Expand/Collapse all
- Using This Manual
- 1. The Contents of This Manual
- 2. Typographical Conventions
- 3. Mathematical Conventions
- 1. Basic Fluid Flow
- 1.1. Overview of Physical Models in Ansys Fluent
- 1.2. Continuity and Momentum Equations
- 1.2.1. The Mass Conservation Equation
- 1.2.2. Momentum Conservation Equations
- 1.3. User-Defined Scalar (UDS) Transport Equations
- 1.3.1. Single Phase Flow
- 1.3.2. Multiphase Flow
- 1.4. Periodic Flows
- 1.4.1. Overview
- 1.4.2. Limitations
- 1.4.3. Physics of Periodic Flows
- 1.4.3.1. Definition of the Periodic Velocity
- 1.4.3.2. Definition of the Streamwise-Periodic Pressure
- 1.5. Swirling and Rotating Flows
- 1.5.1. Overview of Swirling and Rotating Flows
- 1.5.1.1. Axisymmetric Flows with Swirl or Rotation
- 1.5.1.1.1. Momentum Conservation Equation for Swirl Velocity
- 1.5.1.2. Three-Dimensional Swirling Flows
- 1.5.1.3. Flows Requiring a Moving Reference Frame
- 1.5.2. Physics of Swirling and Rotating Flows
- 1.6. Compressible Flows
- 1.6.1. When to Use the Compressible Flow Model
- 1.6.2. Physics of Compressible Flows
- 1.6.2.1. Basic Equations for Compressible Flows
- 1.6.2.2. The Compressible Form of the Gas Law
- 1.7. Inviscid Flows
- 1.7.1. Euler Equations
- 1.7.1.1. The Mass Conservation Equation
- 1.7.1.2. Momentum Conservation Equations
- 1.7.1.3. Energy Conservation Equation
- 2. Flows with Moving Reference Frames
- 2.1. Introduction
- 2.2. Flow in a Moving Reference Frame
- 2.2.1. Equations for a Moving Reference Frame
- 2.2.1.1. Relative Velocity Formulation
- 2.2.1.2. Absolute Velocity Formulation
- 2.2.1.3. Relative Specification of the Reference Frame Motion
- 2.3. Flow in Multiple Reference Frames
- 2.3.1. The Multiple Reference Frame Model
- 2.3.1.1. Overview
- 2.3.1.2. Examples
- 2.3.1.3. The MRF Interface Formulation
- 2.3.1.3.1. Interface Treatment: Relative Velocity Formulation
- 2.3.1.3.2. Interface Treatment: Absolute Velocity Formulation
- 2.3.2. The Mixing Plane Model
- 2.3.2.1. Overview
- 2.3.2.2. Rotor and Stator Domains
- 2.3.2.3. The Mixing Plane Concept
- 2.3.2.4. Choosing an Averaging Method
- 2.3.2.4.1. Area Averaging
- 2.3.2.4.2. Mass Averaging
- 2.3.2.4.3. Mixed-Out Averaging
- 2.3.2.5. Mixing Plane Algorithm of Ansys Fluent
- 2.3.2.6. Mass Conservation
- 2.3.2.7. Swirl Conservation
- 2.3.2.8. Total Enthalpy Conservation
- 3. Flows Using Sliding and Dynamic Meshes
- 3.1. Introduction
- 3.2. Dynamic Mesh Theory
- 3.2.1. Conservation Equations
- 3.2.2. Six DOF Solver Theory
- 3.3. Sliding Mesh Theory
- 4. Turbulence
- 4.1. Underlying Principles of Turbulence Modeling
- 4.1.1. Reynolds (Ensemble) Averaging
- 4.1.2. Filtered Navier-Stokes Equations
- 4.1.3. Hybrid RANS-LES Formulations
- 4.1.4. Boussinesq Approach vs. Reynolds Stress Transport Models
- 4.2. Spalart-Allmaras Model
- 4.2.1. Overview
- 4.2.2. Transport Equation for the Spalart-Allmaras Model
- 4.2.3. Modeling the Turbulent Viscosity
- 4.2.4. Modeling the Turbulent Production
- 4.2.5. Modeling the Turbulent Destruction
- 4.2.6. Model Constants
- 4.2.7. Wall Boundary Conditions
- 4.2.7.1. Treatment of the Spalart-Allmaras Model for Icing Simulations
- 4.2.8. Convective Heat and Mass Transfer Modeling
- 4.3. Standard, RNG, and Realizable k-ε Models
- 4.3.1. Standard k-ε Model
- 4.3.1.1. Overview
- 4.3.1.2. Transport Equations for the Standard k-ε Model
- 4.3.1.3. Modeling the Turbulent Viscosity
- 4.3.1.4. Model Constants
- 4.3.2. RNG k-ε Model
- 4.3.2.1. Overview
- 4.3.2.2. Transport Equations for the RNG k-ε Model
- 4.3.2.3. Modeling the Effective Viscosity
- 4.3.2.4. RNG Swirl Modification
- 4.3.2.5. Calculating the Inverse Effective Prandtl Numbers
- 4.3.2.6. The R-ε Term in the ε Equation
- 4.3.2.7. Model Constants
- 4.3.3. Realizable k-ε Model
- 4.3.3.1. Overview
- 4.3.3.2. Transport Equations for the Realizable k-ε Model
- 4.3.3.3. Modeling the Turbulent Viscosity
- 4.3.3.4. Model Constants
- 4.3.4. Modeling Turbulent Production in the k-ε Models
- 4.3.5. Remarks on the Linearization of Destruction Terms
- 4.3.6. Effects of Buoyancy on Turbulence in the k-ε Models
- 4.3.7. Turbulence Damping
- 4.3.8. Effects of Compressibility on Turbulence in the k-ε Models
- 4.3.9. Convective Heat and Mass Transfer Modeling in the k-ε Models
- 4.4. Standard, BSL, and SST k-ω Models
- 4.4.1. Standard k-ω Model
- 4.4.1.1. Overview
- 4.4.1.2. Transport Equations for the Standard k-ω Model
- 4.4.1.3. Modeling the Effective Diffusivity
- 4.4.1.3.1. Low-Reynolds Number Correction
- 4.4.1.4. Modeling the Turbulence Production
- 4.4.1.4.1. Production of k
- 4.4.1.4.2. Production of ω
- 4.4.1.5. Modeling the Turbulence Dissipation
- 4.4.1.5.1. Dissipation of k
- 4.4.1.5.2. Dissipation of ω
- 4.4.1.5.3. Compressibility Effects
- 4.4.1.6. Model Constants
- 4.4.2. Baseline (BSL) k-ω Model
- 4.4.2.1. Overview
- 4.4.2.2. Transport Equations for the BSL k-ω Model
- 4.4.2.3. Modeling the Effective Diffusivity
- 4.4.2.4. Modeling the Turbulence Production
- 4.4.2.4.1. Production of k
- 4.4.2.4.2. Production of ω
- 4.4.2.5. Modeling the Turbulence Dissipation
- 4.4.2.5.1. Dissipation of k
- 4.4.2.5.2. Dissipation of ω
- 4.4.2.6. Cross-Diffusion Modification
- 4.4.2.7. Model Constants
- 4.4.3. Shear-Stress Transport (SST) k-ω Model
- 4.4.3.1. Overview
- 4.4.3.2. Modeling the Turbulent Viscosity
- 4.4.3.3. Model Constants
- 4.4.3.4. Treatment of the SST Model for Icing Simulations
- 4.4.4. Effects of Buoyancy on Turbulence in the k-ω Models
- 4.4.5. Turbulence Damping
- 4.5. Generalized k-ω (GEKO) Model
- 4.5.1. Model Formulation
- 4.5.2. Limitations
- 4.6. k-kl-ω Transition Model
- 4.6.1. Overview
- 4.6.2. Transport Equations for the k-kl-ω Model
- 4.6.2.1. Model Constants
- 4.7. Transition SST Model
- 4.7.1. Overview
- 4.7.2. Transport Equations for the Transition SST Model
- 4.7.2.1. Separation-Induced Transition Correction
- 4.7.2.2. Coupling the Transition Model and SST Transport Equations
- 4.7.2.3. Transition SST and Rough Walls
- 4.7.3. Mesh Requirements
- 4.7.4. Specifying Inlet Turbulence Levels
- 4.8. Intermittency Transition Model
- 4.8.1. Overview
- 4.8.2. Transport Equations for the Intermittency Transition Model
- 4.8.3. Coupling with the Other Models
- 4.8.4. Intermittency Transition Model and Rough Walls
- 4.9. Algebraic Transition Model
- 4.9.1. Overview
- 4.9.2. Model Formulation
- 4.9.3. Transition Correlation
- 4.9.4. Pressure Gradient Function
- 4.9.5. Bubble Separation
- 4.9.6. Coefficients for the Algebraic Transition Model
- 4.9.7. Algebraic Transition Model and Rough Walls
- 4.10. Explicit Algebraic Reynolds Stress Model (EARSM)
- 4.11. Reynolds Stress Model (RSM)
- 4.11.1. Overview
- 4.11.2. Reynolds Stress Transport Equations
- 4.11.3. Modeling Turbulent Diffusive Transport
- 4.11.4. Modeling the Pressure-Strain Term
- 4.11.4.1. Linear Pressure-Strain Model
- 4.11.4.2. Low-Re Modifications to the Linear Pressure-Strain Model
- 4.11.4.3. Quadratic Pressure-Strain Model
- 4.11.4.4. Stress-Omega Model
- 4.11.4.5. Stress-BSL Model
- 4.11.5. Effects of Buoyancy on Turbulence
- 4.11.6. Modeling the Turbulence Kinetic Energy
- 4.11.7. Modeling the Dissipation Rate
- 4.11.8. Modeling the Turbulent Viscosity
- 4.11.9. Wall Boundary Conditions
- 4.11.10. Convective Heat and Mass Transfer Modeling
- 4.12. Scale-Adaptive Simulation (SAS) Model
- 4.12.1. Overview
- 4.12.2. Transport Equations for the SST-SAS Model
- 4.12.3. SAS with Other ω-Based Turbulence Models
- 4.13. Detached Eddy Simulation (DES)
- 4.13.1. Overview
- 4.13.2. DES with the Spalart-Allmaras Model
- 4.13.3. DES with the Realizable k-ε Model
- 4.13.4. DES with the BSL or SST k-ω Model
- 4.13.5. DES with the Transition SST Model
- 4.13.6. Improved Delayed Detached Eddy Simulation (IDDES)
- 4.13.6.1. Overview of IDDES
- 4.13.6.2. IDDES Model Formulation
- 4.14. Shielded Detached Eddy Simulation (SDES)
- 4.14.1. Shielding Function
- 4.14.2. LES Mode of SDES
- 4.15. Stress-Blended Eddy Simulation (SBES)
- 4.15.1. Stress Blending
- 4.15.2. SDES and SBES Example
- 4.16. Large Eddy Simulation (LES) Model
- 4.16.1. Overview
- 4.16.2. Subgrid-Scale Models
- 4.16.2.1. Smagorinsky-Lilly Model
- 4.16.2.2. Dynamic Smagorinsky-Lilly Model
- 4.16.2.3. Wall-Adapting Local Eddy-Viscosity (WALE) Model
- 4.16.2.4. Algebraic Wall-Modeled LES Model (WMLES)
- 4.16.2.4.1. Algebraic WMLES Model Formulation
- 4.16.2.4.1.1. Reynolds Number Scaling
- 4.16.2.4.2. Algebraic WMLES S-Omega Model Formulation
- 4.16.2.5. Dynamic Kinetic Energy Subgrid-Scale Model
- 4.16.3. Inlet Boundary Conditions for Scale Resolving Simulations
- 4.16.3.1. Vortex Method
- 4.16.3.2. Spectral Synthesizer
- 4.16.3.3. Synthetic Turbulence Generator
- 4.16.3.3.1. Limitations
- 4.17. Embedded Large Eddy Simulation (ELES)
- 4.17.1. Overview
- 4.17.2. Selecting a Model
- 4.17.3. Interfaces Treatment
- 4.17.3.1. RANS-LES Interface
- 4.17.3.2. LES-RANS Interface
- 4.17.3.3. Internal Interface Without LES Zone
- 4.17.3.4. Grid Generation Guidelines
- 4.18. Near-Wall Treatments for Wall-Bounded Turbulent Flows
- 4.18.1. Overview
- 4.18.2. Wall Treatment for ε-based Models
- 4.18.2.1. Standard Wall Functions
- 4.18.2.1.1. Momentum
- 4.18.2.1.2. Energy
- 4.18.2.1.3. Species
- 4.18.2.1.4. Turbulence
- 4.18.2.2. Scalable Wall Functions
- 4.18.2.3. Non-Equilibrium Wall Functions
- 4.18.2.3.1. Standard Wall Functions vs. Non-Equilibrium Wall Functions
- 4.18.2.3.2. Limitations of the Wall Function Approach
- 4.18.2.4. Enhanced Wall Treatment ε-Equation (EWT-ε)
- 4.18.2.4.1. Two-Layer Model for Enhanced Wall Treatment
- 4.18.2.4.2. Enhanced Wall Treatment for Momentum and Energy Equations
- 4.18.2.5. Menter-Lechner ε-Equation (ML-ε)
- 4.18.2.5.1. Momentum Equations
- 4.18.2.5.2. k-ε Turbulence Models
- 4.18.2.5.3. Iteration Improvements
- 4.18.2.6. User-Defined Wall Functions
- 4.18.3. y+-Insensitive Near-Wall Treatment for ω-based Turbulence Models
- 4.18.3.1. Momentum Equations
- 4.18.3.2. Turbulence
- 4.18.3.3. Energy
- 4.18.3.4. Limitations
- 4.18.4. LES Near-Wall Treatment
- 4.18.4.1. Kader Blending Wall Functions
- 4.18.4.2. Harmonic Blending Wall Functions Based on r+
- 4.18.4.3. Werner and Wengle Wall Treatment
- 4.18.5. Wall Roughness Effects in Turbulent Wall-Bounded Flows
- 4.19. Curvature Correction for the Spalart-Allmaras and Two-Equation Models
- 4.20. Corner Flow Correction
- 4.21. Production Limiters for Two-Equation Models
- 4.22. Turbulence Damping
- 4.23. Definition of Turbulence Scales
- 4.23.1. RANS and Hybrid (SAS, DES, and SDES) Turbulence Models
- 4.23.2. Large Eddy Simulation (LES) Models
- 4.23.3. Stress-Blended Eddy Simulation (SBES) Model
- 5. Heat Transfer
- 5.1. Introduction
- 5.2. Modeling Conductive and Convective Heat Transfer
- 5.2.1. Heat Transfer Theory
- 5.2.1.1. The Energy Equation
- 5.2.1.2. The Energy Equation in Moving Reference Frames
- 5.2.1.3. The Energy Equation for the Non-Premixed Combustion Model
- 5.2.1.4. Inclusion of Pressure Work and Kinetic Energy Terms
- 5.2.1.5. Inclusion of the Viscous Dissipation Terms
- 5.2.1.6. Inclusion of the Species Diffusion Term
- 5.2.1.7. Energy Sources Due to Reaction
- 5.2.1.8. Energy Sources Due To Radiation
- 5.2.1.9. Energy Source Due To Joule Heating
- 5.2.1.10. Interphase Energy Sources
- 5.2.1.11. Energy Equation in Solid Regions
- 5.2.1.12. Anisotropic Conductivity in Solids
- 5.2.1.13. Diffusion at Inlets
- 5.2.2. Natural Convection and Buoyancy-Driven Flows Theory
- 5.3. Modeling Radiation
- 5.3.1. Overview and Limitations
- 5.3.1.1. Advantages and Limitations of the DTRM
- 5.3.1.2. Advantages and Limitations of the P-1 Model
- 5.3.1.3. Advantages and Limitations of the Rosseland Model
- 5.3.1.4. Advantages and Limitations of the DO Model
- 5.3.1.5. Advantages and Limitations of the S2S Model
- 5.3.1.6. Advantages and Limitations of the MC Model
- 5.3.2. Radiative Transfer Equation
- 5.3.3. P-1 Radiation Model Theory
- 5.3.3.1. The P-1 Model Equations
- 5.3.3.2. Anisotropic Scattering
- 5.3.3.3. Particulate Effects in the P-1 Model
- 5.3.3.4. Boundary Condition Treatment for the P-1 Model at Walls
- 5.3.3.5. Boundary Condition Treatment for the P-1 Model at Flow Inlets
and Exits
- 5.3.4. Rosseland Radiation Model Theory
- 5.3.4.1. The Rosseland Model Equations
- 5.3.4.2. Anisotropic Scattering
- 5.3.4.3. Boundary Condition Treatment at Walls
- 5.3.4.4. Boundary Condition Treatment at Flow Inlets and Exits
- 5.3.5. Discrete Transfer Radiation Model (DTRM) Theory
- 5.3.5.1. The DTRM Equations
- 5.3.5.2. Ray Tracing
- 5.3.5.3. Clustering
- 5.3.5.4. Boundary Condition Treatment for the DTRM at Walls
- 5.3.5.5. Boundary Condition Treatment for the DTRM at Flow Inlets and outlets
- 5.3.6. Discrete Ordinates (DO) Radiation Model Theory
- 5.3.6.1. The DO Model Equations
- 5.3.6.2. Energy Coupling and the DO Model
- 5.3.6.2.1. Limitations of DO/Energy Coupling
- 5.3.6.3. Angular Discretization and Pixelation
- 5.3.6.4. Anisotropic Scattering
- 5.3.6.5. Particulate Effects in the DO Model
- 5.3.6.6. Boundary and Cell Zone Condition Treatment at Opaque Walls
- 5.3.6.6.1. Gray Diffuse Walls
- 5.3.6.6.2. Non-Gray Diffuse Walls
- 5.3.6.7. Cell Zone and Boundary Condition Treatment at Semi-Transparent
Walls
- 5.3.6.7.1. Semi-Transparent Interior Walls
- 5.3.6.7.2. Specular Semi-Transparent Walls
- 5.3.6.7.3. Diffuse Semi-Transparent Walls
- 5.3.6.7.4. Partially Diffuse Semi-Transparent Walls
- 5.3.6.7.5. Semi-Transparent Exterior Walls
- 5.3.6.7.6. Limitations
- 5.3.6.7.7. Solid Semi-Transparent Media
- 5.3.6.8. Boundary Condition Treatment at Specular Walls and Symmetry
Boundaries
- 5.3.6.9. Boundary Condition Treatment at Periodic Boundaries
- 5.3.6.10. Boundary Condition Treatment at Flow Inlets and Outlets
- 5.3.7. Surface-to-Surface (S2S) Radiation Model Theory
- 5.3.7.1. Gray-Diffuse Radiation
- 5.3.7.2. The S2S Model Equations
- 5.3.7.3. Clustering
- 5.3.7.3.1. Clustering and View Factors
- 5.3.7.3.2. Clustering and Radiosity
- 5.3.8. Monte Carlo (MC) Radiation Model Theory
- 5.3.8.1. The MC Model Equations
- 5.3.8.1.1. Monte Carlo Solution Accuracy
- 5.3.8.2. Boundary Condition Treatment for the MC Model
- 5.3.9. Radiation in Combusting Flows
- 5.3.9.1. The Weighted-Sum-of-Gray-Gases Model
- 5.3.9.1.1. When the Total (Static) Gas Pressure is Not Equal to 1 atm
- 5.3.9.2. The Effect of Soot on the Absorption Coefficient
- 5.3.9.3. The Effect of Particles on the Absorption Coefficient
- 5.3.10. Choosing a Radiation Model
- 5.3.10.1. External Radiation
- 6. Heat Exchangers
- 6.1. The Macro Heat Exchanger Models
- 6.1.1. Overview of the Macro Heat Exchanger Models
- 6.1.2. Restrictions of the Macro Heat Exchanger Models
- 6.1.3. Macro Heat Exchanger Model Theory
- 6.1.3.1. Streamwise Pressure Drop
- 6.1.3.2. Heat Transfer Effectiveness
- 6.1.3.3. Heat Rejection
- 6.1.3.4. Macro Heat Exchanger Group Connectivity
- 6.2. The Dual Cell Model
- 6.2.1. Overview of the Dual Cell Model
- 6.2.2. Restrictions of the Dual Cell Model
- 6.2.3. Dual Cell Model Theory
- 6.2.3.1. NTU Relations
- 6.2.3.2. Heat Rejection
- 7. Modelling with Finite-Rate Chemistry
- 7.1. Species Transport and Finite-Rate Chemistry
- 7.1.1. Volumetric Reactions
- 7.1.1.1. Species Transport Equations
- 7.1.1.1.1. Mass Diffusion in Laminar Flows
- 7.1.1.1.2. Mass Diffusion in Turbulent Flows
- 7.1.1.1.3. Full Multicomponent Diffusion
- 7.1.1.1.3.1. General Theory
- 7.1.1.1.3.2. Maxwell-Stefan Equations
- 7.1.1.1.4. Kinetic Theory Parameters for Diffusion Coefficients
- 7.1.1.1.5. Unity Lewis Number
- 7.1.1.1.6. Anisotropic Species Diffusion
- 7.1.1.1.7. Thermal Diffusion Coefficients
- 7.1.1.1.8. Treatment of Species Transport in the Energy Equation
- 7.1.1.1.9. Diffusion at Inlets
- 7.1.1.2. The Generalized Finite-Rate Formulation for Reaction Modeling
- 7.1.1.2.1. Direct Use of Finite-Rate Kinetics (no TCI)
- 7.1.1.2.2. Pressure-Dependent Reactions
- 7.1.1.2.3. The Eddy-Dissipation Model
- 7.1.1.2.4. The Eddy-Dissipation Model for LES
- 7.1.1.2.5. The Eddy-Dissipation-Concept (EDC) Model
- 7.1.1.2.5.1. The Standard EDC Model
- 7.1.1.2.5.2. The Partially Stirred Reactor EDC Model
- 7.1.1.2.6. The Thickened Flame Model
- 7.1.1.2.7. The Relaxation to Chemical Equilibrium Model
- 7.1.1.3. Finite-Rate Chemistry with the Two-Temperature Model
- 7.1.2. Wall Surface Reactions and Chemical Vapor Deposition
- 7.1.2.1. Surface Coverage Reaction Rate Modification
- 7.1.2.2. Reaction-Diffusion Balance for Surface Chemistry
- 7.1.2.3. Slip Boundary Formulation for Low-Pressure Gas Systems
- 7.1.3. Particle Reactions
- 7.1.3.1. Combusting Particle Surface Reactions
- 7.1.3.1.1. General Description
- 7.1.3.1.2. Ansys Fluent Model Formulation
- 7.1.3.1.3. Extension for Stoichiometries with Multiple Gas Phase Reactants
- 7.1.3.1.4. Solid-Solid Reactions
- 7.1.3.1.5. Solid Decomposition Reactions
- 7.1.3.1.6. Solid Deposition Reactions
- 7.1.3.1.7. Gaseous Solid Catalyzed Reactions on the Particle Surface
- 7.1.3.2. Multicomponent Particles with Chemical Reactions
- 7.1.4. Electrochemical Reactions
- 7.1.4.1. Overview
- 7.1.4.2. Electrochemical Reaction Model Theory
- 7.1.5. Reacting Channel Model
- 7.1.5.1. Overview
- 7.1.5.2. Reacting Channel Model Theory
- 7.1.5.2.1. Flow Inside the Reacting Channel
- 7.1.5.2.2. Surface Reactions in the Reacting Channel
- 7.1.5.2.3. Porous Medium Inside Reacting Channel
- 7.1.5.2.4. Outer Flow in the Shell
- 7.1.6. Reactor Network Model
- 7.1.6.1. Reactor Network Model Theory
- 7.1.6.1.1. Reactor network temperature solution
- 7.2. Composition PDF Transport
- 7.2.1. Overview
- 7.2.2. Composition PDF Transport Theory
- 7.2.3. The Lagrangian Solution Method
- 7.2.3.1. Particle Convection
- 7.2.3.2. Particle Mixing
- 7.2.3.2.1. The Modified Curl Model
- 7.2.3.2.2. The IEM Model
- 7.2.3.2.3. The EMST Model
- 7.2.3.2.4. Liquid Reactions
- 7.2.3.3. Particle Reaction
- 7.2.4. The Eulerian Solution Method
- 7.2.4.1. Reaction
- 7.2.4.2. Mixing
- 7.2.4.3. Correction
- 7.2.4.4. Calculation of Composition Mean and Variance
- 7.3. Chemistry Acceleration
- 7.3.1. Overview and Limitations
- 7.3.2. In-Situ Adaptive Tabulation (ISAT)
- 7.3.3. Dynamic Mechanism Reduction
- 7.3.3.1. Directed Relation Graph (DRG) Method for Mechanism Reduction
- 7.3.4. Chemistry Agglomeration
- 7.3.4.1. Binning Algorithm
- 7.3.5. Chemical Mechanism Dimension Reduction
- 7.3.5.1. Selecting the Represented Species
- 7.3.6. Dynamic Cell Clustering with Ansys Fluent CHEMKIN-CFD Solver
- 7.3.7. Dynamic Adaptive Chemistry with Ansys Fluent CHEMKIN-CFD Solver
- 8. Modelling of Turbulent Combustion With Reduced Order
- 8.1. Non-Premixed Combustion
- 8.1.1. Introduction
- 8.1.2. Non-Premixed Combustion and Mixture Fraction Theory
- 8.1.2.1. Mixture Fraction Theory
- 8.1.2.1.1. Definition of the Mixture Fraction
- 8.1.2.1.2. Transport Equations for the Mixture Fraction
- 8.1.2.1.3. The Non-Premixed Model for LES
- 8.1.2.1.4. The Non-Premixed Model with the SBES Turbulence Model
- 8.1.2.1.5. Mixture Fraction vs. Equivalence Ratio
- 8.1.2.1.6. Relationship of Mixture Fraction to Species Mass Fraction,
Density, and Temperature
- 8.1.2.2. Modeling of Turbulence-Chemistry Interaction
- 8.1.2.2.1. Description of the Probability Density Function
- 8.1.2.2.2. Derivation of Mean Scalar Values from the Instantaneous Mixture
Fraction
- 8.1.2.2.3. The Assumed-Shape PDF
- 8.1.2.2.3.1. The Double Delta Function PDF
- 8.1.2.2.3.2. The β-Function PDF
- 8.1.2.3. Non-Adiabatic Extensions of the Non-Premixed Model
- 8.1.2.4. Chemistry Tabulation
- 8.1.2.4.1. Look-Up Tables for Adiabatic Systems
- 8.1.2.4.2. 3D Look-Up Tables for Non-Adiabatic Systems
- 8.1.2.4.3. Generating Lookup Tables Through Automated Grid Refinement
- 8.1.3. Restrictions and Special Cases for Using the Non-Premixed Model
- 8.1.3.1. Restrictions on the Mixture Fraction Approach
- 8.1.3.2. Using the Non-Premixed Model for Liquid Fuel or Coal Combustion
- 8.1.3.3. Using the Non-Premixed Model with Flue Gas Recycle
- 8.1.3.4. Using the Non-Premixed Model with the Inert Model
- 8.1.3.4.1. Mixture Composition
- 8.1.3.4.1.1. Property Evaluation
- 8.1.4. The Diffusion Flamelet Models Theory
- 8.1.4.1. Restrictions and Assumptions
- 8.1.4.2. The Flamelet Concept
- 8.1.4.2.1. Overview
- 8.1.4.2.2. Strain Rate and Scalar Dissipation
- 8.1.4.2.3. Embedding Diffusion Flamelets in Turbulent Flames
- 8.1.4.3. Flamelet Generation
- 8.1.4.4. Flamelet Import
- 8.1.5. The Steady Diffusion Flamelet Model Theory
- 8.1.5.1. Overview
- 8.1.5.2. Multiple Steady Flamelet Libraries
- 8.1.5.3. Steady Diffusion Flamelet Automated Grid Refinement
- 8.1.5.4. Non-Adiabatic Steady Diffusion Flamelets
- 8.1.6. The Unsteady Diffusion Flamelet Model Theory
- 8.1.6.1. The Eulerian Unsteady Laminar Flamelet Model
- 8.1.6.1.1. Liquid Reactions
- 8.1.6.2. The Diesel Unsteady Laminar Flamelet Model
- 8.1.6.3. Multiple Diesel Unsteady Flamelets
- 8.1.6.4. Multiple Diesel Unsteady Flamelets with Flamelet Reset
- 8.1.6.4.1. Resetting the Flamelets
- 8.2. Premixed Combustion
- 8.2.1. Overview
- 8.2.2. C-Equation Model Theory
- 8.2.2.1. Propagation of the Flame Front
- 8.2.3. G-Equation Model Theory
- 8.2.3.1. Numerical Solution of the G-equation
- 8.2.4. Turbulent Flame Speed Models
- 8.2.4.1. Zimont Turbulent Flame Speed Closure Model
- 8.2.4.1.1. Zimont Turbulent Flame Speed Closure for LES
- 8.2.4.1.2. Flame Stretch Effect
- 8.2.4.1.3. Wall Damping
- 8.2.4.2. Peters Flame Speed Model
- 8.2.4.2.1. Peters Flame Speed Model for LES
- 8.2.5. Calculation of Properties
- 8.2.5.1. Calculation of Temperature
- 8.2.5.1.1. Adiabatic Temperature Calculation
- 8.2.5.1.2. Non-Adiabatic Temperature Calculation
- 8.2.5.2. Calculation of Density
- 8.2.5.3. Laminar Flame Speed
- 8.2.5.4. Unburnt Density and Thermal Diffusivity
- 8.3. Partially Premixed Combustion
- 8.3.1. Overview
- 8.3.2. Partially Premixed Combustion Theory
- 8.3.2.1. Chemical Equilibrium and Steady Diffusion Flamelet Models
- 8.3.2.2. Flamelet Generated Manifold (FGM) Model
- 8.3.2.2.1. Premixed FGMs in Reaction Progress Variable Space
- 8.3.2.2.2. Premixed FGMs in Physical Space
- 8.3.2.2.3. Diffusion FGMs
- 8.3.2.2.4. Nonadiabatic Flamelet Generated Manifold (FGM)
- 8.3.2.3. FGM Turbulent Closure
- 8.3.2.3.1. Scalar Transport with FGM Closure
- 8.3.2.4. Calculation of Mixture Properties
- 8.3.2.5. Calculation of Unburnt Properties
- 8.3.2.6. Laminar Flame Speed
- 8.3.2.7. Strained Laminar Flame Speed
- 8.3.2.7.1. Strained Non-Adiabatic Flame Speed
- 8.3.2.8. Generating PDF Lookup Tables Through Automated Grid Refinement
- 9. Pollutant Formation
- 9.1. NOx Formation
- 9.1.1. Overview
- 9.1.1.1. NOx Modeling in Ansys Fluent
- 9.1.1.2. NOx Formation and Reduction in Flames
- 9.1.2. Governing Equations for NOx Transport
- 9.1.3. Thermal NOx Formation
- 9.1.3.1. Thermal NOx Reaction Rates
- 9.1.3.2. The Quasi-Steady Assumption for [N]
- 9.1.3.3. Thermal NOx Temperature Sensitivity
- 9.1.3.4. Decoupled Thermal NOx Calculations
- 9.1.3.5. Approaches for Determining O Radical Concentration
- 9.1.3.5.1. Method 1: Equilibrium Approach
- 9.1.3.5.2. Method 2: Partial Equilibrium Approach
- 9.1.3.5.3. Method 3: Predicted O Approach
- 9.1.3.6. Approaches for Determining OH Radical Concentration
- 9.1.3.6.1. Method 1: Exclusion of OH Approach
- 9.1.3.6.2. Method 2: Partial Equilibrium Approach
- 9.1.3.6.3. Method 3: Predicted OH Approach
- 9.1.3.7. Summary
- 9.1.4. Prompt NOx Formation
- 9.1.4.1. Prompt NOx Combustion Environments
- 9.1.4.2. Prompt NOx Mechanism
- 9.1.4.3. Prompt NOx Formation Factors
- 9.1.4.4. Primary Reaction
- 9.1.4.5. Modeling Strategy
- 9.1.4.6. Rate for Most Hydrocarbon Fuels
- 9.1.4.7. Oxygen Reaction Order
- 9.1.5. Fuel NOx Formation
- 9.1.5.1. Fuel-Bound Nitrogen
- 9.1.5.2. Reaction Pathways
- 9.1.5.3. Fuel NOx from Gaseous and Liquid Fuels
- 9.1.5.3.1. Fuel NOx from Intermediate Hydrogen Cyanide (HCN)
- 9.1.5.3.1.1. HCN Production in a Gaseous Fuel
- 9.1.5.3.1.2. HCN Production in a Liquid Fuel
- 9.1.5.3.1.3. HCN Consumption
- 9.1.5.3.1.4. HCN Sources in the Transport Equation
- 9.1.5.3.1.5. NOx Sources in the Transport Equation
- 9.1.5.3.2. Fuel NOx from Intermediate Ammonia (NH3)
- 9.1.5.3.2.1. NH3 Production in a Gaseous Fuel
- 9.1.5.3.2.2. NH3 Production in a Liquid Fuel
- 9.1.5.3.2.3. NH3 Consumption
- 9.1.5.3.2.4. NH3 Sources in the Transport Equation
- 9.1.5.3.2.5. NOx Sources in the Transport Equation
- 9.1.5.3.3. Fuel NOx from Coal
- 9.1.5.3.3.1. Nitrogen in Char and in Volatiles
- 9.1.5.3.3.2. Coal Fuel NOx Scheme A
- 9.1.5.3.3.3. Coal Fuel NOx Scheme B
- 9.1.5.3.3.4. HCN Scheme Selection
- 9.1.5.3.3.5. NOx Reduction on Char Surface
- 9.1.5.3.3.5.1. BET Surface Area
- 9.1.5.3.3.5.2. HCN from Volatiles
- 9.1.5.3.3.6. Coal Fuel NOx Scheme C
- 9.1.5.3.3.7. Coal Fuel NOx Scheme D
- 9.1.5.3.3.8. NH3 Scheme Selection
- 9.1.5.3.3.8.1. NH3 from Volatiles
- 9.1.5.3.4. Fuel Nitrogen Partitioning for HCN and NH3 Intermediates
- 9.1.6. NOx Formation from Intermediate N2O
- 9.1.6.1. N2O - Intermediate NOx Mechanism
- 9.1.7. NOx Reduction by Reburning
- 9.1.7.1. Instantaneous Approach
- 9.1.7.2. Partial Equilibrium Approach
- 9.1.7.2.1. NOx Reduction Mechanism
- 9.1.8. NOx Reduction by SNCR
- 9.1.8.1. Ammonia Injection
- 9.1.8.2. Urea Injection
- 9.1.8.3. Transport Equations for Urea, HNCO, and NCO
- 9.1.8.4. Urea Production due to Reagent Injection
- 9.1.8.5. NH3 Production due to Reagent Injection
- 9.1.8.6. HNCO Production due to Reagent Injection
- 9.1.9. NOx Formation in Turbulent Flows
- 9.1.9.1. The Turbulence-Chemistry Interaction Model
- 9.1.9.2. The PDF Approach
- 9.1.9.3. The General Expression for the Mean Reaction Rate
- 9.1.9.4. The Mean Reaction Rate Used in Ansys Fluent
- 9.1.9.5. Statistical Independence
- 9.1.9.6. The Beta PDF Option
- 9.1.9.7. The Gaussian PDF Option
- 9.1.9.8. The Calculation Method for the Variance
- 9.2. Soot Formation
- 9.2.1. Overview and Limitations
- 9.2.1.1. Predicting Soot Formation
- 9.2.1.2. Restrictions on Soot Modeling
- 9.2.2. Soot Model Theory
- 9.2.2.1. The One-Step Soot Formation Model
- 9.2.2.2. The Two-Step Soot Formation Model
- 9.2.2.2.1. Soot Generation Rate
- 9.2.2.2.2. Nuclei Generation Rate
- 9.2.2.3. The Moss-Brookes Model
- 9.2.2.3.1. The Moss-Brookes-Hall Model
- 9.2.2.3.2. Soot Formation in Turbulent Flows
- 9.2.2.3.2.1. The Turbulence-Chemistry Interaction Model
- 9.2.2.3.2.2. The PDF Approach
- 9.2.2.3.2.3. The Mean Reaction Rate
- 9.2.2.3.2.4. The PDF Options
- 9.2.2.3.3. The Effect of Soot on the Radiation Absorption Coefficient
- 9.2.2.4. The Method of Moments Model
- 9.2.2.4.1. Soot Particle Population Balance
- 9.2.2.4.2. Moment Transport Equations
- 9.2.2.4.3. Nucleation
- 9.2.2.4.4. Coagulation
- 9.2.2.4.5. Surface Growth and Oxidation
- 9.2.2.4.6. Soot Aggregation
- 9.3. Decoupled Detailed Chemistry Model
- 9.3.1. Overview
- 9.3.1.1. Limitations
- 9.3.2. Decoupled Detailed Chemistry Model Theory
- 10. Engine Ignition
- 10.1. Spark Model
- 10.1.1. Overview and Limitations
- 10.1.2. Spark Model Theory
- 10.2. Autoignition Models
- 10.2.1. Model Overview
- 10.2.2. Model Limitations
- 10.2.3. Ignition Model Theory
- 10.2.3.1. Transport of Ignition Species
- 10.2.3.2. Knock Modeling
- 10.2.3.2.1. Modeling of the Source Term
- 10.2.3.2.2. Correlations
- 10.2.3.2.3. Energy Release
- 10.2.3.3. Ignition Delay Modeling
- 10.2.3.3.1. Modeling of the Source Term
- 10.2.3.3.2. Correlations
- 10.2.3.3.3. Energy Release
- 10.3. Crevice Model
- 10.3.1. Overview
- 10.3.1.1. Model Parameters
- 10.3.2. Limitations
- 10.3.3. Crevice Model Theory
- 11. Aerodynamically Generated Noise
- 11.1. Overview
- 11.1.1. Direct Method
- 11.1.2. Integral Method by Ffowcs Williams and Hawkings
- 11.1.3. Method Based on Wave Equation
- 11.1.4. Broadband Noise Source Models
- 11.2. Acoustics Model Theory
- 11.2.1. The Ffowcs Williams and Hawkings Model
- 11.2.2. Wave Equation Model
- 11.2.2.1. Limitations
- 11.2.2.2. Governing Equations and Boundary Conditions
- 11.2.2.3. Method of Numerical Solution
- 11.2.2.4. Preventing Non-Physical Reflections of Sound Waves
- 11.2.2.4.1. Mesh Quality
- 11.2.2.4.2. Filtering of the Sound Source Term
- 11.2.2.4.3. Ramping in Time and Limiting in Space (Masking) of the Sound Source Term
- 11.2.2.4.4. Damping of Solution in a Sponge Region Using Artificial Viscosity
- 11.2.2.5. Kirchhoff Integral
- 11.2.2.5.1. Compatibility and Limitations
- 11.2.2.5.2. Mathematical Formulation
- 11.2.3. Broadband Noise Source Models
- 11.2.3.1. Proudman’s Formula
- 11.2.3.2. The Jet Noise Source Model
- 11.2.3.3. The Boundary Layer Noise Source Model
- 11.2.3.4. Source Terms in the Linearized Euler Equations
- 11.2.3.5. Source Terms in Lilley’s Equation
- 12. Discrete Phase
- 12.1. Introduction
- 12.1.1. The Euler-Lagrange Approach
- 12.2. Particle Motion Theory
- 12.2.1. Equations of Motion for Particles
- 12.2.1.1. Particle Force Balance
- 12.2.1.2. Particle Torque Balance
- 12.2.1.3. Inclusion of the Gravity Term
- 12.2.1.4. Other Forces
- 12.2.1.5. Forces in Moving Reference Frames
- 12.2.1.6. Thermophoretic Force
- 12.2.1.7. Brownian Force
- 12.2.1.8. Saffman’s Lift Force
- 12.2.1.9. Magnus Lift Force
- 12.2.2. Turbulent Dispersion of Particles
- 12.2.2.1. Stochastic Tracking
- 12.2.2.1.1. The Integral Time
- 12.2.2.1.2. The Discrete Random Walk Model
- 12.2.2.1.3. Using the DRW Model
- 12.2.3. Integration of Particle Equation of Motion
- 12.3. Laws for Drag Coefficients
- 12.3.1. Spherical Drag Law
- 12.3.2. Non-spherical Drag Law
- 12.3.3. Stokes-Cunningham Drag Law
- 12.3.4. High-Mach-Number Drag Law
- 12.3.5. Dynamic Drag Model Theory
- 12.3.6. Dense Discrete Phase Model Drag Laws
- 12.3.7. Bubbly Flow Drag Laws
- 12.3.7.1. Ishii-Zuber Drag Model
- 12.3.7.2. Grace Drag Model
- 12.3.8. Rotational Drag Law
- 12.4. Laws for Heat and Mass Exchange
- 12.4.1. Inert Heating or Cooling (Law 1/Law 6)
- 12.4.2. Droplet Vaporization (Law 2)
- 12.4.2.1. Mass Transfer During Law 2—Diffusion Controlled Model
- 12.4.2.2. Mass Transfer During Law 2—Convection/Diffusion Controlled
Model
- 12.4.2.3. Mass Transfer During Law 2—Thermolysis
- 12.4.2.4. Defining the Saturation Vapor Pressure and Diffusion Coefficient
(or Binary Diffusivity)
- 12.4.2.5. Defining the Boiling Point and Latent Heat
- 12.4.2.6. Heat Transfer to the Droplet
- 12.4.3. Droplet Boiling (Law 3)
- 12.4.4. Devolatilization (Law 4)
- 12.4.4.1. Choosing the Devolatilization Model
- 12.4.4.2. The Constant Rate Devolatilization Model
- 12.4.4.3. The Single Kinetic Rate Model
- 12.4.4.4. The Two Competing Rates (Kobayashi) Model
- 12.4.4.5. The CPD Model
- 12.4.4.5.1. General Description
- 12.4.4.5.2. Reaction Rates
- 12.4.4.5.3. Mass Conservation
- 12.4.4.5.4. Fractional Change in the Coal Mass
- 12.4.4.5.5. CPD Inputs
- 12.4.4.6. Particle Swelling During Devolatilization
- 12.4.4.7. Heat Transfer to the Particle During Devolatilization
- 12.4.5. Surface Combustion (Law 5)
- 12.4.5.1. The Diffusion-Limited Surface Reaction Rate Model
- 12.4.5.2. The Kinetic/Diffusion Surface Reaction Rate Model
- 12.4.5.3. The Intrinsic Model
- 12.4.5.4. The Multiple Surface Reactions Model
- 12.4.5.5. Heat and Mass Transfer During Char Combustion
- 12.4.6. Multicomponent Particle Definition (Law 7)
- 12.4.6.1. Raoult’s Law
- 12.4.6.2. Peng-Robinson Real Gas Model
- 12.5. Vapor Liquid Equilibrium Theory
- 12.6. Physical Property Averaging
- 12.7. Wall-Particle Reflection Model Theory
- 12.7.1. Rough Wall Model
- 12.8. Wall-Jet Model Theory
- 12.9. Lagrangian Wall-Film Model Theory
- 12.9.1. Introduction
- 12.9.2. Leidenfrost Temperature Considerations
- 12.9.2.1. Default Wall Temperature Limiter
- 12.9.2.2. Leidenfrost Temperature Reporting
- 12.9.3. Interaction During Impact with a Boundary
- 12.9.3.1. The Stanton-Rutland Model
- 12.9.3.1.1. Regime Definition
- 12.9.3.1.2. Rebound
- 12.9.3.1.3. Splashing
- 12.9.3.2. The Kuhnke Model
- 12.9.3.2.1. Regime definition
- 12.9.3.2.2. Rebound
- 12.9.3.2.3. Splashing
- 12.9.3.3. The Stochastic Kuhnke Model
- 12.9.4. Separation and Stripping Submodels
- 12.9.5. Conservation Equations for Wall-Film Particles
- 12.9.5.1. Momentum
- 12.9.5.2. Mass Transfer from the Film
- 12.9.5.2.1. Film Vaporization and Boiling
- 12.9.5.2.1.1. Diffusion Controlled Model
- 12.9.5.2.1.2. Convection/Diffusion Controlled Model
- 12.9.5.2.1.3. Thermolysis Model
- 12.9.5.2.1.4. Gas-Side Boundary Layer Model
- 12.9.5.2.1.5. Film Boiling Model with Conduction Heat Transfer Model
- 12.9.5.2.1.6. Film Boiling Model with Convective Heat Transfer Model
- 12.9.5.2.2. Film Condensation
- 12.9.5.2.3. Multicomponent Film Models
- 12.9.5.3. Energy Transfer from the Film
- 12.9.5.3.1. Conduction Heat Transfer Model
- 12.9.5.3.2. Convective Heat Transfer Model
- 12.10. Wall Erosion
- 12.10.1. Finnie Erosion Model
- 12.10.2. Oka Erosion Model
- 12.10.3. McLaury Erosion Model
- 12.10.4. DNV Erosion Model
- 12.10.5. Modeling Erosion Rates in Dense Flows
- 12.10.5.1. Abrasive Erosion Caused by Solid Particles
- 12.10.5.2. Wall Shielding Effect in Dense Flow Regimes
- 12.10.6. Accretion
- 12.11. Particle–Wall
Impingement Heat Transfer Theory
- 12.12. Atomizer Model Theory
- 12.12.1. The Plain-Orifice Atomizer Model
- 12.12.1.1. Internal Nozzle State
- 12.12.1.2. Coefficient of Discharge
- 12.12.1.3. Exit Velocity
- 12.12.1.4. Spray Angle
- 12.12.1.5. Droplet Diameter Distribution
- 12.12.2. The Pressure-Swirl Atomizer Model
- 12.12.2.1. Film Formation
- 12.12.2.2. Sheet Breakup and Atomization
- 12.12.3. The Air-Blast/Air-Assist Atomizer Model
- 12.12.4. The Flat-Fan Atomizer Model
- 12.12.5. The Effervescent Atomizer Model
- 12.13. Secondary Breakup Model Theory
- 12.13.1. Taylor Analogy Breakup (TAB) Model
- 12.13.1.1. Introduction
- 12.13.1.2. Use and Limitations
- 12.13.1.3. Droplet Distortion
- 12.13.1.4. Size of Child Droplets
- 12.13.1.5. Velocity of Child Droplets
- 12.13.1.6. Droplet Breakup
- 12.13.2. Wave Breakup Model
- 12.13.2.1. Introduction
- 12.13.2.2. Use and Limitations
- 12.13.2.3. Jet Stability Analysis
- 12.13.2.4. Droplet Breakup
- 12.13.3. KHRT Breakup Model
- 12.13.3.1. Introduction
- 12.13.3.2. Use and Limitations
- 12.13.3.3. Liquid Core Length
- 12.13.3.4. Rayleigh-Taylor Breakup
- 12.13.3.5. Droplet Breakup Within the Liquid Core
- 12.13.3.6. Droplet Breakup Outside the Liquid Core
- 12.13.4. Stochastic Secondary Droplet (SSD) Model
- 12.13.5. Madabhushi Breakup Model
- 12.13.6. Schmehl Breakup Model
- 12.14. Collision and Droplet Coalescence Model Theory
- 12.14.1. Introduction
- 12.14.2. Use and Limitations
- 12.14.3. Theory
- 12.14.3.1. Probability of Collision
- 12.14.3.2. Collision Outcomes
- 12.14.3.2.1. Bouncing
- 12.14.3.2.2. Bouncing and Coalescence
- 12.15. Discrete Element Method Collision Model
- 12.15.1. Theory
- 12.15.1.1. The Spring Collision Law
- 12.15.1.2. The Spring-Dashpot Collision Law
- 12.15.1.3. The Hertzian Collision Law
- 12.15.1.4. The Hertzian-Dashpot Collision Law
- 12.15.1.5. The Friction Collision Law
- 12.15.1.6. Rolling Friction Collision Law for DEM
- 12.15.1.7. DEM Parcels
- 12.15.1.8. Cartesian Collision Mesh
- 12.16. One-Way and Two-Way Coupling
- 12.16.1. Coupling Between the Discrete and Continuous Phases
- 12.16.2. Momentum Exchange
- 12.16.3. Heat Exchange
- 12.16.4. Mass Exchange
- 12.16.5. Under-Relaxation of the Interphase Exchange Terms
- 12.16.6. Interphase Exchange During Stochastic Tracking
- 12.17. Node Based Averaging
- 12.18. Blockage Effect
- 13. Modeling Macroscopic Particles
- 13.1. Momentum Transfer to Fluid Flow
- 13.2. Fluid Forces and Torques on Particle
- 13.3. Particle/Particle and Particle/Wall Collisions
- 13.4. Field Forces
- 13.5. Particle Deposition and Buildup
- 14. Multiphase Flows
- 14.1. Introduction
- 14.1.1. Multiphase Flow Regimes
- 14.1.1.1. Gas-Liquid or Liquid-Liquid Flows
- 14.1.1.2. Gas-Solid Flows
- 14.1.1.3. Liquid-Solid Flows
- 14.1.1.4. Three-Phase Flows
- 14.1.2. Examples of Multiphase Systems
- 14.2. Choosing a General Multiphase Model
- 14.2.1. Approaches to Multiphase Modeling
- 14.2.1.1. The Euler-Euler Approach
- 14.2.1.1.1. The VOF Model
- 14.2.1.1.2. The Mixture Model
- 14.2.1.1.3. The Eulerian Model
- 14.2.2. Model Comparisons
- 14.2.2.1. Detailed Guidelines
- 14.2.2.1.1. The Effect of Particulate Loading
- 14.2.2.1.2. The Significance of the Stokes Number
- 14.2.2.1.2.1. Examples
- 14.2.2.1.3. Other Considerations
- 14.2.3. Time Schemes in Multiphase Flow
- 14.2.4. Stability and Convergence
- 14.3. Volume of Fluid (VOF) Model Theory
- 14.3.1. Overview of the VOF Model
- 14.3.2. Limitations of the VOF Model
- 14.3.3. Steady-State and Transient VOF Calculations
- 14.3.4. Volume Fraction Equation
- 14.3.4.1. The Implicit Formulation
- 14.3.4.2. The Explicit Formulation
- 14.3.4.3. Interpolation Near the Interface
- 14.3.4.3.1. The Geometric Reconstruction Scheme
- 14.3.4.3.2. The Donor-Acceptor Scheme
- 14.3.4.3.3. The Compressive Interface Capturing Scheme for Arbitrary Meshes
(CICSAM)
- 14.3.4.3.4. The Compressive Scheme and Interface-Model-based Variants
- 14.3.4.3.5. Bounded Gradient Maximization (BGM)
- 14.3.5. Material Properties
- 14.3.6. Momentum Equation
- 14.3.7. Energy Equation
- 14.3.8. Additional Scalar Equations
- 14.3.9. Surface Tension and Adhesion
- 14.3.9.1. Surface Tension
- 14.3.9.1.1. The Continuum Surface Force Model
- 14.3.9.1.2. The Continuum Surface Stress Model
- 14.3.9.1.3. Comparing the CSS and CSF Methods
- 14.3.9.1.4. When Surface Tension Effects Are Important
- 14.3.9.2. Wall Adhesion
- 14.3.9.3. Jump Adhesion
- 14.3.10. Open Channel Flow
- 14.3.10.1. Upstream Boundary Conditions
- 14.3.10.1.1. Pressure Inlet
- 14.3.10.1.2. Mass Flow Rate
- 14.3.10.1.3. Volume Fraction Specification
- 14.3.10.2. Downstream Boundary Conditions
- 14.3.10.2.1. Pressure Outlet
- 14.3.10.2.2. Outflow Boundary
- 14.3.10.2.3. Backflow Volume Fraction Specification
- 14.3.10.3. Numerical Beach Treatment
- 14.3.11. Open Channel Wave Boundary Conditions
- 14.3.11.1. Airy Wave Theory
- 14.3.11.2. Stokes Wave Theories
- 14.3.11.3. Cnoidal/Solitary Wave Theory
- 14.3.11.4. Choosing a Wave Theory
- 14.3.11.5. Superposition of Waves
- 14.3.11.6. Modeling of Random Waves Using Wave Spectrum
- 14.3.11.6.1. Definitions
- 14.3.11.6.2. Wave Spectrum Implementation Theory
- 14.3.11.6.2.1. Long-Crested Random Waves (Unidirectional)
- 14.3.11.6.2.1.1. Pierson-Moskowitz Spectrum
- 14.3.11.6.2.1.2. JONSWAP Spectrum
- 14.3.11.6.2.1.3. TMA Spectrum
- 14.3.11.6.2.2. Short-Crested Random Waves (Multi-Directional)
- 14.3.11.6.2.2.1. Cosine-2s Power Function (Frequency Independent)
- 14.3.11.6.2.2.2. Hyperbolic Function (Frequency Dependent)
- 14.3.11.6.2.3. Superposition of Individual Wave Components Using the Wave
Spectrum
- 14.3.11.6.3. Choosing a Wave Spectrum and Inputs
- 14.3.11.7. Nomenclature for Open Channel Waves
- 14.3.12. Coupled Level-Set and VOF Model
- 14.3.12.1. Theory
- 14.3.12.1.1. Surface Tension Force
- 14.3.12.1.2. Re-initialization of the Level-set Function via the Geometrical
Method
- 14.3.12.2. Limitations
- 14.4. Mixture Model Theory
- 14.4.1. Overview
- 14.4.2. Limitations of the Mixture Model
- 14.4.3. Continuity Equation
- 14.4.4. Momentum Equation
- 14.4.5. Energy Equation
- 14.4.6. Relative (Slip) Velocity and the Drift Velocity
- 14.4.7. Volume Fraction Equation for the Secondary Phases
- 14.4.8. Granular Properties
- 14.4.8.1. Collisional Viscosity
- 14.4.8.2. Kinetic Viscosity
- 14.4.9. Granular Temperature
- 14.4.10. Solids Pressure
- 14.4.11. Interfacial Area Concentration
- 14.4.11.1. Transport Equation Based Models
- 14.4.11.1.1. Hibiki-Ishii Model
- 14.4.11.1.2. Ishii-Kim Model
- 14.4.11.1.3. Yao-Morel Model
- 14.4.11.2. Algebraic Models
- 14.4.12. Flow Regime Modeling
- 14.4.12.1. Phase Pair Interaction for Hybrid Morphology
- 14.4.12.2. Algebraic Interfacial Area Density Method for Flow Regime Blending
- 14.5. Eulerian Model Theory
- 14.5.1. Overview of the Eulerian Model
- 14.5.2. Limitations of the Eulerian Model
- 14.5.3. Volume Fraction Equation
- 14.5.4. Conservation Equations
- 14.5.4.1. Equations in General Form
- 14.5.4.1.1. Conservation of Mass
- 14.5.4.1.2. Conservation of Momentum
- 14.5.4.1.3. Conservation of Energy
- 14.5.4.2. Equations Solved by Ansys Fluent
- 14.5.4.2.1. Continuity Equation
- 14.5.4.2.2. Fluid-Fluid Momentum Equations
- 14.5.4.2.3. Fluid-Solid Momentum Equations
- 14.5.4.2.4. Conservation of Energy
- 14.5.5. Surface Tension and Adhesion for the Eulerian Multiphase Model
- 14.5.6. Interfacial Area Concentration
- 14.5.7. Interphase Exchange Coefficients
- 14.5.7.1. Fluid-Fluid Exchange Coefficient
- 14.5.7.1.1. Schiller and Naumann Model
- 14.5.7.1.2. Morsi and Alexander Model
- 14.5.7.1.3. Symmetric Model
- 14.5.7.1.4. Grace et al. Model
- 14.5.7.1.5. Tomiyama et al. Model
- 14.5.7.1.6. Ishii Model
- 14.5.7.1.7. Ishii-Zuber Drag Model
- 14.5.7.1.8. Universal Drag Laws for Bubble-Liquid and Droplet-Gas Flows
- 14.5.7.1.8.1. Bubble-Liquid Flow
- 14.5.7.1.8.2. Droplet-Gas Flow
- 14.5.7.2. Fluid-Solid Exchange Coefficient
- 14.5.7.3. Solid-Solid Exchange Coefficient
- 14.5.7.4. Drag Modification
- 14.5.7.4.1. Brucato et al. Correlation
- 14.5.7.4.2. Near-Wall Drag Enhancement
- 14.5.8. Lift Coefficient Correction
- 14.5.8.1. Shaver-Podowski Correction
- 14.5.9. Lift Force
- 14.5.9.1. Lift Coefficient Models
- 14.5.9.1.1. Moraga Lift Force Model
- 14.5.9.1.2. Saffman-Mei Lift Force Model
- 14.5.9.1.3. Legendre-Magnaudet Lift Force Model
- 14.5.9.1.4. Tomiyama Lift Force Model
- 14.5.9.1.5. Hessenkemper et al. Lift Force Model
- 14.5.10. Wall Lubrication Force
- 14.5.10.1. Wall Lubrication Models
- 14.5.10.1.1. Antal et al. Model
- 14.5.10.1.2. Tomiyama Model
- 14.5.10.1.3. Frank Model
- 14.5.10.1.4. Hosokawa Model
- 14.5.10.1.5. Lubchenko Model
- 14.5.11. Turbulent Dispersion Force
- 14.5.11.1. Models for Turbulent Dispersion Force
- 14.5.11.1.1. Lopez de Bertodano Model
- 14.5.11.1.2. Simonin Model
- 14.5.11.1.3. Burns et al. Model
- 14.5.11.1.4. Diffusion in VOF Model
- 14.5.11.2. Limiting Functions for the Turbulent Dispersion Force
- 14.5.12. Virtual Mass Force
- 14.5.13. Solids Pressure
- 14.5.13.1. Radial Distribution Function
- 14.5.14. Maximum Packing Limit in Binary Mixtures
- 14.5.15. Solids Shear Stresses
- 14.5.15.1. Collisional Viscosity
- 14.5.15.2. Kinetic Viscosity
- 14.5.15.3. Bulk Viscosity
- 14.5.15.4. Frictional Viscosity
- 14.5.16. Granular Temperature
- 14.5.17. Description of Heat Transfer
- 14.5.17.1. The Heat Exchange Coefficient
- 14.5.17.1.1. Constant
- 14.5.17.1.2. Nusselt Number
- 14.5.17.1.3. Ranz-Marshall Model
- 14.5.17.1.4. Tomiyama Model
- 14.5.17.1.5. Hughmark Model
- 14.5.17.1.6. Gunn Model
- 14.5.17.1.7. Two-Resistance Model
- 14.5.17.1.8. Fixed To Saturation Temperature
- 14.5.17.1.9. Constant Time Scale Method
- 14.5.17.1.10. User Defined
- 14.5.18. Turbulence Models
- 14.5.18.1. k- ε Turbulence Models
- 14.5.18.1.1. k- ε Mixture Turbulence Model
- 14.5.18.1.2. k- ε Dispersed Turbulence Model
- 14.5.18.1.2.1. Assumptions
- 14.5.18.1.2.2. Turbulence in the Continuous Phase
- 14.5.18.1.2.3. Turbulence in the Dispersed Phase
- 14.5.18.1.3. k- ε Turbulence Model for Each Phase
- 14.5.18.1.3.1. Transport Equations
- 14.5.18.2. RSM Turbulence Models
- 14.5.18.2.1. RSM Dispersed Turbulence Model
- 14.5.18.2.2. RSM Mixture Turbulence Model
- 14.5.18.3. Turbulence Interaction Models
- 14.5.18.3.1. Simonin et al.
- 14.5.18.3.1.1. Formulation in Dispersed Turbulence Models
- 14.5.18.3.1.1.1. Continuous Phase
- 14.5.18.3.1.1.2. Dispersed Phases
- 14.5.18.3.1.2. Formulation in Per Phase Turbulence Models
- 14.5.18.3.2. Troshko-Hassan
- 14.5.18.3.2.1. Troshko-Hassan Formulation in Mixture Turbulence Models
- 14.5.18.3.2.2. Troshko-Hassan Formulation in Dispersed Turbulence Models
- 14.5.18.3.2.2.1. Continuous Phase
- 14.5.18.3.2.2.2. Dispersed Phases
- 14.5.18.3.2.3. Troshko-Hassan Formulation in Per-Phase Turbulence Models
- 14.5.18.3.2.3.1. Continuous Phase
- 14.5.18.3.2.3.2. Dispersed Phases
- 14.5.18.3.3. Sato
- 14.5.18.3.4. None
- 14.5.19. Solution Method in Ansys Fluent
- 14.5.19.1. The Pressure-Correction Equation
- 14.5.19.2. Volume Fractions
- 14.5.20. Algebraic Interfacial Area Density (AIAD) Model
- 14.5.20.1. Modeling Interfacial Area
- 14.5.20.2. Modeling Free-Surface Drag
- 14.5.20.3. Modeling Sub-grid Wave Turbulence Contribution (SWT)
- 14.5.20.4. Modeling Entrainment-Absorption
- 14.5.21. Generalized Two Phase (GENTOP) Flow Model
- 14.5.21.1. Interface Detection of the GENTOP Phase
- 14.5.21.2. Clustering Force for the GENTOP Phase
- 14.5.21.3. Surface Tension for the GENTOP-Primary Phase Pair
- 14.5.21.4. Interface Momentum Transfer
- 14.5.21.5. Complete Coalescence Method
- 14.5.22. The Filtered Two-Fluid Model
- 14.5.23. Dense Discrete Phase Model
- 14.5.23.1. Limitations
- 14.5.23.2. Granular Temperature
- 14.5.24. Multi-Fluid VOF Model
- 14.5.25. Wall Boiling Models
- 14.5.25.1. Overview of Wall Boiling Models
- 14.5.25.2. RPI Model
- 14.5.25.3. Non-equilibrium Subcooled Boiling
- 14.5.25.4. Critical Heat Flux
- 14.5.25.4.1. Wall Heat Flux Partition
- 14.5.25.4.2. Coupling Between the RPI Boiling Model and the Homogeneous or Inhomogeneous
Discrete PBM
- 14.5.25.4.3. Flow Regime Transition
- 14.5.25.5. Interfacial Momentum Transfer
- 14.5.25.5.1. Interfacial Area
- 14.5.25.5.2. Bubble and Droplet Diameters
- 14.5.25.5.2.1. Bubble Diameter
- 14.5.25.5.2.2. Droplet Diameter
- 14.5.25.5.3. Interfacial Drag Force
- 14.5.25.5.4. Interfacial Lift Force
- 14.5.25.5.5. Turbulent Dispersion Force
- 14.5.25.5.6. Wall Lubrication Force
- 14.5.25.5.7. Virtual Mass Force
- 14.5.25.6. Mass Transfer
- 14.5.25.6.1. Mass Transfer From the Wall to Vapor
- 14.5.25.6.2. Interfacial Mass Transfer
- 14.5.25.7. Turbulence Interactions
- 14.6. Wet Steam Model Theory
- 14.6.1. Overview of the Wet Steam Model
- 14.6.2. Limitations of the Wet Steam Model
- 14.6.3. Wet Steam Flow Equations
- 14.6.4. Phase Change Model
- 14.6.5. Built-in Thermodynamic Wet Steam Properties
- 14.6.5.1. Equation of State
- 14.6.5.1.1. Virial Equation Developed by Vukalovich
- 14.6.5.1.2. Virial Equation Developed by Young
- 14.6.5.2. Saturated Vapor Line
- 14.6.5.3. Saturated Liquid Line
- 14.6.5.4. Mixture Properties
- 14.6.6. Real Gas Property (RGP) Table Files for the Wet Steam Model
- 14.6.7. Computing Stagnation Conditions for the Wet Steam Model
- 14.7. Modeling Mass Transfer in Multiphase Flows
- 14.7.1. Source Terms due to Mass Transfer
- 14.7.1.1. Mass Equation
- 14.7.1.2. Momentum Equation
- 14.7.1.3. Energy Equation
- 14.7.1.4. Species Equation
- 14.7.1.5. Other Scalar Equations
- 14.7.2. Unidirectional Constant Rate Mass Transfer
- 14.7.3. UDF-Prescribed Mass Transfer
- 14.7.4. Cavitation Models
- 14.7.4.1. Limitations of the Cavitation Models
- 14.7.4.2. Vapor Transport Equation
- 14.7.4.3. Bubble Dynamics Consideration
- 14.7.4.4. Schnerr and Sauer Model
- 14.7.4.5. Zwart-Gerber-Belamri Model
- 14.7.4.6. Expert Cavitation Model
- 14.7.4.6.1. Limitations of the Singhal et al. Model
- 14.7.4.6.2. Singhal et al. Model Theory
- 14.7.4.7. Turbulence Factor
- 14.7.4.8. Additional Guidelines for the Cavitation Models
- 14.7.4.9. Extended Cavitation Model Capabilities
- 14.7.4.9.1. N-phase Cavitation Models
- 14.7.4.9.2. Multiphase Species Transport Cavitation Model
- 14.7.5. Evaporation-Condensation Model
- 14.7.5.1. Lee Model
- 14.7.5.2. Thermal Phase Change Model
- 14.7.6. Semi-Mechanistic Boiling Model
- 14.7.7. Interphase Species Mass Transfer
- 14.7.7.1. Modeling Approach
- 14.7.7.2. Equilibrium Models
- 14.7.7.2.1. Raoult’s Law
- 14.7.7.2.2. Henry’s Law
- 14.7.7.2.3. Equilibrium Ratio
- 14.7.7.3. Mass Transfer Coefficient Models
- 14.7.7.3.1. Constant
- 14.7.7.3.2. Sherwood Number
- 14.7.7.3.3. Ranz-Marshall Model
- 14.7.7.3.4. Hughmark Model
- 14.7.7.3.5. Higbie Model
- 14.7.7.3.6. User-Defined
- 14.8. Modeling Species Transport in Multiphase Flows
- 14.8.1. Limitations
- 14.8.2. Mass and Momentum Transfer with Multiphase Species Transport
- 14.8.2.1. Source Terms Due to Heterogeneous Reactions
- 14.8.2.1.1. Mass Transfer
- 14.8.2.1.2. Momentum Transfer
- 14.8.2.1.3. Species Transfer
- 14.8.2.1.4. Heat Transfer
- 14.8.3. The Stiff Chemistry Solver
- 14.8.4. Heterogeneous Phase Interaction
- 14.9. Population Balance Model
- 14.9.1. Introduction
- 14.9.1.1. The Discrete Method
- 14.9.1.2. The Inhomogeneous Discrete Method
- 14.9.1.3. The Standard Method of Moments
- 14.9.1.4. The Quadrature Method of Moments
- 14.9.2. Population Balance Model Theory
- 14.9.2.1. The Particle State Vector
- 14.9.2.2. The Population Balance Equation (PBE)
- 14.9.2.2.1. Particle Growth
- 14.9.2.2.2. Particle Birth and Death Due to Breakage and Aggregation
- 14.9.2.2.2.1. Breakage
- 14.9.2.2.2.2. Luo and Lehr Breakage Kernels
- 14.9.2.2.2.3. Ghadiri Breakage Kernels
- 14.9.2.2.2.4. Laakkonen Breakage Kernels
- 14.9.2.2.2.5. Liao Breakage Kernel
- 14.9.2.2.2.6. Parabolic PDF
- 14.9.2.2.2.7. Generalized PDF
- 14.9.2.2.2.8. Martinez-Bazan Breakage Kernel
- 14.9.2.2.2.9. Inverted U-PDF
- 14.9.2.2.2.10. Aggregation
- 14.9.2.2.2.11. Luo Aggregation Kernel
- 14.9.2.2.2.12. Free Molecular Aggregation Kernel
- 14.9.2.2.2.13. Turbulent Aggregation Kernel
- 14.9.2.2.2.14. Prince and Blanch Aggregation Kernel
- 14.9.2.2.2.15. Liao Aggregation Kernel
- 14.9.2.2.3. Particle Birth by Nucleation
- 14.9.2.3. Solution Methods
- 14.9.2.3.1. The Discrete Method and the Inhomogeneous Discrete Method
- 14.9.2.3.1.1. Numerical Method
- 14.9.2.3.1.2. Breakage Formulations for the Discrete Method
- 14.9.2.3.2. The Standard Method of Moments (SMM)
- 14.9.2.3.2.1. Numerical Method
- 14.9.2.3.3. The Quadrature Method of Moments (QMOM)
- 14.9.2.3.3.1. Numerical Method
- 14.9.2.3.4. The Direct Quadrature Method of Moments (DQMOM)
- 14.9.2.3.4.1. Numerical Method
- 14.9.2.4. Population Balance Statistics
- 14.9.2.4.1. Reconstructing the Particle Size Distribution from Moments
- 14.9.2.4.2. The Log-Normal Distribution
- 15. Solidification and Melting
- 15.1. Overview
- 15.2. Limitations
- 15.3. Introduction
- 15.4. Energy Equation
- 15.5. Momentum Equations
- 15.6. Turbulence Equations
- 15.7. Species Equations
- 15.8. Back Diffusion
- 15.9. Pull Velocity for Continuous Casting
- 15.10. Contact Resistance at Walls
- 15.11. Thermal and Solutal Buoyancy
- 16. The Structural Model for Intrinsic Fluid-Structure Interaction (FSI)
- 16.1. Limitations
- 16.2. The FSI Model
- 16.3. Intrinsic FSI
- 16.4. Linear Elasticity
- 16.4.1. Equations
- 16.4.1.1. Linear Isotropic and Isothermal Elasticity
- 16.4.1.2. Evaluation of the von Mises Stress
- 16.4.2. Finite Element Representation
- 16.4.2.1. Construction of the Matrix of the System
- 16.4.2.2. Dynamic Structural Systems
- 16.4.2.2.1. The Newmark Method
- 16.4.2.2.2. Backward Euler Method
- 16.4.2.2.3. Rayleigh Damping
- 16.5. Nonlinear Elasticity
- 16.5.1. Finite Element Geometric Nonlinearity
- 16.5.2. Finite Element Nonlinear Discretization
- 16.5.3. Constitutive Equations
- 16.5.4. The Transient Scheme for the Nonlinear System
- 16.6. Thermoelasticity Model
- 16.6.1. Constitutive Equations
- 16.6.2. Finite Element Discretization
- 16.7. Coupling of the Structural Model with the Battery Swelling Model
- 17. Eulerian Wall Films
- 17.1. Introduction
- 17.2. Mass, Momentum, and Energy Conservation Equations for Wall
Film
- 17.2.1. Film Sub-Models
- 17.2.1.1. DPM Collection
- 17.2.1.2. Particle-Wall Interaction
- 17.2.1.3. Film Separation
- 17.2.1.3.1. Separation Criteria
- 17.2.1.3.1.1. Foucart Separation
- 17.2.1.3.1.2. O’Rourke Separation
- 17.2.1.3.1.3. Friedrich Separation
- 17.2.1.4. Film Stripping
- 17.2.1.5. Secondary Phase Accretion
- 17.2.1.6. Coupling of Wall Film with Mixture Species Transport
- 17.2.1.7. Coupling of Eulerian Wall Film with the VOF Multiphase Model
- 17.2.2. Partial Wetting Effect
- 17.2.3. Boundary Conditions
- 17.2.4. Obtaining Film Velocity Without Solving the Momentum Equations
- 17.2.4.1. Shear-Driven Film Velocity
- 17.2.4.2. Gravity-Driven Film Velocity
- 17.3. Passive Scalar Equation for Wall Film
- 17.4. Numerical Schemes and Solution Algorithm
- 17.4.1. Temporal Differencing Schemes
- 17.4.1.1. First-Order Explicit Method
- 17.4.1.2. First-Order Implicit Method
- 17.4.1.3. Second-Order Implicit Method
- 17.4.2. Spatial Differencing Schemes
- 17.4.3. Solution Algorithm
- 17.4.3.1. Steady Flow
- 17.4.3.2. Transient Flow
- 17.4.4. Coupled Solution Approach
- 18. Electric Potential and Electrochemistry Models
- 18.1. Electric Potential
- 18.1.1. Overview
- 18.1.2. Electric Potential Equation
- 18.1.3. Energy Equation Source Term
- 18.2. Lithium-ion Battery Model
- 18.2.1. Overview
- 18.2.2. Lithium-ion Battery Model Theory
- 18.3. Electrolysis and H2 Pump Model
- 18.3.1. Overview
- 18.3.2. Resolved Modeling Approach
- 18.3.2.1. Electrochemistry Modeling
- 18.3.2.2. Multiphase Modeling
- 18.3.2.3. Heat Source
- 18.3.3. Unresolved 0D Modeling Approach
- 19. Battery Model
- 19.1. Battery Solution Methods
- 19.1.1. CHT Coupling Method
- 19.1.2. FMU-CHT coupling method
- 19.1.3. Circuit Network Solution Method
- 19.1.4. MSMD Solution Method
- 19.2. Electro-Chemical Models
- 19.2.1. NTGK/DCIR Model
- 19.2.2. ECM Model
- 19.2.3. Newman’s P2D Model
- 19.3. MSMD Solution Method: Coupling Between CFD and Submodels
- 19.4. Simulating Battery Pack Using the MSMD Solution Method
- 19.5. Reduced Order Solution Method (ROM)
- 19.6. External and Internal Electric Short-Circuit Treatment
- 19.7. Thermal Abuse Model
- 19.8. Battery Venting Model
- 19.9. Battery Life Models
- 19.9.1. Empirical Battery Life Model
- 19.9.2. Battery Capacity Fade Model
- 19.9.3. Physics-Based Battery Life Model
- 19.10. Battery Swelling Model
- 19.10.1. Empirical-Based Swelling Model
- 19.10.2. Physics-Based Swelling Model
- 19.10.3. Coupling between the Swelling and FSI Structural Models
- 19.10.4. Modeling Swelling in the E-Chem Standalone Mode
- 20. Modeling Fuel Cells
- 20.1. PEMFC Model Theory
- 20.1.1. Introduction
- 20.1.2. Electrochemistry Modeling
- 20.1.2.1. The Cathode Particle Model
- 20.1.3. Current and Mass Conservation
- 20.1.4. Water Transport and Mass Transfer in PEMFC
- 20.1.4.1. The Dissolved Phase Model
- 20.1.4.2. The Liquid Phase Model
- 20.1.4.2.1. Liquid Water Transport Equation in the Porous Electrode and the Membrane
- 20.1.4.2.2. Liquid Water Transport Equation in Gas Channels
- 20.1.4.3. The Ice Phase Model
- 20.1.5. Heat Source
- 20.1.6. Properties
- 20.1.7. Transient Simulations
- 20.1.8. Leakage Current (Cross-Over Current)
- 20.1.9. Zones Where User-Defined Scalars Have Physically Meaningful Values
- 20.2. Fuel Cell and Electrolysis Model Theory
- 20.2.1. Introduction
- 20.2.1.1. Introduction to PEMFC
- 20.2.1.1.1. Low-Temperature PEMFC
- 20.2.1.1.2. High-Temperature PEMFC
- 20.2.1.2. Introduction to SOFC
- 20.2.1.3. Introduction to SOEC
- 20.2.2. Electrochemistry Modeling
- 20.2.3. Current and Mass Conservation
- 20.2.4. Heat Source
- 20.2.5. Liquid Water Formation, Transport, and its Effects (Low-Temperature PEMFC Only)
- 20.2.6. Properties
- 20.2.7. Transient Simulations
- 20.2.8. Leakage Current (Cross-Over Current)
- 20.3. SOFC Fuel Cell With Unresolved Electrolyte Model Theory
- 20.3.1. Introduction
- 20.3.2. The SOFC With Unresolved Electrolyte Modeling Strategy
- 20.3.3. Modeling Fluid Flow, Heat Transfer, and Mass Transfer
- 20.3.4. Modeling Current Transport and the Potential Field
- 20.3.4.1. Cell Potential
- 20.3.4.2. Activation Overpotential
- 20.3.4.3. Treatment of the Energy Equation at the Electrolyte Interface
- 20.3.4.4. Treatment of the Energy Equation in the Conducting Regions
- 20.3.5. Modeling Reactions
- 20.3.5.1. Modeling Electrochemical Reactions
- 20.3.5.2. Modeling CO Electrochemistry
- 20.3.5.3. Modeling Electrolysis
- 21. Modeling Magnetohydrodynamics
- 21.1. Introduction
- 21.2. Magnetic Induction Method
- 21.2.1. Case 1: Externally Imposed Magnetic Field Generated in Non-conducting Media
- 21.2.2. Case 2: Externally Imposed Magnetic Field Generated in Conducting Media
- 21.3. Electric Potential Method
- 22. Modeling Continuous Fibers
- 22.1. Introduction
- 22.2. Governing Equations of Fiber Flow
- 22.3. Discretization of the Fiber Equations
- 22.3.1. Under-Relaxation
- 22.4. Numerical Solution Algorithm of Fiber Equations
- 22.5. Residuals of Fiber Equations
- 22.6. Coupling Between Fibers and the Surrounding Fluid
- 22.6.1. Momentum Exchange
- 22.6.2. Mass Exchange
- 22.6.3. Heat Exchange
- 22.6.4. Radiation Exchange
- 22.6.5. Under-Relaxation of the Fiber Exchange Terms
- 22.7. Fiber Grid Generation
- 22.8. Correlations for Momentum, Heat and Mass Transfer
- 22.8.1. Drag Coefficient
- 22.8.2. Heat Transfer Coefficient
- 22.8.3. Mass Transfer Coefficient
- 22.9. Fiber Properties
- 22.9.1. Fiber Viscosity
- 22.9.1.1. Melt Spinning
- 22.9.1.2. Dry Spinning
- 22.9.2. Vapor-Liquid Equilibrium
- 22.9.3. Latent Heat of Vaporization
- 22.9.4. Emissivity
- 22.10. Solution Strategies
- 23. Solver Theory
- 23.1. Overview of Flow Solvers
- 23.1.1. Pressure-Based Solver
- 23.1.1.1. The Pressure-Based Segregated Algorithm
- 23.1.1.2. The Pressure-Based Coupled Algorithm
- 23.1.2. Density-Based Solver
- 23.2. General Scalar Transport Equation: Discretization and Solution
- 23.2.1. Solving the Linear System
- 23.3. Discretization
- 23.3.1. Spatial Discretization
- 23.3.1.1. First-Order Upwind Scheme
- 23.3.1.2. Second-Order Upwind Scheme
- 23.3.1.3. First- to Higher-Order Blending
- 23.3.1.4. Central-Differencing Scheme
- 23.3.1.5. Bounded Central Differencing Scheme
- 23.3.1.6. QUICK Scheme
- 23.3.1.7. Third-Order MUSCL Scheme
- 23.3.1.8. Modified HRIC Scheme
- 23.3.1.9. High Order Term Relaxation
- 23.3.2. Temporal Discretization
- 23.3.2.1. Implicit Time Integration
- 23.3.2.2. Bounded Second-Order Implicit Time Integration
- 23.3.2.2.1. Limitations
- 23.3.2.3. Second-Order Time Integration Using a Variable Time Step Size
- 23.3.2.4. Explicit Time Integration
- 23.3.3. Evaluation of Gradients and Derivatives
- 23.3.3.1. Green-Gauss Theorem
- 23.3.3.2. Green-Gauss Cell-Based Gradient Evaluation
- 23.3.3.3. Green-Gauss Node-Based Gradient Evaluation
- 23.3.3.4. Least Squares Cell-Based Gradient Evaluation
- 23.3.4. Gradient Limiters
- 23.3.4.1. Standard Limiter
- 23.3.4.2. Multidimensional Limiter
- 23.3.4.3. Differentiable Limiter
- 23.4. Pressure-Based Solver
- 23.4.1. Discretization of the Momentum Equation
- 23.4.1.1. Pressure Interpolation Schemes
- 23.4.2. Discretization of the Continuity Equation
- 23.4.2.1. Density Interpolation Schemes
- 23.4.3. Pressure-Velocity Coupling
- 23.4.3.1. Segregated Algorithms
- 23.4.3.1.1. SIMPLE
- 23.4.3.1.2. SIMPLEC
- 23.4.3.1.2.1. Skewness Correction
- 23.4.3.1.3. PISO
- 23.4.3.1.3.1. Neighbor Correction
- 23.4.3.1.3.2. Skewness Correction
- 23.4.3.1.3.3. Skewness - Neighbor Coupling
- 23.4.3.1.4. Fractional-Step Method (FSM)
- 23.4.3.2. Coupled Algorithm
- 23.4.3.2.1. Limitation
- 23.4.4. Steady-State Iterative Algorithm
- 23.4.4.1. Under-Relaxation of Variables
- 23.4.4.2. Under-Relaxation of Equations
- 23.4.5. Time-Advancement Algorithm
- 23.4.5.1. Iterative Time-Advancement Scheme
- 23.4.5.1.1. The Frozen Flux Formulation
- 23.4.5.2. Non-Iterative Time-Advancement Scheme
- 23.4.6. Correction Form Discretization of the Momentum Equations
- 23.5. Density-Based Solver
- 23.5.1. Governing Equations in Vector Form
- 23.5.2. Preconditioning
- 23.5.3. Convective Fluxes
- 23.5.3.1. Roe Flux-Difference Splitting Scheme
- 23.5.3.2. AUSM+ Scheme
- 23.5.3.3. Low Diffusion Roe Flux Difference Splitting Scheme
- 23.5.4. Steady-State Flow Solution Methods
- 23.5.4.1. Explicit Formulation
- 23.5.4.1.1. Implicit Residual Smoothing
- 23.5.4.2. Implicit Formulation
- 23.5.4.2.1. Convergence Acceleration for Stretched Meshes
- 23.5.5. Unsteady Flows Solution Methods
- 23.5.5.1. Explicit Time Stepping
- 23.5.5.2. Implicit Time Stepping (Dual-Time Formulation)
- 23.6. Pseudo Time Method Under-Relaxation
- 23.6.1. Local Time Step Method
- 23.6.2. Global Time Step Method
- 23.7. Multigrid Method
- 23.7.1. Approach
- 23.7.1.1. The Need for Multigrid
- 23.7.1.2. The Basic Concept in Multigrid
- 23.7.1.3. Restriction and Prolongation
- 23.7.1.4. Unstructured Multigrid
- 23.7.2. Multigrid Cycles
- 23.7.2.1. The V and W Cycles
- 23.7.3. Algebraic Multigrid (AMG)
- 23.7.3.1. AMG Restriction and Prolongation Operators
- 23.7.3.2. AMG Coarse Level Operator
- 23.7.3.3. The F Cycle
- 23.7.3.4. The Flexible Cycle
- 23.7.3.4.1. The Residual Reduction Rate Criteria
- 23.7.3.4.2. The Termination Criteria
- 23.7.3.5. The Coupled and Scalar AMG Solvers
- 23.7.3.5.1. Gauss-Seidel
- 23.7.3.5.2. Incomplete Lower Upper (ILU)
- 23.7.4. Full-Approximation Storage (FAS) Multigrid
- 23.7.4.1. FAS Restriction and Prolongation Operators
- 23.7.4.2. FAS Coarse Level Operator
- 23.8. Hybrid Initialization
- 23.9. Full Multigrid (FMG) Initialization
- 23.9.1. Overview of FMG Initialization
- 23.9.2. Limitations of FMG Initialization
- 24. Adapting the Mesh
- 24.1. Adaption Process
- 24.1.1. Hanging Node Adaption
- 24.1.2. Polyhedral Unstructured Mesh Adaption
- 24.2. Geometry-Based Adaption
- 24.2.1. Geometry-Based Adaption Approach
- 24.2.1.1. Node Projection
- 24.2.1.2. Example of Geometry-Based Adaption
- 25. Reporting Alphanumeric Data
- 25.1. Fluxes Through Boundaries
- 25.2. Forces on Boundaries
- 25.2.1. Computing Forces, Moments, and the Center of Pressure
- 25.3. Surface Integration
- 25.3.1. Computing Surface Integrals
- 25.3.1.1. Area
- 25.3.1.2. Integral
- 25.3.1.3. Area-Weighted Average
- 25.3.1.4. Custom Vector Based Flux
- 25.3.1.5. Custom Vector Flux
- 25.3.1.6. Custom Vector Weighted Average
- 25.3.1.7. Flow Rate
- 25.3.1.8. Mass Flow Rate
- 25.3.1.9. Mass-Weighted Average
- 25.3.1.10. Sum of Field Variable
- 25.3.1.11. Facet Average
- 25.3.1.12. Facet Minimum
- 25.3.1.13. Facet Maximum
- 25.3.1.14. Vertex Average
- 25.3.1.15. Vertex Minimum
- 25.3.1.16. Vertex Maximum
- 25.3.1.17. Standard-Deviation
- 25.3.1.18. Uniformity Index
- 25.3.1.19. Volume Flow Rate
- 25.4. Volume Integration
- 25.4.1. Computing Volume Integrals
- 25.4.1.1. Volume
- 25.4.1.2. Sum
- 25.4.1.3. Sum*2Pi
- 25.4.1.4. Volume Integral
- 25.4.1.5. Volume-Weighted Average
- 25.4.1.6. Mass-Weighted Integral
- 25.4.1.7. Mass
- 25.4.1.8. Mass-Weighted Average
- 25.5. Efficiency Calculation
- 25.5.1. Isentropic Efficiency
- 25.5.2. Polytropic Efficiency
- A. Nomenclature
- Bibliography