Expand/Collapse all
- Using This Manual
- 1. The Contents of This Manual
- 2. The Contents of the Ansys Polyflow Manuals
- 3. Typographical Conventions Used in This Manual
- 1. Getting Started
- 1.1. The Ansys Product Improvement Program
- 1.2. Introduction
- 1.3. Program Structure
- 1.3.1. The Ansys Polyflow Package
- 1.3.1.1. License-Specific Capabilities
- 1.4. Overview of Using Ansys Polyflow
- 1.4.1. Planning Your Ansys Polyflow Analysis
- 1.4.2. Problem Solving Steps
- 1.5. Basic Concepts
- 1.5.1. Tasks and Sub-Tasks
- 1.5.1.1. Tasks
- 1.5.1.2. Sub-Tasks
- 1.5.2. Subdomains and Boundary Sets
- 1.5.3. Boundary Conditions
- 1.6. Starting Ansys Polydata and Ansys Polyflow
- 1.6.1. Starting Ansys Polydata
- 1.6.1.1. Starting License-Specific Versions of Ansys Polydata
- 1.6.2. Starting Ansys Polyflow
- 1.6.2.1. Starting License-Specific Versions of Ansys Polyflow
- 1.7. GPU Accelerator Capability
- 1.7.1. Activating the GPU Accelerator Capability
- 1.7.2. Limitations
- 1.7.3. Messages
- 1.7.4. Troubleshooting
- 1.8. The .p3rc Configuration File
- 1.8.1. Setting Up Your .p3rc Files
- 1.8.2. Keywords in the .p3rc File
- 1.8.2.1. Solution Keywords
- 1.8.2.2. Setup Keywords
- 1.8.2.3. Example
- 1.9. Known Limitations in Ansys Polyflow 2024 R2
- 1.10. Ansys Polyflow Documentation
- 2. Ansys Polydata Graphical User Interface
- 2.1. Ansys Polydata GUI
- 2.2.1. File
- 2.2.2. Graphical window
- 2.2.3. Help
- 2.3. Keywords
- 2.4. Text Window
- 2.5. The Tree View Window
- 2.6.1. Menus Tab
- 2.6.2. Mesh Tab
- 2.6.3. Help Tab
- 2.7. Graphics Display Window
- 2.8. Graphics Toolbar
- 2.9. Output Text Window
- 3. Managing Ansys Polyflow Projects Using Ansys Polyman
- 3.1. Starting Ansys Polyman
- 3.2. Overview of the Ansys Polyman Interface
- 3.2.1. Menu Bar
- 3.2.2. Toolbar
- 3.2.3. Tree Region
- 3.2.4. Information Region
- 3.2.5. Comment Region
- 3.2.6. Tab Bar
- 3.3. Creating a New Project, Simulation, or Geometry Branch
- 3.3.1. Creating a New Project
- 3.3.2. Creating a New Branch for Geometry Files
- 3.3.3. Creating a New Simulation
- 3.4. Opening an Existing Project
- 3.5. Importing Files into a Project
- 3.5.1. Importing a GAMBIT File
- 3.5.2. Importing a Simulation
- 3.5.3. Importing a Mesh File
- 3.5.4. Importing a Material Data File
- 3.5.5. Importing a Data File
- 3.5.6. Importing a Result File
- 3.5.7. Importing a User-Defined Function File
- 3.5.8. Importing a CSV File
- 3.5.9. Importing a
.poly
File - 3.5.10. Importing an I-deas File
- 3.5.11. Importing a PATRAN File
- 3.5.12. Importing a (user) File
- 3.6. Exporting Files
- 3.7. Copying and Deleting Files
- 3.8. Starting the Programs
- 3.8.1. Starting Ansys Polydata
- 3.8.2. Starting Ansys Polyflow
- 3.8.3. Starting Fluent/Post
- 3.8.4. Starting FieldView
- 3.8.5. Starting CFD-Post
- 3.8.6. Starting Ansys Polyfuse
- 3.8.7. Starting Ansys Polystat
- 3.8.8. Starting Ansys Polymat
- 3.9. Setting Options for Ansys Polydata, Ansys Polyflow, FieldView & CFD-Post
- 3.9.1. Options for Ansys Polydata
- 3.9.2. Options for Ansys Polyflow
- 3.9.3. Options for FieldView
- 3.9.4. Options for CFD-Post
- 3.10. Converting a GAMBIT Neutral File
- 3.11. Viewing a Listing File
- 3.12. Obtaining Information about a Project or Simulation
- 3.12.1. Obtaining Project Information
- 3.12.2. Obtaining Simulation Information
- 3.13. Scheduling a Simulation
- 3.14. Getting Help
- 3.15. Exiting Ansys Polyman
- 4. Sample Session
- 4.1. Problem Description
- 4.2. Outline of Procedure
- 4.3. Creating a Project and Importing the Mesh
- 4.4. Starting Ansys Polydata and Reading the Mesh File
- 4.5. Creating a Task
- 4.6. Creating a Sub-Task and Specifying its Domain
- 4.6.1. Creating a Sub-Task
- 4.6.2. Specifying the Sub-Task’s Domain of Definition
- 4.7. Defining Material Properties for the Fluid
- 4.8. Defining Flow Boundary Conditions
- 4.8.1. Flow Inlet
- 4.8.2. Outer Wall
- 4.8.3. Free Surface
- 4.8.4. Flow Exit
- 4.8.5. Symmetry Axis
- 4.8.6. Rotating Screw
- 4.9. Defining the Remeshing
- 4.9.1. Specifying the Region To Be Remeshed
- 4.9.2. Specifying the Parameters for the System of Spines
- 4.10. Assigning the Stream Function Value
- 4.11. Define the Units for Simulation
- 4.12. Saving the Data File and Exiting from Ansys Polydata
- 4.13. Calculating a Solution with Ansys Polyflow
- 4.14. Examining the Results with CFD-Post
- 4.14.1. Starting CFD-Post and Reading the Results
- 4.14.2. Displaying Contours of Pressure
- 4.14.3. Displaying Velocity Vectors
- 4.14.4. Exiting from CFD-Post
- 5. Reading and Writing Files
- 5.1. Files Written and Read by Ansys Polydata and Ansys Polyflow
- 5.2. Reading Mesh Information into Ansys Polydata
- 5.2.1. Reading Files Directly
- 5.2.1.1. Optional Conversion to a Case File
- 5.2.2. Converting Mesh Files Created by Other Programs
- 5.3. Reading and Writing Ansys Polydata Data Files
- 5.3.1. Writing a Data File
- 5.3.2. Reading a Data File into Ansys Polydata
- 5.3.3. Contents of the Data File
- 5.4. Reading and Writing Ansys Polydata Session Files
- 5.5. Reading Mesh, Data, and Results Files into Ansys Polyflow
- 5.5.1. Reading a Data File into Ansys Polyflow
- 5.5.2. Starting an Ansys Polyflow Calculation from an Existing Results File
- 5.5.3. Starting an Evolution or Time-Dependent Calculation from Existing Results and
Restart Files
- 5.6. Writing an Ansys Polyflow Results File
- 5.7. Writing an Ansys Polyflow Listing File
- 5.7.1. Saving Ansys Polyflow Messages to a Listing File
- 5.7.2. Controlling the Amount of Information in the Listing File
- 5.7.3. Contents of a Sample Listing File
- 5.8. Exporting Files for Postprocessing and Additional Simulations
- 5.8.1. Exporting Mesh and Solution Data
- 5.8.1.1. PATRAN Files
- 5.8.1.2. I-deas Files
- 5.8.1.3. IGES Files
- 5.8.1.4. CSV Files
- 5.8.1.5. FieldView Files
- 5.8.1.6. CFD-Post Files
- 5.8.1.7. EnSight Files
- 5.8.1.8. Ansys Mechanical APDL Files
- 5.8.1.9. Ansys Mechanical Files
- 5.8.2. Saving Data at a Specified Point
- 5.8.3. Output for Time-Dependent, and Evolution Calculations
- 5.9. Filename Syntax
- 5.9.1. Naming Conventions
- 6. Unit Systems
- 6.1. Overview of Units
- 6.2. Converting to a New Unit System
- 6.3. Restrictions on Units
- 7. Meshes
- 7.1. Mesh Topologies
- 7.1.1. PMeshes
- 7.1.2. Examples of Acceptable Mesh Topologies
- 7.1.3. Choosing the Appropriate Mesh Type
- 7.1.3.1. Setup Time
- 7.1.3.2. Computational Expense
- 7.1.3.3. Application Being Modeled
- 7.2.
.poly
Meshes Created with Ansys ICEM CFD or Ansys Meshing - 7.3. Meshes Created with PATRAN or I-deas
- 7.3.1. Element and Node Numbering
- 7.3.2. Jacobians
- 7.3.3. Subdomains
- 7.3.4. Boundary Sets
- 7.3.5. Elements of Mixed Dimension and PMesh Generation
- 7.3.6. Notes for I-deas Master Series Users
- 7.4. Meshes Created with HYPERMESH
- 7.4.1. Element and Node Numbering
- 7.4.1.1. Meshes
- 7.4.2. Jacobians
- 7.4.3. Subdomains and Boundary Sets
- 7.4.4. Restrictions
- 7.5. Ansys Fluent Meshes Created with Ansys Meshing, Ansys Fluent, and Fluent Meshing
- 7.6. Mesh Decomposition and Optimization
- 7.6.1. About the Optimization of Element Numbering
- 7.6.2. About Domain Decomposition
- 7.6.3. Decomposing and Optimizing the Mesh
- 7.6.4. Using Optimized or Decomposed Mesh
- 7.6.5. Specifying the Number of Sub-Parts for Decomposition
- 7.7. Results Interpolation Onto Another Mesh
- 7.7.1. The CSV File
- 7.7.2. Using Mesh-to-Mesh Interpolation
- 7.7.3. Using the CSV File to Initialize Solution Variables
- 7.8. Combining Meshes with Ansys Polyfuse
- 7.8.1. Introduction
- 7.8.2. Starting Ansys Polyfuse
- 7.8.3. Steps for Combining Meshes
- 7.8.4. Reading and Writing Files
- 7.8.4.1. Selecting the Mesh Files
- 7.8.4.2. Saving the Combined Mesh File
- 7.8.4.3. Reading and Writing an Ansys Polyfuse Session File
- 7.8.5. Translating, Rotating, and Scaling a Mesh
- 7.8.5.1. Translating a Mesh
- 7.8.5.2. Rotating a Mesh
- 7.8.5.3. Scaling a Mesh
- 7.8.5.4. Manipulating Translation, Rotation, and Scaling Operations
- 7.8.6. Viewing the Mesh
- 7.8.7. Reporting Information about the Mesh
- 7.9. Examining the Mesh in Ansys Polydata
- 7.9.1. Translating, Rotating, and Zooming with the Mouse
- 7.9.2. Changing the View Axis
- 7.9.3. Scaling and Resizing the View
- 7.9.4. Displaying Perspective and Orthographic Views
- 7.9.5. Modifying the Background Color for the Display
- 7.9.6. Including the Coordinate Axes in the Display
- 7.9.7. Selecting Portions of the Mesh for Display
- 7.9.8. Modifying the Color of the Mesh Display
- 7.9.9. Specifying Outline, Wireframe, and Shaded Displays
- 7.9.10. Reporting Information about the Mesh
- 7.10. Generating a Sliceable Free Jet Mesh
- 7.11. Converting a Shell Mesh and Results
- 8. Boundary Conditions
- 8.1. Overview of Boundary Conditions
- 8.1.1. Available Boundary Conditions
- 8.1.2. Setting Boundary Conditions
- 8.2. Zero Wall Velocity Condition
- 8.3. Slip Condition
- 8.3.1. Shear Force Calculation
- 8.3.2. User Inputs for the Slip Condition
- 8.4. Porous Wall Condition
- 8.4.1. Normal Force Calculation
- 8.4.2. User Inputs for the Porous Wall Condition
- 8.5. Symmetry Condition
- 8.6. Inflow Condition
- 8.6.1. Inflow Calculation for Generalized Newtonian Flow
- 8.6.2. Inflow Calculation for Viscoelastic Flow
- 8.6.3. User Inputs for the Inflow Condition
- 8.7. Outflow Condition
- 8.7.1. Outflow Condition for Generalized Newtonian Flow
- 8.7.2. Outflow Condition for Viscoelastic Flow
- 8.7.3. User Inputs for the Outflow Condition
- 8.8. Free Surface Condition
- 8.9. Normal and Tangential Velocity Condition
- 8.10. Normal and Tangential Force Condition
- 8.11. Normal Velocity and Tangential Force Condition
- 8.12. Normal Force and Tangential Velocity Condition
- 8.13. Global Force Condition
- 8.14. Cartesian Velocity Condition
- 8.15. Velocity Profile from a CSV File
- 8.16. Interface Condition
- 8.17. Interface with Elastic Solid
- 8.18. Periodic Condition
- 8.19. Non-Conformal Boundaries
- 8.19.1. Solution Technique for Non-Conformal Boundaries
- 8.19.2. Connecting Non-Conformal Boundaries
- 8.20. Specifying Conditions Using Sub-Models
- 8.20.1. The Topo-Object
- 8.20.2. Types of Sub-Models
- 8.20.3. Defining a Sub-Model
- 8.20.4. Defining a Topo-Object
- 8.20.5. Defining a Material Dataset
- 8.21. Using a Rotating Reference Frame
- 9. Material Properties
- 9.1. Overview of Material Properties
- 9.2. Specifying Material Properties as Algebraic Functions
- 9.2.1. Example
- 9.2.2. User Inputs
- 9.2.3. Compressible Flows
- 9.3. Reading and Writing Material Data Files
- 9.4. Curve Fitting for Material Properties
- 9.5. Using Material Data from the CAMPUS Database
- 9.6. Using Material Data from the Ansys Polyflow Databases
- 9.6.1. The
Miscellaneous
and
Shell_Materials
Directories - 9.6.2. The
Extrusion
, BlowMolding
, and
BlowMolding_viscoelastic
Directories
- 10. Generalized Newtonian Flow
- 10.1. Introduction
- 10.2. Theory and Equations
- 10.2.1. Basic Equations
- 10.2.2. Shear-Rate-Dependent Viscosity Laws
- 10.2.2.1. Constant
- 10.2.2.2. Power Law
- 10.2.2.3. Bird-Carreau Law
- 10.2.2.4. Cross Law
- 10.2.2.5. Modified Cross Law
- 10.2.2.6. Bingham Law
- 10.2.2.7. Modified Bingham Law
- 10.2.2.8. Herschel-Bulkley Law
- 10.2.2.9. Modified Herschel-Bulkley Law
- 10.2.2.10. Log-Log Law
- 10.2.2.11. Carreau-Yasuda Law
- 10.2.3. Temperature-Dependent Viscosity Laws
- 10.2.3.1. Arrhenius Law
- 10.2.3.2. Arrhenius Shear Rate vs. Arrhenius Shear Stress
- 10.2.3.3. Approximate Arrhenius Law
- 10.2.3.4. Fulcher Law
- 10.2.3.5. WLF Law
- 10.2.3.6. WLF Shear-Stress Law
- 10.2.3.7. Mixed-Dependence Law
- 10.2.4. Orthotropic Materials
- 10.3. Problem Setup
- 10.3.1. General Procedure
- 10.3.2. Problem Setup for Reinforced Materials
- 10.3.3. Controlling the Interpolation
- 10.3.3.1. Interpolation for Nonisothermal Flows
- 10.3.3.2. Finite-Element Interpolation for 2D Models
- 10.3.3.3. Finite-Element Interpolation for 3D Models
- 10.3.3.4. Viscosity-Related Iterations
- 10.3.3.5. Interpolation for Nonisothermal Flows
- 10.3.3.6. Quadratic and Linear Coordinates
- 10.3.4. Using Evolution to Compute Generalized Newtonian Flow
- 10.3.4.1. Sample Applications
- 11. Viscoelastic Flows
- 11.1. Overview of Viscoelastic Flow
- 11.1.1. Modeling Viscoelastic Flow
- 11.2. Differential Viscoelastic Models
- 11.2.1. Theory and Equations
- 11.2.1.1. Extra-Stress Tensor
- 11.2.1.2. Basic Equations
- 11.2.1.3. Viscoelastic Models
- 11.2.1.3.1. Upper-Convected Maxwell Model
- 11.2.1.3.2. Oldroyd-B Model
- 11.2.1.3.3. White-Metzner Model
- 11.2.1.3.4. Phan-Thien-Tanner Model
- 11.2.1.3.5. Giesekus Model
- 11.2.1.3.6. FENE-P Model
- 11.2.1.3.7. POM-POM Model [DCPP]
- 11.2.1.3.8. Leonov Model
- 11.2.1.4. Temperature Dependence of Viscosity and Relaxation Time in Nonisothermal
Flows
- 11.2.1.5. The Components of a Tensor
- 11.2.2. Problem Setup for Differential Viscoelastic Flows
- 11.2.3. Choosing the Differential Viscoelastic Model
- 11.2.3.1. Analyzing the Problem
- 11.2.3.1.1. Viscoelasticity
- 11.2.3.1.2. The Weissenberg Number
- 11.2.3.1.3. Inertia Effects
- 11.2.3.1.4. Storage and Loss Moduli
- 11.2.3.2. Guidelines for Model Selection
- 11.2.3.2.1. Maxwell Model
- 11.2.3.2.2. Oldroyd-B Model
- 11.2.3.2.3. White-Metzner Model
- 11.2.3.2.4. PTT Model
- 11.2.3.2.5. Giesekus Model
- 11.2.3.2.6. FENE-P Model
- 11.2.3.2.7. POM-POM Model [DCPP]
- 11.2.3.2.8. Leonov Model
- 11.2.4. Setting the Viscosity Ratio
- 11.2.5. Selecting the Interpolation
- 11.2.5.1. Interpolation for Pressure and Velocity
- 11.2.5.2. Interpolation for Viscoelastic Stresses
- 11.2.5.2.1. The Streamwise Approximation for Tensors (SAFT) Technique
- 11.2.5.2.2. Default Options and Parameters
- 11.2.5.2.3. Selecting an Interpolation
- 11.2.5.2.4. Combining Interpolation
- 11.2.5.2.5. Iterative Scheme for Viscosity and Relaxation Time
- 11.2.5.3. Interpolation for Nonisothermal Flows
- 11.2.5.4. Field Names for Viscoelastic Flows
- 11.2.6. Computing Differential Viscoelastic Flow
- 11.2.6.1. Using Evolution
- 11.2.6.2. Convergence Strategy for Viscoelasticity
- 11.2.6.3. Sample Applications
- 11.2.7. Supported Features for Differential Viscoelastic Flow Calculations
- 11.3. Integral Viscoelastic Models
- 11.3.1. Introduction
- 11.3.2. Theory and Equations
- 11.3.2.1. Extra-Stress Tensor
- 11.3.2.2. Basic Equations
- 11.3.2.3. Viscoelastic Models
- 11.3.2.3.1. Doi-Edwards Model
- 11.3.2.3.2. KBKZ Model
- 11.3.2.3.3. Equivalent Generalized Newtonian Models
- 11.3.2.4. Temperature Shift Functions for Nonisothermal Flows
- 11.3.2.5. Numerical Method for Integral Viscoelastic Flow
- 11.3.3. Problem Setup for Integral Viscoelastic Flows
- 11.3.4. Choosing the Integral Viscoelastic Model
- 11.3.4.1. Doi-Edwards Model
- 11.3.4.2. KBKZ Model
- 11.3.5. Setting the Evolutive Viscosity
- 11.3.6. Using Evolution to Compute Integral Viscoelastic Flow
- 11.3.7. Additional Strategies for Convergence
- 11.3.7.1. Calculations Involving Moving Boundaries
- 11.3.8. Additional Hints
- 11.3.8.1. Mesh Resolution
- 11.3.8.2. Performance on Vector Machines
- 11.4. Simplified Viscoelastic Model
- 11.4.1. Theory and Equations
- 11.4.2. Considerations
- 11.4.3. Identifying Model Parameters and Functions
- 11.4.4. Selecting the Interpolation
- 11.4.5. Problem Setup for Simplified Viscoelastic Model
- 12. Flow Induced Crystallization (FIC)
- 12.1. Introduction
- 12.2. Crystallization Model
- 12.2.1. Qualitative Description
- 12.2.2. Extra-Stress Contribution from the Amorphous Phase
- 12.2.3. Extra-Stress Contribution from the Semicrystalline Phase
- 12.2.4. Degree of Transformation
- 12.2.5. Energy Equation
- 12.2.6. Boundary Conditions
- 12.2.7. Evolution Schemes
- 12.2.8. Rheological Model and Properties
- 12.2.9. Total Extra-stress Postprocessor
- 12.3. Problem Setup
- 12.3.1. Names of Variables in Ansys Polyflow
- 13. Heat Transfer
- 13.1. Conduction and Convection
- 13.1.1. Theory
- 13.1.1.1. Basic Equations
- 13.1.1.2. Heat Flux Boundary Conditions
- 13.1.1.3. Boussinesq Approximation for Density in Nonisothermal Flows
- 13.1.1.4. Boundaries with Incoming and Outgoing Flows
- 13.1.2. Problem Setup
- 13.1.2.1. General Procedure
- 13.1.2.2. Using Evolution in Heat Conduction and Nonisothermal Flow
Calculations
- 13.1.3. A Note on the Temperature Field
- 13.2. Internal Radiation
- 13.2.1. Theory
- 13.2.1.1. Angular Discretization
- 13.2.1.2. Domain Boundaries
- 13.2.1.3. Boundaries Internal to a Domain
- 13.2.2. User Inputs for Internal Radiation Model
- 14. Porous Media
- 14.1. Introduction
- 14.2. Theory
- 14.3. Using the Model
- 14.3.1. General Procedure
- 15. Free Surfaces and Extrusion
- 15.1. Introduction
- 15.2. Theory and Equations
- 15.2.1. Free Surfaces
- 15.2.1.1. Dynamic Condition
- 15.2.1.2. Kinematic Condition
- 15.2.1.3. Geometrical Degree of Freedom
- 15.2.2. Moving Interfaces
- 15.2.2.1. Fixed-Interface Condition
- 15.2.2.2. Dynamic Condition
- 15.2.2.3. Kinematic Condition
- 15.2.2.4. Slipping Between Two Layers in Coextrusion
- 15.2.3. Directors
- 15.2.4. Surface Tension
- 15.2.4.1. Surface Tension Force
- 15.2.4.2. Velocity Imposed on the Boundary of the Free Surface
- 15.2.5. Discontinuity of the Normal Direction
- 15.2.5.1. Corner Lines
- 15.2.5.2. Surface Kinematic Condition
- 15.2.5.3. Line Kinematic Condition
- 15.2.6. Drag
- 15.2.7. Fluid-Fluid Contact
- 15.2.8. Guiding Devices
- 15.3. User Inputs for Free Surfaces and Moving Interfaces
- 15.3.1. General Procedure
- 15.3.2. Defining the Direction of Motion
- 15.3.2.1. Boundary of the Free Surface or Moving Interface
- 15.3.2.2. Directors and Symmetry Planes
- 15.3.2.3. Frequency of the Director Calculation
- 15.3.3. Controlling the Interpolation
- 15.3.4. Convergence Strategies
- 15.3.5. Guidelines for 3D Extrusion Problems
- 15.3.5.1. Convergence
- 15.3.5.2. Discontinuity of the Normal Direction
- 15.3.6. Guidelines for Coextrusion Problems
- 15.3.7. Static and Dynamic Contact Points or Lines
- 15.3.7.1. Contact Points and Lines
- 15.3.7.2. The Moving-Contact-Point Model
- 15.3.7.3. Inputs for Dynamic Contact Points
- 15.3.8. Inverse Extrusion and Die Design
- 15.3.8.1. Maintaining a Constant Shape for a Portion of the Die
- 15.3.9. Constraint on Global Displacement
- 15.3.9.1. Finite-Element Formulation
- 15.3.9.2. Limitations
- 15.3.9.3. Compatibility with Specific Geometries and Boundary Conditions
- 15.3.9.4. User Inputs for the Constraint on Global Displacement
- 15.3.10. Defining Guiding Devices
- 15.3.11. Mapping for Fluid-Fluid Contact
- 16. Remeshing
- 16.1. Introduction to Remeshing
- 16.1.1. About Remeshing
- 16.1.2. Remeshing Techniques in Ansys Polyflow
- 16.1.3. Choosing a Remeshing Technique
- 16.2. Method of Spines
- 16.3. Euclidean Method
- 16.4. Method of Planes
- 16.5. Thompson Transformation
- 16.5.1. Theory
- 16.5.2. Example
- 16.5.3. Implementation
- 16.6. Optimesh
- 16.6.1. Theory
- 16.6.2. Boundary Conditions
- 16.7. Thin Shell Method
- 16.7.1. Theory
- 16.8. Lagrangian Method
- 16.9. Thin Shell Method with Lagrangian Master
- 16.10. Lagrangian Method on Borders
- 16.11. Streamwise Method
- 16.12. Elastic Methods
- 16.13. User Inputs for Remeshing
- 16.13.1. Element Distortion Check
- 16.14. Local Remeshing
- 16.14.1. User Inputs for Local Remeshing
- 16.15. Adaptive Meshing
- 16.15.1. Overview and Usage
- 16.15.2. Adaptive Meshing Technique
- 16.15.3. User Inputs for Adaptive Meshing
- 16.15.3.1. Adaptive Meshing Parameters for Moving Parts
- 16.15.3.2. Adaptive Meshing Parameters for Large Variations of Fields
- 16.15.3.3. Adaptive Meshing Parameters for Contact and Remeshing
- 16.15.3.3.1. Adaptive Meshing for Contact
- 16.15.3.3.1.1. Basing the Calculation on Distance
- 16.15.3.3.1.2. Basing the Calculation on Curvature
- 16.15.3.3.1.3. Basing the Calculation on Angle and Curvature
- 16.15.3.3.2. Mapping
- 16.15.3.3.3. Adaptive Meshing for Remeshing
- 16.15.3.4. Manage Zones for Remeshing
- 16.15.3.4.1. Defining Fixed Zones
- 16.15.3.4.2. Defining Moving Zones
- 16.15.3.5. Criteria for Remeshing
- 16.15.3.5.1. for Adaptive Meshing
- 17. Blow Molding and Thermoforming
- 17.1. Working of Contact Detection
- 17.1.1. Shell Elements for 3D Models
- 17.2. Theory and Equations
- 17.2.1. Penalty Technique for Detecting Contact
- 17.2.2. Velocity-Driven Motion
- 17.2.3. Contact Release
- 17.2.4. Velocity- or Force-Driven Mold
- 17.2.5. Heat Transfer and Contact (Imposed Temperature)
- 17.2.6. Heat Transfer and Contact (Conjugate Heat Transfer)
- 17.2.7. Strain-Dependent Viscosity
- 17.2.8. Orthotropic Material
- 17.2.9. 3D Viscoelastic Blow Molding Simulations
- 17.2.10. Calculation of the Parison Thickness
- 17.2.11. Calculation of the Extensions
- 17.2.11.1. Evaluation of the Extension Components
- 17.2.11.2. Evaluation of the Area Stretch Ratio
- 17.2.12. Calculation of the Mass of the Blown Product
- 17.2.13. Calculation of the Volume of the Blown Product
- 17.2.14. Calculation of the Permeability of the Blown Product
- 17.2.15. Time Dependence and Contact Handling
- 17.2.16. Residual Deformations and Stresses
- 17.2.17. Temperature Programming
- 17.3. Setting Up a Contact Problem
- 17.3.1. Inputs for 2D and 3D Contact Detection
- 17.3.2. Inputs for Shell Contact Detection
- 17.3.3. Defining the Thickness Interpolation for Shell Elements
- 17.3.3.1. Controlling the Thickness Interpolation
- 17.3.4. Generating a Mesh with Shell Elements
- 17.4. Computing Derived Quantities in Contact Problems
- 17.4.1. Inputs for Computing the Extension Components
- 17.4.2. Inputs for Computing the Mass of the Blown Product
- 17.4.3. Inputs for Computing the Volume of the Blown Product
- 17.4.4. Inputs for Computing the Permeability of the Blown Product
- 17.4.5. Inputs for Parison Programming
- 17.4.6. Inputs for Residual Stresses and Deformations
- 17.4.7. Inputs for Temperature Programming
- 17.4.8. Inputs for Self-Contact Detection
- 18. Film Casting
- 18.1. Introduction
- 18.2. Theory
- 18.2.1. Overview
- 18.2.2. Flow Equations
- 18.2.2.1. Boundary Conditions
- 18.2.2.2. Stress Boundary Conditions for the DCPP Model in Film Casting
- 18.2.3. Multilayer Films (Coextrusion)
- 18.2.4. Heating and Cooling of the Film
- 18.2.5. Stream Function
- 18.2.6. Film Problems and Nonlinearity
- 18.3. Inputs for Film Casting Problems
- 18.3.1. General Procedure
- 18.3.2. Guidelines for Setting Boundary Conditions
- 18.3.2.1. Flow Boundary Conditions
- 18.3.2.1.1. Multilayer Film Casting Problems
- 18.3.2.1.2. Viscoelastic Flow Film Problems
- 18.3.2.2. Thermal Boundary Conditions
- 18.3.2.2.1. Multilayer Film Problems
- 18.3.2.3. Stress Boundary Conditions for the DCPP Model in Film Casting
- 19. Chemically Reacting Flows
- 19.1. Introduction
- 19.2. Theory
- 19.2.1. Overview of Reactions
- 19.2.2. Definitions
- 19.2.3. Advection-Diffusion Mechanism
- 19.2.4. General Transport Equation
- 19.2.5. Chemical Reactions
- 19.3. User Inputs
- 19.3.1. Defining Chemical Species
- 19.3.2. Defining Chemical Reactions
- 19.3.3. Defining the Species Transport Equations
- 19.3.4. Defining a Closure Equation
- 19.3.5. Chemical Reactions and Evolution
- 20. Physical Foaming
- 20.1. Introduction
- 20.2. Theory
- 20.2.1. Arefmanesh PMAT function
- 20.2.2. Exit Boundary Conditions
- 20.3. User Inputs
- 21. Volume of Fluid (VOF) Model
- 21.1. Introduction
- 21.2. Theory
- 21.2.1. Volume Conservation
- 21.2.2. Time Step Management
- 21.2.3. Numerical Considerations
- 21.2.4. Viscoelastic Fluids
- 21.3. Problem Setup
- 22. Flows with Internal Moving Parts
- 22.1. Introduction
- 22.1.1. Advantages of the Mesh Superposition Technique
- 22.1.2. Limitations of the Mesh Superposition Technique
- 22.2. Theory
- 22.2.1. Navier-Stokes Equations
- 22.2.2. Mass Conservation Equation
- 22.2.3. Energy Equation
- 22.2.4. Interpolation
- 22.2.5. Transient Moving Part Velocities
- 22.2.5.1. Description of Motion
- 22.2.5.2. Computation of the New Position
- 22.2.5.3. Computation of the Velocity
- 22.3. User Inputs
- 22.3.1. Mesh Considerations
- 22.3.2. Setting Up Your Problem in Ansys Polydata
- 22.3.3. Time-Dependent Parameters
- 22.4. Guidelines for Problems with Transient Velocities
- 22.5. Additional Guidelines
- 23. Sliding Mesh Technique
- 23.1. Introduction
- 23.1.1. Advantages of the Sliding Mesh Technique
- 23.1.2. Limitations of the Sliding Mesh Technique
- 23.2. Examples
- 23.3. Meshing
- 23.4. Equations
- 23.5. Guidelines
- 23.6. User Inputs
- 24. Using Multiple Materials in Polymer Flows
- 24.1. General Procedure for Using Multiple Materials
- 24.2. Conditions and Limitations for Using Multiple Materials
- 25. Glass Furnaces and Electrical Heating
- 25.1. Introduction
- 25.2. Electrical Heating
- 25.2.1. Theory
- 25.2.2. User Inputs for Electrical Heating
- 25.3. Radiative (Rosseland) Correction
- 25.3.1. Theory
- 25.3.2. Using Radiative Correction
- 25.4. Bubblers
- 25.4.1. Introduction
- 25.4.2. Theory
- 25.4.3. User Inputs for Bubblers
- 25.4.3.1. Mesh Requirements
- 25.4.3.2. Defining a Bubble Column in Ansys Polydata
- 26. Residual Stresses and Deformations
- 26.1. Introduction
- 26.2. Theory and Equations
- 26.2.1. Modeling
- 26.2.2. Material parameters
- 26.2.3. Boundary Conditions
- 26.2.4. Physical Interpretation
- 26.2.5. Numerical Treatment
- 26.3. Problem Setup
- 27. Fluid Structure Interaction (FSI) Model
- 27.1. Introduction
- 27.2. Theory
- 27.2.1. Effect of Elastic Sub-task on the Flow Domain
- 27.3. Elasticity Boundary Conditions
- 27.3.1. Interface With Solid
- 27.3.2. Interface With a Fluid
- 27.3.3. Normal and Tangential Displacement Imposed
- 27.3.4. Normal and Tangential Force Imposed
- 27.3.5. Normal Displacement and Tangential Force Imposed
- 27.3.6. Normal Force and Tangential Displacement Imposed
- 27.3.7. Symmetry Condition
- 27.3.8. Contact with the Parison
- 27.3.9. Border of a Moving Part
- 27.3.10. Assign Displacement at Points
- 27.3.11. No Displacement
- 27.3.12. Free Displacement
- 27.3.13. Cartesian Displacement Imposed
- 27.3.14. Global Force Imposed
- 27.4. Problem Setup
- 27.4.1. Numerical Parameters in Elastic Problem Coupled with Flow Problem
- 28. Evolution
- 28.1. Introduction
- 28.2. Nonlinearity and Evolution
- 28.3. Available Evolution Functions
- 28.4. Using Evolution
- 28.4.1. When to Use Evolution
- 28.4.2. Determining an Appropriate Evolution Parameter
- 28.4.3. Problem Setup
- 28.4.4. Initial Conditions
- 28.4.5. Output of Results for Evolution Problems
- 28.5. Interrupting Evolution
- 28.5.1. Criterion Definition
- 28.5.2. Available Fields (X) for Criteria
- 28.5.3. Restriction Functions R
- 28.5.4. Functions for Obtaining the Check Value F
- 28.5.5. Coordinate Functions
- 28.5.6. Inequality Tests
- 28.5.7. Multiple Criteria
- 28.5.8. Inputs for Criteria to Interrupt the Evolution
- 28.5.9. Output for Interruption Criteria
- 29. Time-Dependent Flows
- 29.1. Introduction
- 29.2. Theory
- 29.2.1. Equations
- 29.2.2. Integration Methods
- 29.2.3. Internal Solution Strategy
- 29.2.4. Time-Marching Schemes
- 29.3. User Inputs for Time-Dependent Problems
- 29.3.1. Setting Up a Time-Dependent Problem
- 29.3.2. Initial Conditions
- 29.3.3. Output of Results for Time-Dependent Problems
- 29.4. Outputs to a Listing File
- 29.5. Interrupting Time-Dependent Computations
- 29.6. Volume Conservation
- 30. Computing Derived Quantities
- 30.1. Overview of Derived Quantities
- 30.2. Stream Function
- 30.2.1. Calculation of Stream Function
- 30.2.2. User Inputs for Stream Function
- 30.3. Local Shear Rate
- 30.4. Viscosity
- 30.5. Rate-of-Deformation Tensor
- 30.6. Inelastic Stress Tensor
- 30.7. Viscous and Wall Friction Heating and Dissipated Power
- 30.8. Total Extra-Stress Tensor
- 30.9. Residence Time
- 30.9.1. Calculation of Residence Time
- 30.9.2. User Inputs for the Residence Time
- 30.10. Tracking of Material Points
- 30.10.1. Calculation for Tracking Material Points
- 30.10.2. User Inputs for Tracking Material Points
- 30.11. Tracking of a Material Property
- 30.12. Forces on Slices
- 30.13. Heat Fluxes
- 30.14. Flow Rate
- 30.15. Joule Effect
- 30.16. Mixing Index
- 30.17. Vorticity
- 30.18. Convected Heat
- 30.19. Parison Thickness
- 30.20. Extension Evaluation
- 30.21. Mass of Blown Product
- 30.22. Volume of Blown Product
- 30.23. Permeability of Blown Product
- 30.24. Stress Eigenvalues and Components
- 30.24.1. Calculation of Eigenvalues
- 30.24.2. Calculation of the Stress Component Along the Velocity Direction
- 30.24.3. Calculation of the Generalized First Normal Stress Difference
- 30.25. Quantification of Die Balancing
- 30.26. Energy Balance
- 30.27. Parison Programming
- 30.28. Volume of Liquid
- 30.29. Temperature Programming
- 30.30. Thickness Evaluation
- 30.31. Self-Contact
- 31. Using the Solver
- 31.1. Controlling the Calculations
- 31.1.1. Recalculating with a Different Interpolation
- 31.1.2. Specifying the Number of Iterations
- 31.1.3. Convergence and Divergence
- 31.1.4. Convergence Strategy for Rheology and Slipping
- 31.1.5. Convergence Strategy for Viscoelasticity
- 31.1.6. Automatic Detection of Distorted Elements
- 31.1.7. Time-Marching
- 31.1.8. Decoupling Calculations
- 31.1.8.1. Internal Radiation
- 31.1.8.2. Free Surfaces and Moving Surfaces
- 31.1.8.3. Transport of Species
- 31.1.8.4. Nonisothermal Flows
- 31.1.8.5. Viscoelastic Flows
- 31.1.8.6. Combining Decoupled Calculations
- 31.1.8.7. Nonisothermal Operating Temperature
- 31.2. Solver Details
- 31.2.1. Selecting the Solver
- 31.2.2. Classic Direct Solver
- 31.2.2.1. Ansys Polyflow’s Implementation
- 31.2.2.2. Mesh Decomposition and Optimization
- 31.2.2.3. Solver Robustness
- 31.2.3. AMF Direct Solver
- 31.2.4. AMF Direct Solver + Secant
- 31.2.5. AMF Direct Solver + ILU
- 31.2.6. AMF Direct Solver + Secant + ILU
- 31.2.7. MUMPS Solver
- 31.2.7.1. Selecting the MUMPS Solver
- 31.2.7.2. Recommendations for the MUMPS Solver
- 31.2.8. MUMPS Solver + Secant
- 31.3. Distribute-Memory Parallel (DMP) Analysis for Ansys Polyflow
- 31.3.1. Configuring a Distributed-Memory Parallel (DMP) Analysis
- 31.3.1.1. DMP Analysis Under Windows
- 31.3.1.2. DMP Analysis Under Linux
- 31.4. DMP Analysis on a Cluster.
- 31.4.1. How to determine the MPI parameters?
- 31.4.2. Linux Cluster
- 31.4.3. Windows Cluster
- 32. User-Defined Functions (UDFs)
- 32.1. Introduction
- 32.1.1. Solver Performance with UDFs
- 32.2. Writing User-Defined Functions
- 32.2.1. Naming Your UDF
- 32.2.2. Summary of CLIPS Syntax
- 32.2.2.1. Example
- 32.2.2.2. Using Variables
- 32.2.3. Testing Your UDF
- 32.2.4. Mathematical Functions
- 32.2.4.1. Standard Mathematical Functions
- 32.2.4.2. Extended Mathematical Functions
- 32.2.5. Procedural Functions
- 32.3. Using User-Defined Functions
- 32.4. Dependence with Respect to Quantities Derived from the Kinematics
- 32.4.1. Some Quantities Derived from the Kinematics
- 32.4.2. Possible Viscosity Models with Distinct Behaviors in Shear and Extension
- 32.5. Best Practices for Complex User Defined Functions
- 32.5.1. An Example of a Complex UDF
- 32.5.2. CLIPS File Structure
- 33. CSV-Defined Functions
- 33.1. Introduction
- 33.2. Using CSV-Defined Functions
- 34. User-Defined Templates (UDTs)
- 34.1. Introduction
- 34.2. Defining a UDT
- 34.2.1. Creating a New Template Entry to Flag a Parameter
- 34.2.2. Reviewing a Template Entry
- 34.2.3. Modifying a Template Entry
- 34.3. Using UDTs
- 34.3.1. As Usual Method
- 34.3.2. Real UDT Method
- 34.3.3. Script Method
- 35. Die Shape Parameterization
- 35.1. Introduction
- 35.2. Theory
- 35.2.1. Element Stiffness During Elastic Remeshing
- 35.2.2. Domain Transformations
- 35.2.3. Surface Transformations
- 35.2.4. Line Transformations
- 35.2.5. Point Displacement
- 35.2.6. Hierarchy of Equations
- 35.4. Problem Setup
- 35.4.1. Fixed Domain
- 35.4.2. Rigid Translation
- 35.4.3. Elastic Remeshing
- 36. Optimization
- 36.1. Introduction
- 36.2. Theory
- 36.2.1. Constrained Optimization
- 36.2.2. Solving the Optimization Problem
- 36.2.2.1. The Augmented Lagrange Multiplier (ALM) Method
- 36.2.2.2. The Fletcher-Reeves (FR) Method
- 36.2.2.3. The Line Search (LS) Method
- 36.3. Optimization in Ansys Polyflow
- 36.3.1. Design Variables
- 36.3.2. Extractors
- 36.3.3. Objective Functions
- 36.3.4. Constraints
- 36.3.5. Optimizer Parameters
- 36.3.6. Remarks
- 36.4. Problem Setup
- 36.5. Files and Output for Optimization
- 36.5.1. The Standard Listing File
- 36.5.2. The Listing File for Optimization
- 36.5.3. The Sensitivities Files
- 36.5.4. The Result Files for Successful Evaluations of the Solution
- 36.6. Additional Options for Solution Exploration
- 36.6.1. Design Exploration
- 36.6.2. VisualDOC
- A. Sub-Task Compatibility Charts
- B. Running Ansys Polyflow with VisualDOC
- B.1. Introduction
- B.2. Constraints and Limitations
- B.3. Parameterization Types in Ansys Polydata
- B.3.1. Optimization Files in Ansys Polydata
- B.3.1.1. Ansys Polydata Parameterization
- B.3.1.2. Geometrical Parameterization
- B.3.1.3. External Parameterization
- B.3.1.4. Combining Types of Optimization
- B.3.2. Tagging of Inputs
- B.3.2.1. Tagging of Inputs in Ansys Polydata
- B.3.3. Defining a Response in Ansys Polydata
- B.3.4. File Management for Optimization
- B.3.5. Files Generated by an Ansys Polydata Session
- B.4. Problem Setup
- C. Known Static Array Limitations
- Bibliography