The Spalart-Allmaras model has been extended within Ansys Fluent with a -insensitive wall treatment, which automatically blends all solution variables
from their viscous sublayer formulation
(4–30) |
to the corresponding logarithmic layer values depending on .
(4–31) |
where is the velocity parallel to the wall,
is the friction velocity,
is the distance from the wall,
is the von Kármán constant (0.4187), and
.
The blending is calibrated to also cover intermediate values in the buffer layer
.
On the basis of the standard Spalart-Allmaras model equation, the Boeing Extension [33] has been adopted to account for wall roughness. In this model, the
non-zero wall value of the transported variable (directly solved from the S-A equation), , is estimated to mimic roughness effects by replacing the wall condition
with:
(4–32) |
where is the wall normal,
is the minimum cell-to-face distance between the wall and the first cell near
the wall, and
is a length introduced to impose an offset, depending on the local roughness
height,
:
(4–33) |
Then the wall turbulent kinematic viscosity, , is obtained as follows:
(4–34) |
where is the standard model function in the Spalart-Allmaras model. As the roughness
effect is strong, the turbulent viscosity should be large compared to the laminar viscosity at
the wall, then
→ 1, and therefore:
(4–35) |
Also in Equation 4–34, is the Von Karman constant, and
is the wall friction velocity:
(4–36) |
Furthermore, to achieve good predictions for smaller roughness, Aupoix and Spalart [33] proposed that the function should be altered by modifying the quantity
in the Spalart-Allmaras model equation:
(4–37) |