Bibliography

[1] A. Arefmanesh, S. G. Advani, and E. E. Michaelides. A Numerical Study of Bubble Growth During Low Pressure Structural Foam Molding Process. Polym. Eng. Sci.. 30. 1330–13337. 1990.

[2] H. A. Barnes, J. F. Hutton, and K. Walters. An Introduction to Rheology. Elsevier. 1989.

[3] R. B. Bird, R. C. Armstrong, and O. Hassager. Dynamics of Polymeric Liquids. John Wiley. 1987.

[4] R. B. Bird, P. J. Dotson, and N. L. Johnson. J Non-Newtonian Fluid Mech. 7:213. 1980.

[5] R. B. Bird, W. E. Stewart, and E. N. Lightfoot. Transport Phenomena. John Wiley & Sons. 1960.

[6] R. S. Chambers. Numerical Integration of the Hereditary Integrals in a Viscoelastic Model for Glass. J Am Ceram Soc. 75(8). 2213–2218. 1992.

[7] N. Clemeur, R. P. G. Rutgers, and B. Debbaut. On the evaluation of some differential formulations for the pom-pom constitutive model. Rheol Acta. 42(1). 217–231. 2003.

[8] P. Coussot, A. I. Leonov, and J. M. Piau. Rheology of concentrated dispersed systems in a low molecular weight matrix. J Non-Newtonian Fluid Mech. 46. 179–217. 1993.

[9] A. R. Davies. Reentrant corner singularities in non-Newtonian flow. Part I: theory. J Non-Newtonian Fluid Mech. 29. 269–293. 1988.

[10] B. Debbaut and M. J. Crochet. Extensional effects in complex flows. J Non-Newtonian Fluid Mech. 30. 169–184. 1988.

[11] B. Debbaut and M. J. Crochet. Further results on the flow of a viscoelastic fluid through an abrupt contraction. J Non-Newtonian Fluid Mech. 20. 173–185. 1986.

[12] A. K. Doufas, A. J. McHugh, and C. Miller. Simulation of melt spinning including flow-induced crystallization Part I: model development and predictions. J Non-Newtonian Fluid Mech. 92. 27–66. 2000.

[13] M. Fortin. Old and New Finite Elements for Incompressible Flows. Int Numerical Methods Fluids. 1. 347–364. 1987.

[14] G. S. Fulcher. Analysis of Recent Measurements of the Viscosity of Glasses. J Am Ceram Soc. 8(6). 339–355. 1925.

[15] M. Goldstein and J. R. Howell. Boundary Conditions for the Diffusion Solution of Coupled Conduction-Radiation Problems. Technical Report NASA-TN-D-4618. NASA Lewis Research Center. 1968.

[16] A. Goublomme, B. Draily, and M. J. Crochet. Numerical Prediction of Extrudate Swell of a High-Density Polyethylene. J Non-Newtonian Fluid Mech,. 44. 171–195. 1992.

[17] R. Guénette and M. Fortin. A new mixed finite element method for computing viscoelastic flow. J Non-Newtonian Fluid Mech. 60(1). 27–52. 1995.

[18] J. R. Howell and M. Goldstein. Effective Slip Coefficients for Conduction-Radiation Problems. J Heat Transfer. 91(1). 165–169. 1969.

[19] N. J. Inkson, T. C. B. McLeish, O. G. Harlen, and D. J. Groves. Predicting low density polyethylene melt rheology in elongational and shear flows with "pom-pom" constitutive equations. J Rheol. 43(4). 873–896. 1999.

[20] C. Johnson. Numerical Solutions of Partial Differential Equations by the Finite Element Method. Cambridge Univ Press. 1987.

[21] R. Keunings. On the high Weissenberg number problem. J Non-Newtonian Fluid Mech. 20. 209–226. 1986.

[22] R. Keunings. "Simulation of Viscoelastic Fluid Flow". Fundamentals of Computer Modeling for Polymer Processing. 402–470. C. L. Tucker III, editor. Hanser Publishers, Munich. 1989.

[23] A. I. Leonov. Analysis of simple constitutive equations for viscoelastic liquids. J Non-Newtonian Fluid Mech. 42. 323–350. 1992.

[24] A. Markovsky and T. F. Soules. An Efficient and Stable Algorithm for Calculating Fictive Temperatures. Comm Am Ceram Soc. 67. C-56-C-57. 1984.

[25] T. C. B. McLeish and R. C. Larson. Molecular constitutive equations for a class of branched polymers: The pom-pom polymer. J Rheol. 42(1). 82–112. 1998.

[26] O. S. Narayanaswamy. A Model of Structural Relaxation in Glass. J Am Ceram Soc. 54(10). 491–498. 1971.

[27] D. Rajagopalan, R. C. Armstrong, and R. A. Brown. J Non-Newtonian Fluid Mech. 36. 159–192. 1990.

[28] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput. 7. 856–869. 1986.

[29] R. Siegel and J. R. Howell. Thermal Radiation Heat Transfer. McGraw-Hill, New York. 1981.

[30] M. Simhambhatla and A. I. Leonov. On the rheological modeling of filled polymers with particle-matrix interactions. Rheol Acta. 34. 329–338. 1995.

[31] M. V. Simhambhatla. The rheological modeling of simple flows of unfilled and filled polymers. PhD thesis. University of Akron, Akron, Ohio. 1994.

[32] K. Stueben. Algebraic Multigrid (AMG): An Introduction with Applications. GMD Report. 53. 1999.

[33] R. I. Tanner. Engineering Rheology. Oxford Universirt Press. 2002.

[34] J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin. Numerical Grid Generation: Foundations and Applications. Elsevier. 1985.

[35] A. Ungan and R. Viskanta. Effects of Air Bubbling on Circulation and Heat Transfer in a Glass Melting Tank. J Am Ceram Soc. 69. 382–391.

[36] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput. 13. 631–644. 1992.

[37] J. J. Van Schaftingen and M. J. Crochet. Int J Numerical Methods Fluids. 4. 1065–1081. 1984.

[38] M. H. Wagner. Constitutive Analysis of Uniaxial Elongational Flow Data of Low-Density Polyethylene Melt. J Non-Newtonian Fluid Mech. 4. 39–55. 1978.

[39] H-H. Yang and I. Manas-Zloczower. Analysis of mixing. Int Polymer processing IX. 1994.