39.7. Results and Discussion

39.7.1. Results from Prestressed Modal Analysis with Linear Perturbation Method

Prior to solving a harmonic response analysis, it is important to understand the frequency content of the system, and the modal analysis provides this valuable information.

In the solver output, the participation factors in the z (longitudinal) direction are listed at the end of the modal analysis, as follows:

          ***** PARTICIPATION FACTOR CALCULATION *****  Z  DIRECTION
                                                                                  CUMULATIVE     RATIO EFF.MASS
  MODE   FREQUENCY       PERIOD      PARTIC.FACTOR     RATIO    EFFECTIVE MASS   MASS FRACTION   TO TOTAL MASS
    1     1947.47       0.51349E-03   0.13955E-03    0.000974    0.194730E-07    0.469851E-06    0.391044E-06
    2     1948.16       0.51331E-03   0.39207E-05    0.000027    0.153722E-10    0.470222E-06    0.308693E-09
    3     4427.05       0.22588E-03   0.90019E-05    0.000063    0.810341E-10    0.472177E-06    0.162727E-08
    4     4427.86       0.22584E-03  -0.46883E-05    0.000033    0.219797E-10    0.472708E-06    0.441383E-09
    5     9304.53       0.10747E-03  -0.22162E-05    0.000015    0.491135E-11    0.472826E-06    0.986266E-10
    6     9320.90       0.10729E-03  -0.96822E-03    0.006760    0.937453E-06    0.230920E-04    0.188253E-04
    7     11382.1       0.87857E-04   0.17053E-05    0.000012    0.290807E-11    0.230921E-04    0.583979E-10
    8     11385.3       0.87833E-04   0.53578E-05    0.000037    0.287058E-10    0.230928E-04    0.576451E-09
    9     14535.4       0.68797E-04   0.94644E-06    0.000007    0.895743E-12    0.230928E-04    0.179877E-10
   10     15206.9       0.65760E-04  -0.14972E-05    0.000010    0.224167E-11    0.230929E-04    0.450157E-10
   11     19129.1       0.52276E-04  -0.72228E-04    0.000504    0.521688E-08    0.232187E-04    0.104762E-06
   12     19211.2       0.52053E-04  -0.17198E-01    0.120072    0.295763E-03    0.715948E-02    0.593931E-02
   13     21192.5       0.47187E-04  -0.13350        0.932096    0.178230E-01    0.437200        0.357911    
   14     23711.4       0.42174E-04   0.15719E-04    0.000110    0.247096E-09    0.437200        0.496203E-08
   15     23712.1       0.42172E-04   0.20055E-03    0.001400    0.402200E-07    0.437201        0.807671E-06
   16     26594.1       0.37602E-04  -0.14323        1.000000    0.205145E-01    0.932181        0.411958    
   17     28705.8       0.34836E-04   0.42418E-05    0.000030    0.179930E-10    0.932181        0.361324E-09
   18     29154.9       0.34300E-04   0.10645E-01    0.074323    0.113319E-03    0.934915        0.227559E-02
   19     30305.6       0.32997E-04   0.10060E-04    0.000070    0.101211E-09    0.934915        0.203245E-08
   20     30312.8       0.32989E-04   0.49382E-04    0.000345    0.243859E-08    0.934915        0.489702E-07
   21     34346.4       0.29115E-04  -0.52235E-05    0.000036    0.272853E-10    0.934915        0.547926E-09
   22     36793.2       0.27179E-04   0.51304E-02    0.035820    0.263215E-04    0.935550        0.528571E-03
   23     44385.1       0.22530E-04   0.22402E-05    0.000016    0.501871E-11    0.935550        0.100782E-09
   24     47898.2       0.20878E-04   0.32907E-05    0.000023    0.108290E-10    0.935550        0.217460E-09
   25     51110.3       0.19566E-04  -0.82738E-06    0.000006    0.684562E-12    0.935550        0.137469E-10
   26     52122.9       0.19185E-04  -0.82532E-06    0.000006    0.681147E-12    0.935550        0.136783E-10
   27     52211.6       0.19153E-04   0.43101E-02    0.030092    0.185766E-04    0.935999        0.373043E-03
   28     56171.7       0.17803E-04  -0.56272E-05    0.000039    0.316656E-10    0.935999        0.635887E-09
   29     56183.0       0.17799E-04  -0.47378E-04    0.000331    0.224465E-08    0.935999        0.450755E-07
   30     58861.0       0.16989E-04   0.41097E-01    0.286934    0.168899E-02    0.976751        0.339171E-01
   31     60374.9       0.16563E-04   0.41351E-04    0.000289    0.170992E-08    0.976751        0.343375E-07
   32     60377.6       0.16562E-04  -0.46874E-04    0.000327    0.219718E-08    0.976751        0.441223E-07
   33     62900.6       0.15898E-04   0.58571E-05    0.000041    0.343061E-10    0.976751        0.688912E-09
   34     65167.8       0.15345E-04   0.60328E-05    0.000042    0.363949E-10    0.976751        0.730858E-09
   35     69986.8       0.14288E-04   0.21853E-02    0.015257    0.477544E-05    0.976866        0.958973E-04
   36     72005.0       0.13888E-04  -0.24739E-02    0.017272    0.612022E-05    0.977014        0.122902E-03
   37     79771.7       0.12536E-04  -0.56816E-05    0.000040    0.322802E-10    0.977014        0.648229E-09
   38     82189.3       0.12167E-04   0.76951E-05    0.000054    0.592144E-10    0.977014        0.118910E-08
   39     87256.5       0.11460E-04   0.30865E-01    0.215495    0.952651E-03     1.00000        0.191305E-01
   40     88526.3       0.11296E-04  -0.47219E-04    0.000330    0.222963E-08     1.00000        0.447739E-07
 -----------------------------------------------------------------------------------------------------------------
   sum                                                           0.414450E-01                    0.832272    
 -----------------------------------------------------------------------------------------------------------------

Modes having high participation factors in the z direction are candidates for evaluation as desirable longitudinal modes. Also examine the mode shapes to determine whether excessive transverse motions exist, as those modes should not be excited during transducer operation. Upon examination of the results in this case, modes 16, 30 and 39 are the modes of interest, as shown in the following three figures.

Figure 39.5: First Longitudinal Mode of Interest (16) at 26.6 kHz

First Longitudinal Mode of Interest (16) at 26.6 kHz

This second mode of interest is the one to be investigated in the subsequent harmonic response analyses:

Figure 39.6: Second Longitudinal Mode of Interest (30) at 58.9 kHz

Second Longitudinal Mode of Interest (30) at 58.9 kHz

It is worth noting that if the transducer were to be used for a higher-frequency application, the third mode of interest is at 87.3 kHz:

Figure 39.7: Third Longitudinal Mode of Interest (39) at 87.3 kHz

Third Longitudinal Mode of Interest (39) at 87.3 kHz

In all modes, the tip of the bonding tool has little motion in the x and y directions as compared to the z direction, necessary for proper wire bonding to occur. Also, the frequencies of the second and third modes are roughly twice and thrice that of the first mode, as expected.

39.7.2. Results from Prestressed Full Harmonic Response Analysis

For wire bonding, the transducer can operate in the 50-60 kHz range. Although the modal analysis determined that the second longitudinal mode of interest is 58.9 kHz, it is necessary to determine the actual amplitude and impedance values, and so a harmonic response analysis is performed.

The “reaction force” for voltage degrees of freedom is charge. In the POST26 time-history postprocessor (/POST26), the charge Q is retrieved at the terminal. As current and , then . This operation can be performed via the CFACT and PROD commands to calculate current based on the charge. Impedance is calculated and plotted as follows:

Figure 39.8: Electrical Impedance

Electrical Impedance

The tip x, y and z displacements are output directly in POST26 and plotted as follows:

Figure 39.9: Tip Displacement

Tip Displacement

As indicated, the lateral motion (x and y) is much less than the longitudinal motion (z). The displacement for this applied voltage is a little more than 0.1 micron.