The concrete is modeled via the coupled damage-plasticity microplane model:
Material Parameters for Concrete | |||
---|---|---|---|
Young’s modulus | MPa | 20000 | |
Poisson’s ratio | - | 0.2 | |
Uniaxial compressive strength | MPa | 31.6 | |
Biaxial compressive strength | MPa | 36.34 | |
Uniaxial tensile strength | MPa | 3 | |
Tension cap hardeningfactor | - | 1 | |
Hardening parameter | MPa2 | 4E4 | |
Compression cap location | MPa | -35 | |
Compression cap shape | - | 2 | |
Threshold for tension damage | - | 0 | |
Threshold for compression damage | - | 2E-5 | |
Tension damage parameter | - | 3000 | |
Compression damage parameter | - | 2000 | |
Nonlocal interaction range parameter | mm2 | 1600 | |
Over nonlocal parameter | - | 2.5 |
The parameters are input as follows:
MP, EX, 1, |
MP, NUXY, 1, |
TB, MPLA, 1, , , DPC |
TBDATA,1,, , , , , |
TBDATA,7, , , , , |
TB, MPLA, 1, , , NLOCAL |
TBDATA, 1, , |
The rebar steel is modeled using von Mises plasticity with linear hardening (BISO material model) and the following parameters:
Material Parameters for Rebar Steel | ||
---|---|---|
Young’s modulus | MPa | 1.9E5 |
Poisson’s ratio | - | 0.3 |
Yield stress | MPa | 470 |
Tangent modulus | MPa | 1000 |