Expand/Collapse all
Using This Manual
1. The Contents of This Manual
2. The Contents of the Ansys Polyflow Manuals
3. Typographical Conventions Used in This Manual
1. Getting Started
1.1. The Ansys Product Improvement Program
1.2. Introduction
1.3. Program Structure
1.3.1. The Ansys Polyflow Package
1.3.1.1. License-Specific Capabilities
1.4. Overview of Using Ansys Polyflow
1.4.1. Planning Your Ansys Polyflow Analysis
1.4.2. Problem Solving Steps
1.5. Basic Concepts
1.5.1. Tasks and Sub-Tasks
1.5.1.1. Tasks
1.5.1.2. Sub-Tasks
1.5.2. Subdomains and Boundary Sets
1.5.3. Boundary Conditions
1.6. Starting Ansys Polydata and Ansys Polyflow
1.6.1. Starting Ansys Polydata
1.6.1.1. Starting License-Specific Versions of Ansys Polydata
1.6.2. Starting Ansys Polyflow
1.6.2.1. Starting License-Specific Versions of Ansys Polyflow
1.7. GPU Accelerator Capability
1.7.1. Activating the GPU Accelerator Capability
1.7.2. Limitations
1.7.3. Messages
1.7.4. Troubleshooting
1.8. The .p3rc Configuration File
1.8.1. Setting Up Your .p3rc Files
1.8.2. Keywords in the .p3rc File
1.8.2.1. Solution Keywords
1.8.2.2. Setup Keywords
1.8.2.3. Example
1.9. Known Limitations in Ansys Polyflow 2024 R2
1.10. Ansys Polyflow Documentation
2. Ansys Polydata Graphical User Interface
2.1. Ansys Polydata GUI
2.2. Menu Bar
2.2.1. File
2.2.2. Graphical window
2.2.3. Help
2.3. Keywords
2.4. Text Window
2.5. The Tree View Window
2.6. Ansys Polydata Tabs
2.6.1. Menus Tab
2.6.2. Mesh Tab
2.6.3. Help Tab
2.7. Graphics Display Window
2.8. Graphics Toolbar
2.9. Output Text Window
3. Managing Ansys Polyflow Projects Using Ansys Polyman
3.1. Starting Ansys Polyman
3.2. Overview of the Ansys Polyman Interface
3.2.1. Menu Bar
3.2.2. Toolbar
3.2.3. Tree Region
3.2.4. Information Region
3.2.5. Comment Region
3.2.6. Tab Bar
3.3. Creating a New Project, Simulation, or Geometry Branch
3.3.1. Creating a New Project
3.3.2. Creating a New Branch for Geometry Files
3.3.3. Creating a New Simulation
3.4. Opening an Existing Project
3.5. Importing Files into a Project
3.5.1. Importing a GAMBIT File
3.5.2. Importing a Simulation
3.5.3. Importing a Mesh File
3.5.4. Importing a Material Data File
3.5.5. Importing a Data File
3.5.6. Importing a Result File
3.5.7. Importing a User-Defined Function File
3.5.8. Importing a CSV File
3.5.9. Importing a .poly File
3.5.10. Importing an I-deas File
3.5.11. Importing a PATRAN File
3.5.12. Importing a (user) File
3.6. Exporting Files
3.7. Copying and Deleting Files
3.8. Starting the Programs
3.8.1. Starting Ansys Polydata
3.8.2. Starting Ansys Polyflow
3.8.3. Starting Fluent/Post 
3.8.4. Starting FieldView
3.8.5. Starting CFD-Post
3.8.6. Starting Ansys Polyfuse
3.8.7. Starting Ansys Polystat
3.8.8. Starting Ansys Polymat
3.9. Setting Options for Ansys Polydata, Ansys Polyflow, FieldView & CFD-Post
3.9.1. Options for Ansys Polydata
3.9.2. Options for Ansys Polyflow
3.9.3. Options for FieldView
3.9.4. Options for CFD-Post
3.10. Converting a GAMBIT Neutral File
3.11. Viewing a Listing File
3.12. Obtaining Information about a Project or Simulation
3.12.1. Obtaining Project Information
3.12.2. Obtaining Simulation Information
3.13. Scheduling a Simulation
3.14. Getting Help
3.15. Exiting Ansys Polyman
4. Sample Session
4.1. Problem Description
4.2. Outline of Procedure
4.3. Creating a Project and Importing the Mesh
4.4. Starting Ansys Polydata and Reading the Mesh File
4.5. Creating a Task
4.6. Creating a Sub-Task and Specifying its Domain
4.6.1. Creating a Sub-Task
4.6.2. Specifying the Sub-Task’s Domain of Definition
4.7. Defining Material Properties for the Fluid
4.8. Defining Flow Boundary Conditions
4.8.1. Flow Inlet
4.8.2. Outer Wall
4.8.3. Free Surface
4.8.4. Flow Exit
4.8.5. Symmetry Axis
4.8.6. Rotating Screw
4.9. Defining the Remeshing
4.9.1. Specifying the Region To Be Remeshed
4.9.2. Specifying the Parameters for the System of Spines
4.10. Assigning the Stream Function Value
4.11. Define the Units for Simulation
4.12. Saving the Data File and Exiting from Ansys Polydata
4.13. Calculating a Solution with Ansys Polyflow
4.14. Examining the Results with CFD-Post
4.14.1. Starting CFD-Post and Reading the Results
4.14.2. Displaying Contours of Pressure
4.14.3. Displaying Velocity Vectors
4.14.4. Exiting from CFD-Post
5. Reading and Writing Files
5.1. Files Written and Read by Ansys Polydata and Ansys Polyflow
5.2. Reading Mesh Information into Ansys Polydata
5.2.1. Reading Files Directly
5.2.1.1. Optional Conversion to a Case File
5.2.2. Converting Mesh Files Created by Other Programs
5.3. Reading and Writing Ansys Polydata Data Files
5.3.1. Writing a Data File
5.3.2. Reading a Data File into Ansys Polydata
5.3.3. Contents of the Data File
5.4. Reading and Writing Ansys Polydata Session Files
5.5. Reading Mesh, Data, and Results Files into Ansys Polyflow
5.5.1. Reading a Data File into Ansys Polyflow
5.5.2. Starting an Ansys Polyflow Calculation from an Existing Results File
5.5.3. Starting an Evolution or Time-Dependent Calculation from Existing Results and Restart Files
5.6. Writing an Ansys Polyflow Results File
5.7. Writing an Ansys Polyflow Listing File
5.7.1. Saving Ansys Polyflow Messages to a Listing File
5.7.2. Controlling the Amount of Information in the Listing File
5.7.3. Contents of a Sample Listing File
5.8. Exporting Files for Postprocessing and Additional Simulations
5.8.1. Exporting Mesh and Solution Data
5.8.1.1. PATRAN Files
5.8.1.2. I-deas Files
5.8.1.3. IGES Files
5.8.1.4. CSV Files
5.8.1.5. FieldView Files
5.8.1.6. CFD-Post Files
5.8.1.7. EnSight Files
5.8.1.8. Ansys Mechanical APDL Files
5.8.1.9. Ansys Mechanical Files
5.8.2. Saving Data at a Specified Point
5.8.3. Output for Time-Dependent, and Evolution Calculations
5.9. Filename Syntax
5.9.1. Naming Conventions
6. Unit Systems
6.1. Overview of Units
6.2. Converting to a New Unit System
6.3. Restrictions on Units
7. Meshes
7.1. Mesh Topologies
7.1.1. PMeshes
7.1.2. Examples of Acceptable Mesh Topologies
7.1.3. Choosing the Appropriate Mesh Type
7.1.3.1. Setup Time
7.1.3.2. Computational Expense
7.1.3.3. Application Being Modeled
7.2. .poly Meshes Created with Ansys ICEM CFD or Ansys Meshing
7.3. Meshes Created with PATRAN or I-deas
7.3.1. Element and Node Numbering
7.3.2. Jacobians
7.3.3. Subdomains
7.3.4. Boundary Sets
7.3.5. Elements of Mixed Dimension and PMesh Generation
7.3.6. Notes for I-deas Master Series Users
7.4. Meshes Created with HYPERMESH
7.4.1. Element and Node Numbering
7.4.1.1. Meshes
7.4.2. Jacobians
7.4.3. Subdomains and Boundary Sets
7.4.4. Restrictions
7.5. Ansys Fluent Meshes Created with Ansys Meshing, Ansys Fluent, and Fluent Meshing
7.6. Mesh Decomposition and Optimization
7.6.1. About the Optimization of Element Numbering
7.6.2. About Domain Decomposition
7.6.3. Decomposing and Optimizing the Mesh
7.6.4. Using Optimized or Decomposed Mesh
7.6.5. Specifying the Number of Sub-Parts for Decomposition
7.7. Results Interpolation Onto Another Mesh
7.7.1. The CSV File
7.7.2. Using Mesh-to-Mesh Interpolation
7.7.3. Using the CSV File to Initialize Solution Variables
7.8. Combining Meshes with Ansys Polyfuse
7.8.1. Introduction
7.8.2. Starting Ansys Polyfuse
7.8.3. Steps for Combining Meshes
7.8.4. Reading and Writing Files
7.8.4.1. Selecting the Mesh Files
7.8.4.2. Saving the Combined Mesh File
7.8.4.3. Reading and Writing an Ansys Polyfuse Session File
7.8.5. Translating, Rotating, and Scaling a Mesh
7.8.5.1. Translating a Mesh
7.8.5.2. Rotating a Mesh
7.8.5.3. Scaling a Mesh
7.8.5.4. Manipulating Translation, Rotation, and Scaling Operations
7.8.6. Viewing the Mesh
7.8.7. Reporting Information about the Mesh
7.9. Examining the Mesh in Ansys Polydata
7.9.1. Translating, Rotating, and Zooming with the Mouse
7.9.2. Changing the View Axis
7.9.3. Scaling and Resizing the View
7.9.4. Displaying Perspective and Orthographic Views
7.9.5. Modifying the Background Color for the Display
7.9.6. Including the Coordinate Axes in the Display
7.9.7. Selecting Portions of the Mesh for Display
7.9.8. Modifying the Color of the Mesh Display
7.9.9. Specifying Outline, Wireframe, and Shaded Displays
7.9.10. Reporting Information about the Mesh
7.10. Generating a Sliceable Free Jet Mesh
7.11. Converting a Shell Mesh and Results
8. Boundary Conditions
8.1. Overview of Boundary Conditions
8.1.1. Available Boundary Conditions
8.1.2. Setting Boundary Conditions
8.2. Zero Wall Velocity Condition
8.3. Slip Condition
8.3.1. Shear Force Calculation
8.3.2. User Inputs for the Slip Condition
8.4. Porous Wall Condition
8.4.1. Normal Force Calculation
8.4.2. User Inputs for the Porous Wall Condition
8.5. Symmetry Condition
8.6. Inflow Condition
8.6.1. Inflow Calculation for Generalized Newtonian Flow
8.6.2. Inflow Calculation for Viscoelastic Flow
8.6.3. User Inputs for the Inflow Condition
8.7. Outflow Condition
8.7.1. Outflow Condition for Generalized Newtonian Flow
8.7.2. Outflow Condition for Viscoelastic Flow
8.7.3. User Inputs for the Outflow Condition
8.8. Free Surface Condition
8.9. Normal and Tangential Velocity Condition
8.10. Normal and Tangential Force Condition
8.11. Normal Velocity and Tangential Force Condition
8.12. Normal Force and Tangential Velocity Condition
8.13. Global Force Condition
8.14. Cartesian Velocity Condition
8.15. Velocity Profile from a CSV File
8.16. Interface Condition
8.17. Interface with Elastic Solid
8.18. Periodic Condition
8.19. Non-Conformal Boundaries
8.19.1. Solution Technique for Non-Conformal Boundaries
8.19.2. Connecting Non-Conformal Boundaries
8.20. Specifying Conditions Using Sub-Models
8.20.1. The Topo-Object
8.20.2. Types of Sub-Models
8.20.3. Defining a Sub-Model
8.20.4. Defining a Topo-Object
8.20.5. Defining a Material Dataset
8.21. Using a Rotating Reference Frame
9. Material Properties
9.1. Overview of Material Properties
9.2. Specifying Material Properties as Algebraic Functions
9.2.1. Example
9.2.2. User Inputs
9.2.3. Compressible Flows
9.3. Reading and Writing Material Data Files
9.4. Curve Fitting for Material Properties
9.5. Using Material Data from the CAMPUS Database
9.6. Using Material Data from the Ansys Polyflow Databases
9.6.1. The Miscellaneous and Shell_Materials Directories
9.6.2. The Extrusion, BlowMolding, and BlowMolding_viscoelastic Directories
10. Generalized Newtonian Flow
10.1. Introduction
10.2. Theory and Equations
10.2.1. Basic Equations
10.2.2. Shear-Rate-Dependent Viscosity Laws
10.2.2.1. Constant
10.2.2.2. Power Law
10.2.2.3. Bird-Carreau Law
10.2.2.4. Cross Law
10.2.2.5. Modified Cross Law
10.2.2.6. Bingham Law
10.2.2.7. Modified Bingham Law
10.2.2.8. Herschel-Bulkley Law
10.2.2.9. Modified Herschel-Bulkley Law
10.2.2.10. Log-Log Law
10.2.2.11. Carreau-Yasuda Law
10.2.3. Temperature-Dependent Viscosity Laws
10.2.3.1. Arrhenius Law
10.2.3.2. Arrhenius Shear Rate vs. Arrhenius Shear Stress
10.2.3.3. Approximate Arrhenius Law
10.2.3.4. Fulcher Law
10.2.3.5. WLF Law
10.2.3.6. WLF Shear-Stress Law
10.2.3.7. Mixed-Dependence Law
10.2.4. Orthotropic Materials
10.3. Problem Setup
10.3.1. General Procedure
10.3.2. Problem Setup for Reinforced Materials
10.3.3. Controlling the Interpolation
10.3.3.1. Interpolation for Nonisothermal Flows
10.3.3.2. Finite-Element Interpolation for 2D Models
10.3.3.3. Finite-Element Interpolation for 3D Models
10.3.3.4. Viscosity-Related Iterations
10.3.3.5. Interpolation for Nonisothermal Flows
10.3.3.6. Quadratic and Linear Coordinates
10.3.4. Using Evolution to Compute Generalized Newtonian Flow
10.3.4.1. Sample Applications
11. Viscoelastic Flows
11.1. Overview of Viscoelastic Flow
11.1.1. Modeling Viscoelastic Flow
11.2. Differential Viscoelastic Models
11.2.1. Theory and Equations
11.2.1.1. Extra-Stress Tensor
11.2.1.2. Basic Equations
11.2.1.3. Viscoelastic Models
11.2.1.3.1. Upper-Convected Maxwell Model
11.2.1.3.2. Oldroyd-B Model
11.2.1.3.3. White-Metzner Model
11.2.1.3.4. Phan-Thien-Tanner Model
11.2.1.3.5. Giesekus Model
11.2.1.3.6. FENE-P Model
11.2.1.3.7. POM-POM Model [DCPP]
11.2.1.3.8. Leonov Model
11.2.1.4. Temperature Dependence of Viscosity and Relaxation Time in Nonisothermal Flows
11.2.1.5. The Components of a Tensor
11.2.2. Problem Setup for Differential Viscoelastic Flows
11.2.3. Choosing the Differential Viscoelastic Model
11.2.3.1. Analyzing the Problem
11.2.3.1.1. Viscoelasticity
11.2.3.1.2. The Weissenberg Number
11.2.3.1.3. Inertia Effects
11.2.3.1.4. Storage and Loss Moduli
11.2.3.2. Guidelines for Model Selection
11.2.3.2.1. Maxwell Model
11.2.3.2.2. Oldroyd-B Model
11.2.3.2.3. White-Metzner Model
11.2.3.2.4. PTT Model
11.2.3.2.5. Giesekus Model
11.2.3.2.6. FENE-P Model
11.2.3.2.7. POM-POM Model [DCPP]
11.2.3.2.8. Leonov Model
11.2.4. Setting the Viscosity Ratio
11.2.5. Selecting the Interpolation
11.2.5.1. Interpolation for Pressure and Velocity
11.2.5.2. Interpolation for Viscoelastic Stresses
11.2.5.2.1. The Streamwise Approximation for Tensors (SAFT) Technique
11.2.5.2.2. Default Options and Parameters
11.2.5.2.3. Selecting an Interpolation
11.2.5.2.4. Combining Interpolation
11.2.5.2.5. Iterative Scheme for Viscosity and Relaxation Time
11.2.5.3. Interpolation for Nonisothermal Flows
11.2.5.4. Field Names for Viscoelastic Flows
11.2.6. Computing Differential Viscoelastic Flow
11.2.6.1. Using Evolution
11.2.6.2. Convergence Strategy for Viscoelasticity
11.2.6.3. Sample Applications
11.2.7. Supported Features for Differential Viscoelastic Flow Calculations
11.3. Integral Viscoelastic Models
11.3.1. Introduction
11.3.2. Theory and Equations
11.3.2.1. Extra-Stress Tensor
11.3.2.2. Basic Equations
11.3.2.3. Viscoelastic Models
11.3.2.3.1. Doi-Edwards Model
11.3.2.3.2. KBKZ Model
11.3.2.3.3. Equivalent Generalized Newtonian Models
11.3.2.4. Temperature Shift Functions for Nonisothermal Flows
11.3.2.5. Numerical Method for Integral Viscoelastic Flow
11.3.3. Problem Setup for Integral Viscoelastic Flows
11.3.4. Choosing the Integral Viscoelastic Model
11.3.4.1. Doi-Edwards Model
11.3.4.2. KBKZ Model
11.3.5. Setting the Evolutive Viscosity
11.3.6. Using Evolution to Compute Integral Viscoelastic Flow
11.3.7. Additional Strategies for Convergence
11.3.7.1. Calculations Involving Moving Boundaries
11.3.8. Additional Hints
11.3.8.1. Mesh Resolution
11.3.8.2. Performance on Vector Machines
11.4. Simplified Viscoelastic Model
11.4.1. Theory and Equations
11.4.2. Considerations
11.4.3. Identifying Model Parameters and Functions
11.4.4. Selecting the Interpolation
11.4.5. Problem Setup for Simplified Viscoelastic Model
12. Flow Induced Crystallization (FIC)
12.1. Introduction
12.2. Crystallization Model
12.2.1. Qualitative Description
12.2.2. Extra-Stress Contribution from the Amorphous Phase
12.2.3. Extra-Stress Contribution from the Semicrystalline Phase
12.2.4. Degree of Transformation
12.2.5. Energy Equation
12.2.6. Boundary Conditions
12.2.7. Evolution Schemes
12.2.8. Rheological Model and Properties
12.2.9. Total Extra-stress Postprocessor
12.3. Problem Setup
12.3.1. Names of Variables in Ansys Polyflow
13. Heat Transfer
13.1. Conduction and Convection
13.1.1. Theory
13.1.1.1. Basic Equations
13.1.1.2. Heat Flux Boundary Conditions
13.1.1.3. Boussinesq Approximation for Density in Nonisothermal Flows
13.1.1.4. Boundaries with Incoming and Outgoing Flows
13.1.2. Problem Setup
13.1.2.1. General Procedure
13.1.2.2. Using Evolution in Heat Conduction and Nonisothermal Flow Calculations
13.1.3. A Note on the Temperature Field
13.2. Internal Radiation
13.2.1. Theory
13.2.1.1. Angular Discretization
13.2.1.2. Domain Boundaries
13.2.1.3. Boundaries Internal to a Domain
13.2.2. User Inputs for Internal Radiation Model
14. Porous Media
14.1. Introduction
14.2. Theory
14.3. Using the Model
14.3.1. General Procedure
15. Free Surfaces and Extrusion
15.1. Introduction
15.2. Theory and Equations
15.2.1. Free Surfaces
15.2.1.1. Dynamic Condition
15.2.1.2. Kinematic Condition
15.2.1.3. Geometrical Degree of Freedom
15.2.2. Moving Interfaces
15.2.2.1. Fixed-Interface Condition
15.2.2.2. Dynamic Condition
15.2.2.3. Kinematic Condition
15.2.2.4. Slipping Between Two Layers in Coextrusion
15.2.3. Directors
15.2.4. Surface Tension
15.2.4.1. Surface Tension Force
15.2.4.2. Velocity Imposed on the Boundary of the Free Surface
15.2.5. Discontinuity of the Normal Direction
15.2.5.1. Corner Lines
15.2.5.2. Surface Kinematic Condition
15.2.5.3. Line Kinematic Condition
15.2.6. Drag
15.2.7. Fluid-Fluid Contact
15.2.8. Guiding Devices
15.3. User Inputs for Free Surfaces and Moving Interfaces
15.3.1. General Procedure
15.3.2. Defining the Direction of Motion
15.3.2.1. Boundary of the Free Surface or Moving Interface
15.3.2.2. Directors and Symmetry Planes
15.3.2.3. Frequency of the Director Calculation
15.3.3. Controlling the Interpolation
15.3.4. Convergence Strategies
15.3.5. Guidelines for 3D Extrusion Problems
15.3.5.1. Convergence
15.3.5.2. Discontinuity of the Normal Direction
15.3.6. Guidelines for Coextrusion Problems
15.3.7. Static and Dynamic Contact Points or Lines
15.3.7.1. Contact Points and Lines
15.3.7.2. The Moving-Contact-Point Model
15.3.7.3. Inputs for Dynamic Contact Points
15.3.8. Inverse Extrusion and Die Design
15.3.8.1. Maintaining a Constant Shape for a Portion of the Die
15.3.9. Constraint on Global Displacement
15.3.9.1. Finite-Element Formulation
15.3.9.2. Limitations
15.3.9.3. Compatibility with Specific Geometries and Boundary Conditions
15.3.9.4. User Inputs for the Constraint on Global Displacement
15.3.10. Defining Guiding Devices
15.3.11. Mapping for Fluid-Fluid Contact
16. Remeshing
16.1. Introduction to Remeshing
16.1.1. About Remeshing
16.1.2. Remeshing Techniques in Ansys Polyflow
16.1.3. Choosing a Remeshing Technique
16.2. Method of Spines
16.3. Euclidean Method
16.4. Method of Planes
16.5. Thompson Transformation
16.5.1. Theory
16.5.2. Example
16.5.3. Implementation
16.6. Optimesh
16.6.1. Theory
16.6.2. Boundary Conditions
16.7. Thin Shell Method
16.7.1. Theory
16.8. Lagrangian Method
16.9. Thin Shell Method with Lagrangian Master
16.10. Lagrangian Method on Borders
16.11. Streamwise Method
16.12. Elastic Methods
16.13. User Inputs for Remeshing
16.13.1. Element Distortion Check
16.14. Local Remeshing
16.14.1. User Inputs for Local Remeshing
16.15. Adaptive Meshing
16.15.1. Overview and Usage
16.15.2. Adaptive Meshing Technique
16.15.3. User Inputs for Adaptive Meshing
16.15.3.1. Adaptive Meshing Parameters for Moving Parts
16.15.3.2. Adaptive Meshing Parameters for Large Variations of Fields
16.15.3.3. Adaptive Meshing Parameters for Contact and Remeshing
16.15.3.3.1. Adaptive Meshing for Contact
16.15.3.3.1.1. Basing the Calculation on Distance
16.15.3.3.1.2. Basing the Calculation on Curvature
16.15.3.3.1.3. Basing the Calculation on Angle and Curvature
16.15.3.3.2. Mapping
16.15.3.3.3. Adaptive Meshing for Remeshing
16.15.3.4. Manage Zones for Remeshing
16.15.3.4.1. Defining Fixed Zones
16.15.3.4.2. Defining Moving Zones
16.15.3.5. Criteria for Remeshing
16.15.3.5.1. for Adaptive Meshing
17. Blow Molding and Thermoforming
17.1. Working of Contact Detection
17.1.1. Shell Elements for 3D Models
17.2. Theory and Equations
17.2.1. Penalty Technique for Detecting Contact
17.2.2. Velocity-Driven Motion
17.2.3. Contact Release
17.2.4. Velocity- or Force-Driven Mold
17.2.5. Heat Transfer and Contact (Imposed Temperature)
17.2.6. Heat Transfer and Contact (Conjugate Heat Transfer)
17.2.7. Strain-Dependent Viscosity
17.2.8. Orthotropic Material
17.2.9. 3D Viscoelastic Blow Molding Simulations
17.2.10. Calculation of the Parison Thickness
17.2.11. Calculation of the Extensions
17.2.11.1. Evaluation of the Extension Components
17.2.11.2. Evaluation of the Area Stretch Ratio
17.2.12. Calculation of the Mass of the Blown Product
17.2.13. Calculation of the Volume of the Blown Product
17.2.14. Calculation of the Permeability of the Blown Product
17.2.15. Time Dependence and Contact Handling
17.2.16. Residual Deformations and Stresses
17.2.17. Temperature Programming
17.3. Setting Up a Contact Problem
17.3.1. Inputs for 2D and 3D Contact Detection
17.3.2. Inputs for Shell Contact Detection
17.3.3. Defining the Thickness Interpolation for Shell Elements
17.3.3.1. Controlling the Thickness Interpolation
17.3.4. Generating a Mesh with Shell Elements
17.4. Computing Derived Quantities in Contact Problems
17.4.1. Inputs for Computing the Extension Components
17.4.2. Inputs for Computing the Mass of the Blown Product
17.4.3. Inputs for Computing the Volume of the Blown Product
17.4.4. Inputs for Computing the Permeability of the Blown Product
17.4.5. Inputs for Parison Programming
17.4.6. Inputs for Residual Stresses and Deformations
17.4.7. Inputs for Temperature Programming
17.4.8. Inputs for Self-Contact Detection
18. Film Casting
18.1. Introduction
18.2. Theory
18.2.1. Overview
18.2.2. Flow Equations
18.2.2.1. Boundary Conditions
18.2.2.2. Stress Boundary Conditions for the DCPP Model in Film Casting
18.2.3. Multilayer Films (Coextrusion)
18.2.4. Heating and Cooling of the Film
18.2.5. Stream Function
18.2.6. Film Problems and Nonlinearity
18.3. Inputs for Film Casting Problems
18.3.1. General Procedure
18.3.2. Guidelines for Setting Boundary Conditions
18.3.2.1. Flow Boundary Conditions
18.3.2.1.1. Multilayer Film Casting Problems
18.3.2.1.2. Viscoelastic Flow Film Problems
18.3.2.2. Thermal Boundary Conditions
18.3.2.2.1. Multilayer Film Problems
18.3.2.3. Stress Boundary Conditions for the DCPP Model in Film Casting
19. Chemically Reacting Flows
19.1. Introduction
19.2. Theory
19.2.1. Overview of Reactions
19.2.2. Definitions
19.2.3. Advection-Diffusion Mechanism
19.2.4. General Transport Equation
19.2.5. Chemical Reactions
19.3. User Inputs
19.3.1. Defining Chemical Species
19.3.2. Defining Chemical Reactions
19.3.3. Defining the Species Transport Equations
19.3.4. Defining a Closure Equation
19.3.5. Chemical Reactions and Evolution
20. Physical Foaming
20.1. Introduction
20.2. Theory
20.2.1. Arefmanesh PMAT function
20.2.2. Exit Boundary Conditions
20.3. User Inputs
21. Volume of Fluid (VOF) Model
21.1. Introduction
21.2. Theory
21.2.1. Volume Conservation
21.2.2. Time Step Management
21.2.3. Numerical Considerations
21.2.4. Viscoelastic Fluids
21.3. Problem Setup
22. Flows with Internal Moving Parts
22.1. Introduction
22.1.1. Advantages of the Mesh Superposition Technique
22.1.2. Limitations of the Mesh Superposition Technique
22.2. Theory
22.2.1. Navier-Stokes Equations
22.2.2. Mass Conservation Equation
22.2.3. Energy Equation
22.2.4. Interpolation
22.2.5. Transient Moving Part Velocities
22.2.5.1. Description of Motion
22.2.5.2. Computation of the New Position
22.2.5.3. Computation of the Velocity
22.3. User Inputs
22.3.1. Mesh Considerations
22.3.2. Setting Up Your Problem in Ansys Polydata
22.3.3. Time-Dependent Parameters
22.4. Guidelines for Problems with Transient Velocities
22.5. Additional Guidelines
23. Sliding Mesh Technique
23.1. Introduction
23.1.1. Advantages of the Sliding Mesh Technique
23.1.2. Limitations of the Sliding Mesh Technique
23.2. Examples
23.3. Meshing
23.4. Equations
23.5. Guidelines
23.6. User Inputs
24. Using Multiple Materials in Polymer Flows
24.1. General Procedure for Using Multiple Materials
24.2. Conditions and Limitations for Using Multiple Materials
25. Glass Furnaces and Electrical Heating
25.1. Introduction
25.2. Electrical Heating
25.2.1. Theory
25.2.2. User Inputs for Electrical Heating
25.3. Radiative (Rosseland) Correction
25.3.1. Theory
25.3.2. Using Radiative Correction
25.4. Bubblers
25.4.1. Introduction
25.4.2. Theory
25.4.3. User Inputs for Bubblers
25.4.3.1. Mesh Requirements
25.4.3.2. Defining a Bubble Column in Ansys Polydata
26. Residual Stresses and Deformations
26.1. Introduction
26.2. Theory and Equations
26.2.1. Modeling
26.2.2. Material parameters
26.2.3. Boundary Conditions
26.2.4. Physical Interpretation
26.2.5. Numerical Treatment
26.3. Problem Setup
27. Fluid Structure Interaction (FSI) Model
27.1. Introduction
27.2. Theory
27.2.1. Effect of Elastic Sub-task on the Flow Domain
27.3. Elasticity Boundary Conditions
27.3.1. Interface With Solid
27.3.2. Interface With a Fluid
27.3.3. Normal and Tangential Displacement Imposed
27.3.4. Normal and Tangential Force Imposed
27.3.5. Normal Displacement and Tangential Force Imposed
27.3.6. Normal Force and Tangential Displacement Imposed
27.3.7. Symmetry Condition
27.3.8. Contact with the Parison
27.3.9. Border of a Moving Part
27.3.10. Assign Displacement at Points
27.3.11. No Displacement
27.3.12. Free Displacement
27.3.13. Cartesian Displacement Imposed
27.3.14. Global Force Imposed
27.4. Problem Setup
27.4.1. Numerical Parameters in Elastic Problem Coupled with Flow Problem
28. Evolution
28.1. Introduction
28.2. Nonlinearity and Evolution
28.3. Available Evolution Functions
28.4. Using Evolution
28.4.1. When to Use Evolution
28.4.2. Determining an Appropriate Evolution Parameter
28.4.3. Problem Setup
28.4.4. Initial Conditions
28.4.5. Output of Results for Evolution Problems
28.5. Interrupting Evolution
28.5.1. Criterion Definition
28.5.2. Available Fields (X) for Criteria
28.5.3. Restriction Functions R
28.5.4. Functions for Obtaining the Check Value F
28.5.5. Coordinate Functions
28.5.6. Inequality Tests
28.5.7. Multiple Criteria
28.5.8. Inputs for Criteria to Interrupt the Evolution
28.5.9. Output for Interruption Criteria
29. Time-Dependent Flows
29.1. Introduction
29.2. Theory
29.2.1. Equations
29.2.2. Integration Methods
29.2.3. Internal Solution Strategy
29.2.4. Time-Marching Schemes
29.3. User Inputs for Time-Dependent Problems
29.3.1. Setting Up a Time-Dependent Problem
29.3.2. Initial Conditions
29.3.3. Output of Results for Time-Dependent Problems
29.4. Outputs to a Listing File
29.5. Interrupting Time-Dependent Computations
29.6. Volume Conservation
30. Computing Derived Quantities
30.1. Overview of Derived Quantities
30.2. Stream Function
30.2.1. Calculation of Stream Function
30.2.2. User Inputs for Stream Function
30.3. Local Shear Rate
30.4. Viscosity
30.5. Rate-of-Deformation Tensor
30.6. Inelastic Stress Tensor
30.7. Viscous and Wall Friction Heating and Dissipated Power
30.8. Total Extra-Stress Tensor
30.9. Residence Time
30.9.1. Calculation of Residence Time
30.9.2. User Inputs for the Residence Time
30.10. Tracking of Material Points
30.10.1. Calculation for Tracking Material Points
30.10.2. User Inputs for Tracking Material Points
30.11. Tracking of a Material Property
30.12. Forces on Slices
30.13. Heat Fluxes
30.14. Flow Rate
30.15. Joule Effect
30.16. Mixing Index
30.17. Vorticity
30.18. Convected Heat
30.19. Parison Thickness
30.20. Extension Evaluation
30.21. Mass of Blown Product
30.22. Volume of Blown Product
30.23. Permeability of Blown Product
30.24. Stress Eigenvalues and Components
30.24.1. Calculation of Eigenvalues
30.24.2. Calculation of the Stress Component Along the Velocity Direction
30.24.3. Calculation of the Generalized First Normal Stress Difference
30.25. Quantification of Die Balancing
30.26. Energy Balance
30.27. Parison Programming
30.28. Volume of Liquid
30.29. Temperature Programming
30.30. Thickness Evaluation
30.31. Self-Contact
31. Using the Solver
31.1. Controlling the Calculations
31.1.1. Recalculating with a Different Interpolation
31.1.2. Specifying the Number of Iterations
31.1.3. Convergence and Divergence
31.1.4. Convergence Strategy for Rheology and Slipping
31.1.5. Convergence Strategy for Viscoelasticity
31.1.6. Automatic Detection of Distorted Elements
31.1.7. Time-Marching
31.1.8. Decoupling Calculations
31.1.8.1. Internal Radiation
31.1.8.2. Free Surfaces and Moving Surfaces
31.1.8.3. Transport of Species
31.1.8.4. Nonisothermal Flows
31.1.8.5. Viscoelastic Flows
31.1.8.6. Combining Decoupled Calculations
31.1.8.7. Nonisothermal Operating Temperature
31.2. Solver Details
31.2.1. Selecting the Solver
31.2.2. Classic Direct Solver
31.2.2.1. Ansys Polyflow’s Implementation
31.2.2.2. Mesh Decomposition and Optimization
31.2.2.3. Solver Robustness
31.2.3. AMF Direct Solver
31.2.4. AMF Direct Solver + Secant
31.2.5. AMF Direct Solver + ILU
31.2.6. AMF Direct Solver + Secant + ILU
31.2.7. MUMPS Solver
31.2.7.1. Selecting the MUMPS Solver
31.2.7.2. Recommendations for the MUMPS Solver
31.2.8. MUMPS Solver + Secant
31.3. Distribute-Memory Parallel (DMP) Analysis for Ansys Polyflow
31.3.1. Configuring a Distributed-Memory Parallel (DMP) Analysis
31.3.1.1. DMP Analysis Under Windows
31.3.1.2. DMP Analysis Under Linux
31.4. DMP Analysis on a Cluster.
31.4.1. How to determine the MPI parameters?
31.4.2. Linux Cluster
31.4.3. Windows Cluster
32. User-Defined Functions (UDFs)
32.1. Introduction
32.1.1. Solver Performance with UDFs
32.2. Writing User-Defined Functions
32.2.1. Naming Your UDF
32.2.2. Summary of CLIPS Syntax
32.2.2.1. Example
32.2.2.2. Using Variables
32.2.3. Testing Your UDF
32.2.4. Mathematical Functions
32.2.4.1. Standard Mathematical Functions
32.2.4.2. Extended Mathematical Functions
32.2.5. Procedural Functions
32.3. Using User-Defined Functions
32.4. Dependence with Respect to Quantities Derived from the Kinematics
32.4.1. Some Quantities Derived from the Kinematics
32.4.2. Possible Viscosity Models with Distinct Behaviors in Shear and Extension
32.5. Best Practices for Complex User Defined Functions
32.5.1. An Example of a Complex UDF
32.5.2. CLIPS File Structure
33. CSV-Defined Functions
33.1. Introduction
33.2. Using CSV-Defined Functions
34. User-Defined Templates (UDTs)
34.1. Introduction
34.2. Defining a UDT
34.2.1. Creating a New Template Entry to Flag a Parameter
34.2.2. Reviewing a Template Entry
34.2.3. Modifying a Template Entry
34.3. Using UDTs
34.3.1. As Usual Method
34.3.2. Real UDT Method
34.3.3. Script Method
35. Die Shape Parameterization
35.1. Introduction
35.2. Theory
35.2.1. Element Stiffness During Elastic Remeshing
35.2.2. Domain Transformations
35.2.3. Surface Transformations
35.2.4. Line Transformations
35.2.5. Point Displacement
35.2.6. Hierarchy of Equations
35.3. Remarks and Limitations
35.4. Problem Setup
35.4.1. Fixed Domain
35.4.2. Rigid Translation
35.4.3. Elastic Remeshing
36. Optimization
36.1. Introduction
36.2. Theory
36.2.1. Constrained Optimization
36.2.2. Solving the Optimization Problem
36.2.2.1. The Augmented Lagrange Multiplier (ALM) Method
36.2.2.2. The Fletcher-Reeves (FR) Method
36.2.2.3. The Line Search (LS) Method
36.3. Optimization in Ansys Polyflow
36.3.1. Design Variables
36.3.2. Extractors
36.3.3. Objective Functions
36.3.4. Constraints
36.3.5. Optimizer Parameters
36.3.6. Remarks
36.4. Problem Setup
36.5. Files and Output for Optimization
36.5.1. The Standard Listing File
36.5.2. The Listing File for Optimization
36.5.3. The Sensitivities Files
36.5.4. The Result Files for Successful Evaluations of the Solution
36.6. Additional Options for Solution Exploration
36.6.1. Design Exploration
36.6.2. VisualDOC
A. Sub-Task Compatibility Charts
B. Running Ansys Polyflow with VisualDOC
B.1. Introduction
B.2. Constraints and Limitations
B.3. Parameterization Types in Ansys Polydata
B.3.1. Optimization Files in Ansys Polydata
B.3.1.1. Ansys Polydata Parameterization
B.3.1.2. Geometrical Parameterization
B.3.1.3. External Parameterization
B.3.1.4. Combining Types of Optimization
B.3.2. Tagging of Inputs
B.3.2.1. Tagging of Inputs in Ansys Polydata
B.3.3. Defining a Response in Ansys Polydata
B.3.4. File Management for Optimization
B.3.5. Files Generated by an Ansys Polydata Session
B.4. Problem Setup
C. Known Static Array Limitations
Bibliography