-Sweep Method (HROPT,VT)
13.8. Recommendations
13.9. References
13.10. Input Files
14. Rotordynamics of a Shaft Assembly Based on a Representative Model of Nelson-Vaugh Rotor
14.1. Introduction
14.2. Problem Description
14.3. Modeling
14.3.1. 3D Modeling of Flexible Rotor Component
14.3.2. Axisymmetric Modeling of the Flexible Rotor Component from 3D Geometry
14.3.3. Disk and Bearing Modeling
14.4. Material Properties
14.5. Boundary Conditions and Loading
14.6. Analysis and Solution Controls
14.6.1. Modal Analysis
14.6.2. Campbell Diagram Analysis
14.6.3. Unbalance Response Analysis
14.7. Results and Discussion
14.7.1. Performance Benefits of the 2D Axisymmetric Model
14.8. Recommendations
14.9. References
14.10. Input Files
15. Calibrating and Validating a Hyperelastic Constitutive Model
15.1. Introduction
15.2. Problem Description
15.3. Material Properties
15.3.1. Calibration Experiments
15.3.2. Validation Experiment
15.4. Analysis and Solution Controls
15.4.1. Calibrating Parameters
15.4.2. Validating Parameters
15.5. Results and Discussion
15.5.1. Calibration Results
15.5.2. Validation Results
15.6. Recommendations
15.7. References
15.8. Input Files
16. Evaluation of Mixed-Mode Stress Intensity Factors and T-stress for 3D Surface Flaws
16.1. Introduction
16.2. Problem Description
16.2.1. Rectangular Block with a Semicircular Surface Flaw
16.2.2. X-Joint Pipe with Warped Surface Flaw
16.3. Modeling
16.4. Material Properties
16.5. Boundary Conditions and Loading
16.6. Analysis and Solution Controls
16.7. Results and Discussion
16.7.1. Rectangular Block with Semicircular Surface Flaw
16.7.2. X-joint Pipe with Warped Flaw
16.8. Recommendations
16.9. References
16.10. Input Files
17. Impact of a Metal Bar on a Rigid Wall
17.1. Introduction
17.2. Problem Description
17.3. Modeling
17.3.1. Impact Scenarios
17.4. Material Properties
17.5. Boundary Conditions and Loading
17.6. Analysis and Solution Controls
17.6.1. Solution Options for Capturing Simulation Results
17.7. Results and Discussion
17.7.1. Rigid Impact Results
17.7.2. Elastic Impact Results
17.7.3. Elastoplastic Impact Results
17.7.4. Performance Summary
17.8. Recommendations
17.9. References
17.10. Input Files
18. Viscoelastic Analysis of an All-Ceramic Fixed Partial Denture (FPD)
18.1. Introduction
18.2. Problem Description
18.3. Modeling
18.3.1. Denture Modeling
18.3.2. Contact Modeling
18.4. Material Properties
18.4.1. Transient Thermal Analysis Material Properties
18.4.2. Static Structural Analysis Material Properties
18.5. Boundary Conditions and Loading
18.5.1. Thermal Analysis BC and Loading
18.5.2. Structural Analysis BC and Loading
18.6. Analysis and Solution Controls
18.6.1. Adjusting the Time Step
18.7. Results and Discussion
18.8. Recommendations
18.9. References
18.10. Input Files
19. Transient Dynamic Analysis of a Digger-Arm Assembly
19.1. Introduction
19.2. Problem Description
19.3. Modeling
19.3.1. Modeling Rigid Parts
19.3.2. Modeling Joints
19.3.3. Modeling Flexible Parts
19.3.4. Modeling Flexible Parts with CMS Superelements
19.4. Material Properties
19.5. Boundary Conditions and Loading
19.6. Analysis and Solution Controls
19.7. Results and Discussion
19.8. Recommendations
19.9. Input Files
20. Dynamic Simulation of a Printed Circuit Board Assembly Using Modal Analysis Methods
20.1. Introduction
20.2. Problem Description
20.3. Modeling
20.3.1. Modeling of the PCB Structure
20.3.2. Contact Modeling
20.4. Material Properties
20.5. Boundary Conditions and Loading
20.6. Analysis and Solution Controls
20.6.1. Residual Vector Method
20.6.2. Mode Expansion
20.7. Results and Discussion
20.7.1. Computational Efficiency
20.7.2. Accuracy of Results
20.8. Recommendations
20.9. References
20.10. Input Files
21. Buckling and Post-Buckling Analysis of a Ring-Stiffened Cylinder Using Nonlinear Stabilization
21.1. Introduction
21.2. Problem Description
21.3. Modeling
21.4. Material Properties
21.5. Boundary Conditions and Loading
21.6. Analysis and Solution Controls
21.6.1. Performing the Nonlinear Buckling Analysis
21.6.2. Post-Buckling Analysis
21.6.3. Applying Nonlinear Stabilization
21.7. Results and Discussion
21.7.1. Buckling Behavior Is Expected
21.7.2. Number of Buckles Decreases
21.7.3. Buckle Size and Behavior Is Consistent with Reference Results
21.7.4. Plasticity Affects Buckling Results Insignificantly
21.8. Recommendations
21.8.1. Buckling Analysis Guidelines
21.8.2. Nonlinear Stabilization Guidelines
21.9. References
21.10. Input Files
22. Modal and Harmonic Frequency Analyses of an Automotive Suspension Assembly Using CMS
22.1. Introduction
22.2. Problem Description
22.3. Modeling
22.4. Material Properties
22.5. Boundary Conditions and Loading
22.6. Analysis and Solution Controls
22.6.1. Substructure
22.6.2. Component Mode Synthesis
22.6.3. Modal Analysis
22.6.4. Harmonic Analysis
22.7. Results and Discussion
22.7.1. Modal Analysis Comparison of Accuracy and Efficiency
22.7.2. Full Harmonic Analysis Comparison of Accuracy and Efficiency
22.7.3. Analysis of Peak Response
22.8. Recommendations
22.9. References
22.10. Input Files
23. Modal Analysis of a Wind Turbine Blade Using Beam Elements
23.1. Introduction
23.2. Problem Description
23.3. Modeling
23.3.1. Wind Turbine Blade: BEAM188 Models
23.3.2. Wind Turbine Blade: SHELL281 Reference Model
23.4. Material Properties
23.5. Boundary Conditions and Loading
23.5.1. BEAM188 Blade Model Boundary Conditions
23.5.2. SHELL281 Blade Model Boundary Conditions
23.6. Analysis and Solution Controls
23.7. Results and Discussion
23.8. Recommendations
23.9. Input Files
24. Hydrostatic Fluid Analysis of an Inflating and Rolling Tire
24.1. Introduction
24.2. Problem Description
24.3. Modeling
24.3.1. Model the Tire as a Solid
24.3.2. Model the Air Inside of the Tire
24.3.3. Model the Tire Reinforcing
24.3.4. Model the Tire Rim
24.3.5. Model Tire Contact with the Road Surface
24.4. Material Properties
24.5. Boundary Conditions and Loading
24.5.1. BCs and Loading in Load Step 1
24.5.2. BCs and Loading in Load Step 2
24.5.3. BCs and Loading in Load Step 3
24.5.4. BCs and Loading in Load Step 4
24.5.5. BCs and Loading in Load Step 5
24.6. Analysis and Solution Controls
24.7. Results and Discussion
24.7.1. Expected Results
24.7.2. Simulation Result Using Hydrostatic Fluid Element HSFLD242
24.7.3. Time-History Response
24.7.4. Tire Deformation Simulation
24.8. Recommendations
24.9. Input Files
25. Cardiovascular Stent Simulation
25.1. Introduction
25.2. Problem Description
25.3. Modeling
25.3.1. Stent Modeling
25.3.2. Artery and Plaque Modeling
25.3.3. Stent-Plaque Contact Modeling
25.4. Material Properties
25.5. Boundary Conditions and Loading
25.5.1. Artery Boundary Conditions
25.5.2. Stent Boundary Conditions
25.5.3. Plaque Wall Loading
25.6. Analysis and Solution Controls
25.7. Results and Discussion
25.8. Recommendations
25.9. References
25.10. Input Files
26. Nonlinear Analysis of a Rubber Boot Seal
26.1. Introduction
26.2. Problem Description
26.3. Modeling
26.3.1. Model the Rubber Boot Seal
26.3.2. Model the Contact Pairs
26.4. Material Properties
26.5. Boundary Conditions and Loading
26.6. Analysis and Solution Controls
26.7. Results and Discussion
26.8. Recommendations
26.9. Input Files
27. Hot-Rolling Structural Steel Analysis with 3D Rezoning
27.1. Introduction
27.1.1. Description of the Hot-Rolling Process
27.1.2. Hot-Rolling Process Simulation
27.2. Problem Description
27.3. Modeling
27.3.1. Modeling the Block
27.3.2. Modeling the Rollers
27.3.3. Contact Modeling
27.4. Material Properties
27.5. Boundary Conditions and Loading
27.5.1. Load Step 1: Establish Contact with Rollers
27.5.2. Load Step 2: Hot-Rolling
27.6. Analysis and Solution Controls
27.6.1. Rezoning Initiated at the 30th Substep
27.6.2. Distorted Mesh Replaced by an Imported New Mesh
27.6.3. Solution Items Mapped from Original Mesh to New Mesh
27.6.4. Analysis Resumes Using the New Mesh
27.7. Results and Discussion
27.7.1. Deformation Animations
27.8. Recommendations
27.9. Input Files
28. Friction Stir Welding (FSW) Simulation
28.1. Introduction
28.2. Problem Description
28.3. Modeling
28.3.1. Workpiece and Tool Modeling
28.3.2. Contact Modeling
28.4. Material Properties
28.5. Boundary Conditions and Loading
28.5.1. Thermal Boundary Conditions
28.5.2. Mechanical Boundary Conditions
28.5.3. Loading
28.6. Analysis and Solution Controls
28.7. Results and Discussion
28.7.1. Deformation and Stresses
28.7.2. Temperature Results
28.7.3. Welding Results
28.7.4. Heat Generation
28.8. Recommendations
28.9. References
28.10. Input Files
29. Rocket Nozzle Extension Simulation: Operation
29.1. Introduction
29.2. Problem Description
29.3. Modeling
29.4. Material Properties
29.5. Boundary Conditions and Loading
29.6. Analysis and Solution Controls
29.7. Results and Discussion
29.8. Recommendations
29.9. Input Files
30. Acoustic Analysis of a Small Speaker System
30.1. Introduction
30.2. Problem Description
30.3. Modeling
30.4. Material Properties
30.5. Boundary Conditions and Loading
30.5.1. Structural Loads and Boundary Conditions
30.5.2. Acoustic Loads and Boundary Conditions
30.6. Analysis and Solution Controls
30.7. Results and Discussion
30.7.1. Structural-Only Modes
30.7.2. Plotting Sound Pressure Levels
30.7.3. Plotting Velocities
30.7.4. Plotting Far-Field Results
30.8. Recommendations
30.8.1. Harmonic Sweep and Mesh Generation
30.8.2. GPU Accelerator
30.9. Input Files
31. Fitting Parameters for a Chaboche Kinematic Hardening Model
31.1. Introduction
31.2. Modeling
31.2.1. Chaboche Nonlinear Kinematic Hardening Model
31.2.2. Determining Material Parameters
31.3. Results and Discussion
31.3.1. Uniaxial Strain-Controlled Experiment
31.3.2. Uniaxial Stress-Controlled Experiment
31.3.3. Fitting to Multiple Data Sets
31.3.4. Fitting the Ratcheting Strain
31.4. Recommendations
31.5. References
31.6. Input Files
32. Anterior Cruciate Ligament (ACL) Simulation
32.1. Introduction
32.2. Problem Description
32.3. Modeling
32.4. Material Properties
32.5. Boundary Conditions and Loading
32.6. Analysis and Solution Controls
32.7. Results and Discussion
32.7.1. Uniaxial Loading
32.7.2. Knee Flexion
32.8. Recommendations
32.9. References
32.10. Input Files
33. Analysis of a Piezoelectric Flextensional Transducer in Water
33.1. Introduction
33.2. Problem Description
33.3. Modeling
33.3.1. 2D Transducer Model
33.3.2. 3D Transducer Model
33.4. Material Properties
33.5. Boundary Conditions and Loading
33.5.1. Structural Boundary Conditions
33.5.2. Acoustic Boundary Conditions and Flags
33.5.3. Piezoelectric Boundary Conditions
33.6. Analysis and Solution Controls
33.7. Results and Discussion
33.8. Recommendations
33.9. References
33.10. Input Files
34. Dynamic Simulation of a Nuclear Island
34.1. Introduction
34.2. Problem Description
34.3. Modeling
34.4. Material Properties
34.5. Boundary Conditions and Loading
34.5.1. Loading
34.6. Analysis and Solution Controls
34.6.1. Step 1: Modal Analysis
34.6.2. Step 2: PSD Analysis
34.6.3. Step 3: Response PSD (RPSD) Calculation
34.7. Results and Discussion
34.7.1. Performance Evaluation
34.8. Recommendations
34.9. References
34.10. Input Files
35. Elastoplastic Creep Analysis of Lead-Free Solder Bumps
35.1. Introduction
35.2. Problem Description
35.3. Modeling
35.3.1. Flip Chip Modeling
35.3.2. Contact Modeling
35.4. Material Properties
35.5. Boundary Conditions and Loading
35.5.1. Thermal Analysis
35.5.2. Structural Analysis
35.6. Analysis and Solution Controls
35.7. Results and Discussion
35.8. Recommendations
35.9. References
35.10. Input Files
36. VCCT-Based Crack-Growth Simulation of a Composite Laminated T-Joint
36.1. Introduction
36.2. Problem Description
36.3. Modeling
36.4. Material Properties
36.5. Boundary Conditions and Loading
36.6. Analysis and Solution Controls
36.6.1. Energy Release-Rate Calculation Setup
36.6.2. Crack-Growth Calculation Setup
36.6.3. Input for Defining Energy-Release Rate and Crack-Growth
36.7. Results and Discussion
36.7.1. Comparison to the Debonding Capability
36.8. Recommendations
36.9. References
36.10. Input Files
37. Bolt Thread
37.1. Introduction
37.2. Problem Description
37.3. Modeling
37.3.1. Model the Bolt with Cover Plate and Base Plate
37.3.2. Model the Pretension Section
37.3.3. Model the Contact Pairs
37.4. Material Properties
37.5. Boundary Conditions and Loading
37.6. Analysis and Solution Controls
37.7. Results and Discussion
37.7.1. Results for 2D Models
37.7.2. Results for 3D Models
37.7.3. Comparison of Computation Time
37.8. Recommendations
37.9. Input Files
38. Large-Deformation Neo-Hookean Analysis (via UserMat Subroutine)
38.1. Introduction
38.2. Problem Description
38.3. Modeling
38.3.1. Neo-Hookean Model
38.3.2. Co-rotational Frame
38.3.3. Voigt Notation
38.4. Material Properties
38.5. Boundary Conditions and Loading
38.6. Analysis and Solution Controls
38.7. Results and Discussion
38.8. Recommendations
38.9. References
38.10. Input Files
39. Wire Bonding Ultrasonic Transducer
39.1. Introduction
39.2. Problem Description
39.3. Modeling
39.4. Material Properties
39.5. Boundary Conditions and Loading
39.5.1. Structural Boundary Condition
39.5.2. Voltage Coupling and Boundary Condition
39.6. Analysis and Solution Controls
39.6.1. Prestressed Modal Analysis with Linear Perturbation Method
39.6.2. Prestressed Full Harmonic Response Analysis
39.7. Results and Discussion
39.7.1. Results from Prestressed Modal Analysis with Linear Perturbation Method
39.7.2. Results from Prestressed Full Harmonic Response Analysis
39.8. Recommendations
39.9. References
39.10. Input Files
40. Shape Memory Alloy (SMA) with Thermal Effect
40.1. Introduction
40.2. SMA Phase Transformation Theory
40.3. SMA Thermal Effect Simulations
40.3.1. Simulation of a Spinal Spacer Implant
40.3.2. Simulation of a Spring Actuator
40.4. Recommendations
40.5. References
40.6. Input Files
41. Acoustic Analysis of a Viscothermal Resonator
41.1. Introduction
41.2. Problem Description
41.3. Modeling
41.4. Material Properties
41.5. Boundary Conditions and Loading
41.6. Analysis and Solution Controls
41.7. Results and Discussion
41.8. Recommendations
41.9. References
41.10. Input Files
42. Wire Crimping Modeled with General Contact
42.1. Introduction
42.2. Problem Description
42.3. Modeling
42.3.1. Model the Grip and Wire
42.3.2. Model the Rigid Punch and Base Support
42.3.3. Model the Contact Using the General Contact Method
42.4. Material Properties
42.5. Boundary Conditions and Loading
42.6. Analysis and Solution Controls
42.7. Results and Discussion
42.8. Recommendations
42.9. Input Files
43. Contact Surface Wear Simulation
43.1. Introduction
43.2. Problem Description
43.3. Modeling
43.3.1. Defining the Wear Model
43.3.2. Improving Mesh Quality During the Solution
43.4. Material Properties
43.5. Boundary Conditions and Loading
43.6. Analysis and Solution Controls
43.7. Results and Discussion
43.7.1. Effect of Wear on Contact Pressure
43.7.2. Effect of Wear on Stress and Element Quality
43.7.3. Evolution of Wear with Time
43.8. Recommendations
43.9. Input Files
44. C*-integral Evaluation for 3D Surface Flaws
44.1. Introduction
44.2. Problem Description
44.2.1. Rectangular Block with a Semicircular Surface Flaw
44.2.2. X-Joint Pipe with Warped Surface Flaw
44.3. Modeling
44.4. Material Model and Material Properties
44.5. Boundary Conditions and Loading
44.6. Analysis and Solution Controls
44.6.1. Nonlinear Static Analysis
44.6.2. C*-integral Calculation (CINT)
44.7. Results and Discussion
44.7.1. Rectangular Block with Semicircular Surface Flaw
44.7.2. X-joint Pipe with Warped Flaw
44.8. Recommendations
44.9. References
44.10. Input Files
45. Forced-Response Analysis of a Mistuned Bladed Disk with Aerodamping
45.1. Introduction
45.2. Problem Description
45.3. CFD Modeling
45.3.1. Problem Description and Setup
45.3.2. Solution Monitor Plots and Convergence Pattern
45.3.3. Unsteady Pressure Results
45.4. Structural Modeling
45.4.1. Rotor 67 Fan Blade Modeling
45.4.2. Contact Modeling
45.5. Structural Material Properties
45.6. Boundary Conditions and Loading
45.7. Analysis and Solution Controls
45.7.1. Nonlinear Prestressed Mode-Superposition Harmonic Cyclic Symmetry Analysis with Linear Perturbation - Tuned Response
45.7.2. Nonlinear Prestressed Mode-Superposition Harmonic Cyclic Symmetry Analysis with Linear Perturbation - Mistuned Response with Aerodamping
45.8. Results and Discussion
45.9. Recommendations
45.10. References
45.11. Input Files
46. Surface Subsidence Caused by Reservoir Depletion
46.1. Introduction
46.2. Problem Description
46.3. Modeling
46.4. Material Properties
46.5. Boundary Conditions and Loading
46.6. Analysis and Solution Controls
46.7. Results and Discussion
46.8. Recommendations
46.9. References
46.10. Input Files
47. Electromigration in a Solder Ball
47.1. Introduction
47.2. Problem Description
47.3. Modeling
47.4. Material Model and Contact Properties
47.5. Boundary Conditions and Loading
47.6. Analysis and Solution Controls
47.7. Results and Discussion
47.8. Recommendations
47.9. References
47.10. Input Files
48. Active and Passive Lateral Earth Pressure Analysis
48.1. Introduction
48.2. Problem Description
48.3. Modeling
48.4. Material Properties
48.5. Boundary Conditions and Loading
48.6. Analysis and Solution Controls
48.6.1. Defining the Initial Stress State
48.6.2. Calculating the Active and Passive Stress States
48.7. Results and Discussion
48.8. Recommendations
48.9. References
48.10. Input Files
49. Load-Limit Analysis of a Reinforced Concrete Slab
49.1. Introduction
49.2. Problem Description
49.3. Modeling
49.3.1. Applying the Load
49.4. Material Properties
49.5. Boundary Conditions and Loading
49.6. Analysis and Solution Controls
49.7. Results and Discussion
49.8. Recommendations
49.9. References
49.10. Input Files
50. Normal-Pressure Hydrocephalus Analysis Using Hyperelastic Material
50.1. Introduction and Problem Description
50.2. Modeling
50.3. Material Properties
50.4. Boundary Conditions and Loading
50.5. Analysis and Solution Controls
50.6. Results and Discussion
50.7. Recommendations
50.8. References
50.9. Input Files
51. Multi-Filar Coil Inside a Tube Modeled with Beam-to-Beam Contact
51.1. Introduction
51.2. Problem Description
51.3. Modeling
51.3.1. Model the Five-Filar Coil
51.3.2. Model the Tube
51.3.3. Model the Contact Pairs
51.4. Material Properties
51.5. Boundary Conditions and Loading
51.6. Analysis and Solution Controls
51.7. Results and Discussion
51.8. Recommendations
51.9. Input Files
52. Sequential Construction of an Embankment on a Clay Layer
52.1. Introduction
52.2. Problem Description
52.3. Modeling
52.4. Material and Contact Properties
52.5. Boundary Conditions and Loading
52.6. Analysis and Solution Controls
52.7. Results and Discussion
52.8. Recommendations
52.9. Input Files
53. Acoustic Analysis of a MEMS Microphone
53.1. Introduction
53.2. Problem Description
53.3. Modeling
53.4. Material Properties
53.5. Boundary Conditions and Loading
53.5.1. Structural Boundary Condition and Load
53.5.2. Electrical Boundary Condition and Load
53.5.3. Acoustic Boundary Condition and Load
53.6. Analysis and Solution Controls
53.6.1. Static Analysis
53.6.2. Prestressed Full Harmonic Response Analysis
53.7. Results and Discussion
53.7.1. Static Analysis Results
53.7.2. Prestressed Full Harmonic Response Analysis Results
53.8. Recommendations
53.9. References
53.10. Input Files
54. Reinforced Concrete Joint Analysis
54.1. Introduction
54.2. Problem Description
54.3. Modeling
54.4. Material Properties
54.5. Boundary Conditions and Loading
54.6. Analysis and Solution Control
54.7. Results and Discussion
54.8. Recommendations
54.9. References
54.10. Input Files
55. Inverse-Solving Analysis of a Rotor Fan Blade with Disk
55.1. Introduction
55.2. Problem Description
55.3. Modeling
55.3.1. Contact Modeling
55.4. Material Properties
55.5. Boundary Conditions and Loading
55.6. Analysis and Solution Controls
55.7. Results and Discussion
55.8. Recommendations
55.9. Input Files
56. Threaded Connection Analysis
56.1. Introduction
56.2. Problem Description
56.3. Modeling
56.3.1. Contact Modeling
56.4. Material Properties
56.5. Boundary Conditions and Loading
56.5.1. Boundary Conditions and Loadings for the 2D Axisymmetric Analysis
56.5.2. Loadings on the 3D Extruded Model
56.6. Analysis and Solution Controls
56.6.1. Step 1: Perform a 2D Axisymmetric Analysis with Pressure and End-Cap Loading
56.6.2. Step 2: Extrude the 2D Model to 3D
56.6.3. Step 3: Solve the 3D Model with Bending Load
56.7. Results and Discussion
56.8. Recommendations
56.9. Input Files
57. Tire Performance Simulation
57.1. Introduction
57.1.1. Requirements for a Tire-Performance Simulation
57.2. Problem Description
57.3. Modeling
57.3.1. Modeling the Reinforcings
57.3.2. Modeling the Contact
57.4. Material Properties
57.5. Boundary Conditions and Loading
57.5.1. Boundary Conditions and Loadings on the 2D Axisymmetric Model
57.5.2. Boundary Conditions and Loadings on the 3D Model
57.6. Analysis and Solution Controls
57.6.1. Step 1: Perform Rim-Mounting and Inflation Analyses (2D Axisymmetric Model)
57.6.2. Step 2: Convert the 2D Model to 3D
57.6.3. Step 3: Perform a Footprint Analysis (3D Model)
57.6.4. Step 4: Perform Steady-State Rolling Analyses (3D Model)
57.7. Results and Discussion
57.8. Recommendations
57.9. Input Files
58. Suction Pile Analysis
58.1. Introduction
58.2. Problem Description
58.3. Modeling
58.4. Material Properties
58.5. Analysis Flow
58.5.1. Part I. Nonlinear Static Analysis with Nominal Geometry
58.5.2. Part II. Linear Buckling Analysis with Nominal Geometry
58.5.3. Part III. Nonlinear Static Analysis with Modified Geometry
58.6. Recommendations
58.7. References
58.8. Input Files
59. Thermal-Structural Analysis of a Printed Circuit Board
59.1. Introduction
59.2. Problem Description
59.3. Modeling
59.4. Material Properties
59.5. Boundary Conditions and Loading
59.5.1. Steady-State Thermal Analysis: BCs and Loading
59.5.2. Downstream Structural Analysis: BCs and Loading
59.6. Analysis and Solution Controls
59.7. Results and Discussion
59.8. Recommendations
59.9. Input Files
60. Accelerated Thermomechanical Fatigue Analysis of Thermal-Barrier Coatings
60.1. Introduction
60.2. Modeling
60.3. Material Properties
60.4. Boundary Conditions and Loading
60.5. Analysis and Solution Controls
60.6. Results and Discussion
60.7. Recommendations
60.8. References
60.9. Input Files
61. Underconstrained Coil Spring Under Compression
61.1. Introduction
61.2. Problem Description
61.3. Modeling
61.4. Material Properties
61.5. Boundary Conditions and Loading
61.6. Analysis and Solution Controls
61.7. Results and Discussion
61.8. Recommendations
61.9. Input Files
62. Inverse-Solving Analysis of a Cardiovascular Structure
62.1. Introduction
62.2. Problem Description
62.3. Modeling
62.4. Material Properties
62.5. Boundary Conditions and Loading
62.6. Analysis and Solution Controls
62.7. Results and Discussion
62.8. Recommendations
62.9. References
62.10. Input Files
63. Reserved
64. Fretting Fatigue Damage with Adaptive Wear Scaling
64.1. Introduction
64.2. Problem Description
64.3. Modeling
64.3.1. Defining the Wear Model
64.3.2. Improving Mesh Quality During the Solution
64.4. Material Properties
64.5. Boundary Conditions and Loading
64.6. Analysis and Solution Controls
64.7. Integrating Auto Wear Scaling with a Fretting Fatigue Tool
64.8. Postprocessing fatigue life in nCode DesignLife
64.9. Results and Discussion
64.9.1. Dependence of adaptive scaling on sliding stroke
64.9.2. Effect of sliding stroke on fretting fatigue life
64.9.3. Effect of wear on fetting fatigue life span
64.10. Recommendations
64.11. References
64.12. Input Files
65. FFT Frequency Calculation Based on Impulse Load
65.1. Introduction
65.2. Problem Description
65.3. Modeling
65.4. Material Properties
65.5. Boundary Conditions and Loading
65.6. Analysis and Solution Controls
65.7. Results and Discussion
65.7.1. Modal Results
65.7.2. Transient Results
65.7.3. FFT Technique
65.8. Recommendations
65.9. References
65.10. Input Files
66. Sintering Simulation of a Printed Bridge
67. Crystal Plasticity with Hall-Petch Effect
67.1. Introduction
67.2. Problem Description
67.3. Modeling
67.4. Material Properties
67.5. Boundary Conditions and Loading
67.6. Analysis and Solution Controls
67.7. Results and Discussion
67.7.1. Hall-Petch Effect from Various Grain Sizes
67.7.2. Comparison of Two Material-Assignment Options
67.8. Recommendations
67.9. References
67.10. Input Files
68. Hydrostatic Extrusion of Hyperelastic-Plastic Material
68.1. Introduction
68.2. Problem Description
68.3. Modeling
68.4. Material Properties
68.5. Boundary Conditions and Loading
68.6. Analysis and Solution Controls
68.7. Results and Discussion
68.8. Recommendations
68.9. Input Files
69. Accelerated Fatigue Analysis of Solder Joints in a Chip Resistor Assembly
69.1. Introduction
69.2. Problem Description
69.3. Modeling
69.4. Material Properties
69.5. Boundary Conditions and Loading
69.6. Analysis and Solution Controls
69.7. Results and Discussion
69.8. Recommendations
69.9. References
69.10. Input Files
70. Adaptive Crack-Initiation and -Propagation
70.1. Introduction
70.2. Problem Description
70.3. Modeling
70.3.1. Standard Settings for Fracture Analysis
70.3.2. Settings for Crack Initiation and Subsequent Propagation
70.4. Material Properties
70.5. Boundary Conditions and Loading
70.6. Analysis and Solution Controls
70.7. Results and Discussion
70.7.1. Edge-Crack Growth
70.7.2. Initiation and Propagation of the New Crack
70.7.3. Fracture-Parameter Results for Both Cracks
70.8. Recommendations
70.9. Input Files