The following table shows the natural frequencies of the 14 significant modes (below
fZPA
):
Mode | Frequency (Hz) |
---|---|
1 | 2.91 |
2 | 4.44 |
3 | 4.86 |
4 | 5.02 |
5 | 6.95 |
6 | 7.58 |
7 | 7.82 |
8 | 10.94 |
9 | 11.65 |
10 | 11.78 |
11 | 12.80 |
12 | 14.32 |
13 | 15.17 |
14 | 15.79 |
The reactions at the supports obtained in the spectrum analyses A1 through A7 are given in the following topics:
The ratio of the RSA results to the transient results is reported in separate columns. The mean and standard deviation of these ratios are evaluated at the bottom of each table. This form of representation facilitates easy recognition of over-prediction and under-prediction by the RSA method.
A ratio of 1.0 indicates exact agreement, a ratio of > 1.0 indicates RSA over-prediction, and a ratio of < 1.0 indicates RSA under-prediction.
The absolute acceleration solutions are also compared for the x-direction and 3-direction input motions.
The accuracy of the RSA results using SRSS or CQC combination method is assessed.
The modes are closely spaced, as shown:
Mode Number | Frequency (Hz) | Coupled Modes | Coupling Coefficient | |
Mode No. | Freq. (Hz) | |||
3 | 4.857 | 4 | 5.017 | 0.276 |
6 | 7.581 | 7 | 7.816 | 0.299 |
9 | 11.653 | 10 | 11.775 | 0.787 |
12 | 14.316 | 13 | 15.173 | 0.106 |
Because of the closely spaced modes, the CQC results are closer to the reference (transient-analysis results). The mean and standard-deviation values of spectrum results using CQC are 1.57 and 1.11, respectively.
Table 12.1: X-Direction Input
S. No. | Reaction Forces | Reference Full-Transient | A1 Spectrum (SRSS) | Ratio (A1 / Reference) | A2 Spectrum (CQC) | Ratio (A2 / Reference) |
---|---|---|---|---|---|---|
1 |
FX1 |
49.94 |
31.21 |
0.62 |
31.33 |
0.63 |
2 |
FY1 |
4.40 |
15.54 |
3.53 |
12.86 |
2.92 |
3 |
FZ1 |
5.95 |
48.91 |
8.22 |
24.88 |
4.18 |
4 |
MX1 |
180.56 |
1510.42 |
8.37 |
763.03 |
4.23 |
5 |
MY1 |
846.19 |
1216.04 |
1.44 |
929.90 |
1.10 |
6 |
MZ1 |
817.39 |
1120.07 |
1.37 |
1116.05 |
1.37 |
7 |
FX4 |
111.33 |
45.18 |
0.41 |
45.00 |
0.40 |
8 |
FZ4 |
34.74 |
82.06 |
2.36 |
55.61 |
1.60 |
9 |
FY74 |
10.94 |
28.26 |
2.58 |
16.75 |
1.53 |
10 |
FY11 |
11.38 |
18.21 |
1.60 |
16.40 |
1.44 |
11 |
FZ11 |
68.12 |
43.51 |
0.64 |
42.81 |
0.63 |
12 |
FX15 |
644.57 |
368.12 |
0.57 |
388.15 |
0.60 |
13 |
FY17 |
28.09 |
44.59 |
1.59 |
46.16 |
1.64 |
14 |
FZ17 |
64.67 |
53.49 |
0.83 |
55.37 |
0.86 |
15 |
FY36 |
60.62 |
161.97 |
2.67 |
168.30 |
2.78 |
16 |
FZ36 |
55.51 |
81.73 |
1.47 |
82.17 |
1.48 |
17 |
FX38 |
750.51 |
116.78 |
0.16 |
135.75 |
0.18 |
18 |
FY38 |
40.04 |
52.38 |
1.31 |
54.17 |
1.35 |
19 |
FZ38 |
38.43 |
39.05 |
1.02 |
44.45 |
1.16 |
20 |
MX38 |
787.11 |
2527.87 |
3.21 |
2591.22 |
3.29 |
21 |
MY38 |
2656.44 |
2528.86 |
0.95 |
2887.73 |
1.09 |
22 |
MZ38 |
2816.48 |
3644.84 |
1.29 |
3756.73 |
1.33 |
23 |
FX23 |
259.50 |
176.84 |
0.68 |
193.44 |
0.75 |
24 |
FY23 |
42.34 |
144.53 |
3.41 |
150.71 |
3.56 |
25 |
FX31 |
60.09 |
9.59 |
0.16 |
11.23 |
0.19 |
26 |
FY31 |
13.39 |
22.28 |
1.66 |
24.92 |
1.86 |
27 |
FZ31 |
15.06 |
32.85 |
2.18 |
33.60 |
2.23 |
28 |
MX31 |
968.59 |
2151.45 |
2.22 |
2241.86 |
2.31 |
29 |
MY31 |
546.34 |
210.58 |
0.39 |
236.59 |
0.43 |
30 |
MZ31 |
2231.74 |
631.42 |
0.28 |
730.46 |
0.33 |
Mean of 30 components |
1.91 |
- |
1.58 | |||
Standard deviation of 30 components |
1.95 |
- |
1.12 |
To improve accuracy, the missing-mass response is included in the analysis. The standard deviation decreases to 1.05. The mean value of 1.72 still shows over-prediction in the results.
Table 12.2: X-Direction Input (with Missing-Mass Effect)
S. No. | Reaction Forces | Reference Full-Transient | A3 Spectrum | Ratio (A3 / Reference) |
---|---|---|---|---|
1 |
FX1 |
49.94 |
42.88 |
0.86 |
2 |
FY1 |
4.40 |
15.60 |
3.55 |
3 |
FZ1 |
5.95 |
25.01 |
4.20 |
4 |
MX1 |
180.56 |
765.49 |
4.24 |
5 |
MY1 |
846.19 |
935.02 |
1.10 |
6 |
MZ1 |
817.39 |
1126.10 |
1.38 |
7 |
FX4 |
111.33 |
75.26 |
0.68 |
8 |
FZ4 |
34.74 |
56.13 |
1.62 |
9 |
FY74 |
10.94 |
16.75 |
1.53 |
10 |
FY11 |
11.38 |
16.40 |
1.44 |
11 |
FZ11 |
68.12 |
43.86 |
0.64 |
12 |
FX15 |
644.57 |
388.85 |
0.60 |
13 |
FY17 |
28.09 |
46.16 |
1.64 |
14 |
FZ17 |
64.67 |
55.66 |
0.86 |
15 |
FY36 |
60.62 |
168.31 |
2.78 |
16 |
FZ36 |
55.51 |
86.07 |
1.55 |
17 |
FX38 |
750.51 |
583.19 |
0.78 |
18 |
FY38 |
40.04 |
54.18 |
1.35 |
19 |
FZ38 |
38.43 |
50.26 |
1.31 |
20 |
MX38 |
787.11 |
2591.24 |
3.29 |
21 |
MY38 |
2656.44 |
3135.26 |
1.18 |
22 |
MZ38 |
2816.48 |
3756.91 |
1.33 |
23 |
FX23 |
259.50 |
242.94 |
0.94 |
24 |
FY23 |
42.34 |
150.77 |
3.56 |
25 |
FX31 |
60.09 |
53.26 |
0.89 |
26 |
FY31 |
13.39 |
27.91 |
2.09 |
27 |
FZ31 |
15.06 |
34.04 |
2.26 |
28 |
MX31 |
968.59 |
2252.48 |
2.33 |
29 |
MY31 |
546.34 |
390.59 |
0.71 |
30 |
MZ31 |
2231.74 |
1822.15 |
0.82 |
Mean of 30 components |
1.72 | |||
Standard deviation of 30 components |
1.06 |
Both missing-mass and rigid-response effects are taken into account in the analyses. The mean and standard-deviation values using the Gupta method are equal to 1.10 and 0.17, respectively. Using the Lindley-Yow method, the mean and standard-deviation values are 1.19 and 0.24, respectively.
Table 12.3: X-Direction Input (with Missing-Mass and Rigid-Response Effects)
S. No. | Reaction Forces | Reference Full-Transient | A4 Spectrum (Lindley) | Ratio (A4 / Reference) | A5 Spectrum (Gupta) | Ratio (A5 / Reference) |
---|---|---|---|---|---|---|
1 |
FX1 |
49.94 |
52.24 |
1.05 |
53.42 |
1.07 |
2 |
FY1 |
4.40 |
6.08 |
1.38 |
3.74 |
0.85 |
3 |
FZ1 |
5.95 |
10.23 |
1.72 |
5.98 |
1.01 |
4 |
MX1 |
180.56 |
317.64 |
1.76 |
189.94 |
1.05 |
5 |
MY1 |
846.19 |
901.90 |
1.07 |
874.82 |
1.03 |
6 |
MZ1 |
817.39 |
982.04 |
1.20 |
984.43 |
1.20 |
7 |
FX4 |
111.33 |
105.26 |
0.95 |
102.74 |
0.92 |
8 |
FZ4 |
34.74 |
43.09 |
1.24 |
42.52 |
1.22 |
9 |
FY74 |
10.94 |
11.31 |
1.03 |
10.42 |
0.95 |
10 |
FY11 |
11.38 |
13.42 |
1.18 |
13.32 |
1.17 |
11 |
FZ11 |
68.12 |
51.31 |
0.75 |
49.51 |
0.73 |
12 |
FX15 |
644.57 |
562.49 |
0.87 |
546.98 |
0.85 |
13 |
FY17 |
28.09 |
35.06 |
1.25 |
35.99 |
1.28 |
14 |
FZ17 |
64.67 |
52.85 |
0.82 |
56.46 |
0.87 |
15 |
FY36 |
60.62 |
86.27 |
1.42 |
72.88 |
1.20 |
16 |
FZ36 |
55.51 |
66.54 |
1.20 |
68.13 |
1.23 |
17 |
FX38 |
750.51 |
751.13 |
1.00 |
768.11 |
1.02 |
18 |
FY38 |
40.04 |
46.00 |
1.15 |
45.76 |
1.14 |
19 |
FZ38 |
38.43 |
43.25 |
1.13 |
45.96 |
1.20 |
20 |
MX38 |
787.11 |
1188.24 |
1.51 |
912.70 |
1.16 |
21 |
MY38 |
2656.44 |
3008.28 |
1.13 |
3208.35 |
1.21 |
22 |
MZ38 |
2816.48 |
3236.99 |
1.15 |
3229.79 |
1.15 |
23 |
FX23 |
259.50 |
323.39 |
1.25 |
344.66 |
1.33 |
24 |
FY23 |
42.34 |
67.15 |
1.59 |
48.83 |
1.15 |
25 |
FX31 |
60.09 |
60.53 |
1.01 |
62.19 |
1.03 |
26 |
FY31 |
13.39 |
17.09 |
1.28 |
16.82 |
1.26 |
27 |
FZ31 |
15.06 |
20.49 |
1.36 |
20.76 |
1.38 |
28 |
MX31 |
968.59 |
1316.65 |
1.36 |
1380.33 |
1.43 |
29 |
MY31 |
546.34 |
511.67 |
0.94 |
551.75 |
1.01 |
30 |
MZ31 |
2231.74 |
2193.87 |
0.98 |
2313.51 |
1.04 |
Mean of 30 components |
1.19 | - |
1.10 | |||
Standard deviation of 30 components |
0.24 | - |
0.16 |
Gupta method, with f1 = 2.80 Hz and f2 = 11.90 Hz.
The absolute acceleration values at support (node 4) and far from support (nodes 16 and 34) are compared in the following table:
It is clearly shown that the absolute acceleration value at node 4 (at support) shows close comparison with the full-transient solution after the addition of the missing-mass effect.
With the Gupta method, there is a limitation lying in the semi-empirical basis
of the definition of the rigid-response coefficient αi
, as
a function of fi
.[2][3] The
choice of key parameter f
2
(RIGRESP,,,,VAL2
), which
defines the frequency above which modal responses are combined algebraically,
has a significant effect on the predicted response.
To show the effect of the f
2
value, two different values of
f
2 are chosen: 6.0 Hz
[2 Appendix H] and 11.90 Hz.[4] Both frequencies are within a range where
the input acceleration is almost constant and the acceleration value is very
close to the ZPA. A value of
f
1 = 2.80 Hz is maintained
for both analyses. The respective results are shown in the following two
tables:
For f
2 = 6.0 Hz, the mean
and standard-deviation values are 0.91 and 0.18, respectively, implying
under-prediction of the reaction forces. Conversely, for
f
2 = 11.90 Hz, the mean
and standard-deviation values are 1.10 and 0.17, respectively, implying
over-prediction of reaction forces.
Table 12.5: X-Direction Input (with Missing-Mass and Rigid-Response Effects)
S. No. | Reaction Forces | Reference Full-Transient | A6 Spectrum (Gupta) | Ratio (A6 / Reference) |
---|---|---|---|---|
1 |
FX1 |
49.94 |
51.17 |
1.02 |
2 |
FY1 |
4.40 |
3.13 |
0.71 |
3 |
FZ1 |
5.95 |
4.04 |
0.68 |
4 |
MX1 |
180.56 |
135.93 |
0.75 |
5 |
MY1 |
846.19 |
904.65 |
1.07 |
6 |
MZ1 |
817.39 |
885.76 |
1.08 |
7 |
FX4 |
111.33 |
111.51 |
1.00 |
8 |
FZ4 |
34.74 |
34.90 |
1.00 |
9 |
FY74 |
10.94 |
9.20 |
0.84 |
10 |
FY11 |
11.38 |
9.38 |
0.82 |
11 |
FZ11 |
68.12 |
62.10 |
0.91 |
12 |
FX15 |
644.57 |
641.25 |
0.99 |
13 |
FY17 |
28.09 |
26.35 |
0.94 |
14 |
FZ17 |
64.67 |
46.56 |
0.72 |
15 |
FY36 |
60.62 |
44.91 |
0.74 |
16 |
FZ36 |
55.51 |
56.27 |
1.01 |
17 |
FX38 |
750.51 |
757.30 |
1.01 |
18 |
FY38 |
40.04 |
42.35 |
1.06 |
19 |
FZ38 |
38.43 |
42.26 |
1.10 |
20 |
MX38 |
787.11 |
399.46 |
0.51 |
21 |
MY38 |
2656.44 |
2936.13 |
1.11 |
22 |
MZ38 |
2816.48 |
2995.73 |
1.06 |
23 |
FX23 |
259.50 |
302.56 |
1.17 |
24 |
FY23 |
42.34 |
16.35 |
0.39 |
25 |
FX31 |
60.09 |
60.12 |
1.00 |
26 |
FY31 |
13.39 |
13.52 |
1.01 |
27 |
FZ31 |
15.06 |
13.16 |
0.87 |
28 |
MX31 |
968.59 |
784.84 |
0.81 |
29 |
MY31 |
546.34 |
497.54 |
0.91 |
30 |
MZ31 |
2231.74 |
2149.85 |
0.96 |
Mean of 30 components |
0.91 | |||
Standard deviation of 30 components |
0.18 |
Gupta Method, with f1 = 2.80 Hz and f2 = 6.00 Hz.
This analysis considers the inputs in the X, Y and Z directions. The mean and standard-deviation values obtained are 1.00 and 0.10, respectively, implying that the correlation between the spectrum-analysis and transient-analysis results is better than for single-directional input. The better spectrum-analysis correlation is a result of the reactions having directions orthogonal to the input, which are not significantly improved by including the missing-mass and rigid-response effect; however, these reactions should remain smaller than the primary reactions.
Table 12.6: 3-Direction Input (with Missing-Mass and Rigid-Response Effects)
S. No. | Reaction Forces | Reference Full-Transient | A7 Spectrum (Lindley) | Ratio (A7 / Reference) |
---|---|---|---|---|
1 |
FX1 |
54.93 |
56.51 |
1.03 |
2 |
FY1 |
98.63 |
98.71 |
1.00 |
3 |
FZ1 |
37.90 |
45.23 |
1.19 |
4 |
MX1 |
722.93 |
845.20 |
1.17 |
5 |
MY1 |
1099.20 |
1207.77 |
1.10 |
6 |
MZ1 |
1891.99 |
2013.72 |
1.06 |
7 |
FX4 |
129.34 |
117.53 |
0.91 |
8 |
FZ4 |
318.39 |
246.76 |
0.78 |
9 |
FY74 |
120.44 |
117.45 |
0.98 |
10 |
FY11 |
226.31 |
217.24 |
0.96 |
11 |
FZ11 |
287.89 |
229.73 |
0.80 |
12 |
FX15 |
664.97 |
603.60 |
0.91 |
13 |
FY17 |
91.60 |
94.38 |
1.03 |
14 |
FZ17 |
146.95 |
153.49 |
1.04 |
15 |
FY36 |
374.81 |
348.78 |
0.93 |
16 |
FZ36 |
830.88 |
830.99 |
1.00 |
17 |
FX38 |
751.27 |
752.08 |
1.00 |
18 |
FY38 |
181.96 |
191.64 |
1.05 |
19 |
FZ38 |
260.43 |
261.41 |
1.00 |
20 |
MX38 |
3377.83 |
3170.57 |
0.94 |
21 |
MY38 |
11097.98 |
11184.24 |
1.01 |
22 |
MZ38 |
7684.11 |
8443.85 |
1.10 |
23 |
FX23 |
273.79 |
336.42 |
1.23 |
24 |
FY23 |
264.72 |
233.99 |
0.88 |
25 |
FX31 |
61.21 |
61.70 |
1.01 |
26 |
FY31 |
90.08 |
92.93 |
1.03 |
27 |
FZ31 |
138.59 |
140.44 |
1.01 |
28 |
MX31 |
9033.85 |
9045.39 |
1.00 |
29 |
MY31 |
746.60 |
714.41 |
0.96 |
30 |
MZ31 |
2624.24 |
2584.03 |
0.98 |
Mean of 30 components |
1.00 | |||
Standard deviation of 30 components |
0.10 |
The absolute acceleration values at support (node 4) and far from support (nodes 16 and 34) are compared in the table below:
Table 12.7: 3-Direction Input Motion
Node | DOF | Reference Full-Transient (absolute) | A7 Spectrum ACC (with RIGRESP) | Error (%) | Reference Full-Transient (absolute) | A7 Spectrum ACC (with RIGRESP + MMASS) | Error (%) |
---|---|---|---|---|---|---|---|
16 |
ACCY |
518.55 |
496.17 |
4.32 |
518.55 |
484.7 |
6.53 |
4 |
ACCX |
206.26 |
11.33 |
94.51 |
206.26 |
208.70 |
1.19 |
34 |
ACCZ |
203.95 |
24.772 |
87.85 |
203.95 |
208.77 |
2.36 |
It is clearly shown that the absolute acceleration value at node 4 (at support) shows close comparison with the full-transient solution after the addition of the missing-mass effect.