Expand/Collapse all
What You Need to Know
1. Brake-Squeal Analysis
1.1. Introduction
1.2. Problem Description and Geometry
1.3. Modeling and Meshing
1.3.1. Understanding the Advantages of Contact Element Technology
1.3.2. Modeling Contact Pairs
1.3.3. Generating Internal Sliding Motion
1.3.4. Meshing the Brake Disc-Pad Model
1.4. Material Properties
1.5. Boundary Conditions and Loading
1.6. Analysis and Solution Controls
1.6.1. Linear Non-prestressed Modal Analysis
1.6.2. Full Nonlinear Perturbed Modal Analysis
1.7. Results and Discussion
1.7.1. Determining the Modal Behavior of Individual Components
1.8. Recommendations
1.9. References
1.10. Workbench Input Files and Project Files
2. (reserved)
3. (reserved)
4. Ring-Gear Forging Simulation with Rezoning
4.1. Introduction
4.2. Problem Description
4.3. Geometry
4.4. Modeling and Meshing
4.5. Material Properties
4.6. Boundary Conditions and Loading
4.7. Nonlinear Adaptive Region
4.7.1. Analysis Settings for Nonlinear Adaptivity Remeshing Controls
4.8. Results and Discussion
4.9. Recommendations
4.10. References
4.11. Workbench Input Files and Project Files
5. Delamination of a Stiffened Composite Panel Under a Compressive Load
5.1. Introduction
5.2. Problem Description
5.3. Geometry and Modeling
5.4. Material Properties
5.5. Boundary Conditions and Loading
5.6. Analysis and Solution Controls
5.7. Results and Discussion
5.8. Recommendations
5.9. Workbench Input Files and Project Files
6. Thermal-Stress Analysis of a Cooled Turbine Blade
6.1. Introduction
6.2. Problem Description
6.3. Modeling
6.4. Material Properties
6.5. Boundary Conditions and Loading
6.6. Analysis and Solution Controls
6.7. Results and Discussion
6.8. Recommendations
6.9. References
6.10. Workbench Input Files and Project Files
7. (reserved)
8. Nuclear Piping System Under Seismic Loading
8.1. Introduction
8.2. Problem Description
8.3. Modeling
8.3.1. Global Nuclear Piping System Model
8.3.2. Local Elbow Model Meshed with ELBOW290 Elements
8.3.3. Local Elbow Model Meshed with SHELL281 Elements
8.4. Material Properties
8.5. Boundary Conditions and Loading
8.5.1. Global Nuclear Piping System Model
8.5.2. Local Elbow Model Meshed with ELBOW290 Elements
8.5.3. Local Elbow Model Meshed with SHELL281 Elements
8.6. Analysis and Solution Controls
8.6.1. Modal Analysis of the Global Piping System Model
8.6.2. Nonlinear Static Analyses of the Local Elbow Models
8.7. Results and Discussion
8.7.1. Global Piping System: Modal Analysis Results
8.7.2. Local Elbow Models: Nonlinear Static Analysis Results
8.8. Recommendations
8.9. References
8.10. Workbench Input Files and Project Files
9. (reserved)
10. (reserved)
11. (reserved)
12. (reserved)
13. (reserved)
14. (reserved)
15. Calibrating and Validating a Hyperelastic Constitutive Model
15.1. Introduction
15.2. Problem Description
15.3. Material Properties
15.3.1. Calibration Experiments
15.3.2. Validation Experiment
15.3.3. Material Properties
15.4. Modeling and Meshing
15.5. Boundary Conditions and Loading
15.6. Analysis and Solution Controls
15.7. Results and Discussion
15.8. Recommendations
15.9. References
15.10. Workbench Input Files and Project Files
16. Evaluation of Mixed-Mode Stress Intensity Factors and T-stress for 3-D Surface Flaws
16.1. Introduction
16.2. Problem Description
16.2.1. Rectangular Block with a Semicircular Surface Flaw
16.2.2. X-Joint Pipe with Warped Surface Flaw
16.3. Material Properties
16.4. Modeling
16.4.1. System Setup on Project Schematic in Workbench
16.4.2. Fully Define Systems in the Mechanical Application
16.4.3. Crack Modeling
16.5. Meshing
16.6. Loads and Boundary Conditions
16.7. Analysis Settings
16.8. Results
16.8.1. Rectangular Block with a Semicircular Surface Flaw
16.8.2. X-Joint Pipe with Warped Surface Flaw
16.9. Recommendations
16.10. References
16.11. Workbench Input Files and Project Files
17. Impact of a Metal Bar on a Rigid Wall
17.1. Introduction
17.2. Problem Description
17.3. Modeling
17.3.1. Impact Scenarios
17.4. Material Properties
17.5. Boundary Conditions and Loading
17.6. Analysis and Solution Controls
17.6.1. Solution Options for Capturing Simulation Results
17.7. Results and Discussion
17.7.1. Rigid Impact Results
17.7.2. Elastic Impact Results
17.7.3. Elastoplastic Impact Results
17.8. Recommendations
17.9. References
17.10. Workbench Input Files and Project Files
18. Viscoelastic Analysis of an All-Ceramic Fixed Partial Denture (FPD)
18.1. Introduction
18.2. Problem Description
18.3. Modeling and Meshing
18.3.1. Denture Modeling
18.3.2. Contact Modeling
18.4. Material Properties
18.4.1. Transient Thermal Analysis Material Properties
18.4.2. Static Structural Analysis Material Properties
18.5. Boundary Conditions and Loading
18.5.1. Thermal Analysis BC and Loading
18.5.2. Structural Analysis BC and Loading
18.6. Analysis and Solution Controls
18.7. Results and Discussion
18.8. Recommendations
18.9. References
18.10. Workbench Input Files and Project Files
19. (reserved)
20. (reserved)
21. (reserved)
22. (reserved)
23. (reserved)
24. (reserved)
25. (reserved)
26. Nonlinear Analysis of a Rubber Boot Seal
26.1. Introduction
26.2. Problem Description
26.3. Modeling
26.3.1. Model the Rubber Boot Seal
26.3.2. Model the Contact Pairs
26.4. Material Properties
26.5. Boundary Conditions and Loading
26.6. Analysis and Solution Controls
26.7. Results and Discussion
26.8. Recommendations
26.9. Workbench Input Files and Project Files
27. Hot-Rolling Structural Steel Analysis with Nonlinear Mesh Adaptivity
27.1. Introduction
27.1.1. Description of the Hot-Rolling Process
27.1.2. Hot-Rolling Process Simulation
27.2. Problem Description
27.3. Modeling
27.3.1. Model the Symmetry Regions
27.3.2. Model the Block
27.3.3. Model the Rollers
27.3.4. Model the Contact Pairs
27.4. Material Properties
27.5. Boundary Conditions and Loading
27.5.1. First Remote Displacement
27.5.2. Second Remote Displacement
27.5.3. Displacement
27.5.4. Nonlinear Adaptive Region
27.6. Analysis and Solution Controls
27.7. Results and Discussion
27.8. Recommendations
27.9. Workbench Input Files and Project Files
28. Friction Stir Welding (FSW) Simulation
28.1. Introduction
28.2. Problem Description
28.3. Modeling
28.3.1. Workpiece and Tool Modeling
28.3.2. Contact Modeling
28.4. Material Properties
28.5. Boundary Conditions and Loading
28.5.1. Thermal Boundary Conditions
28.5.2. Mechanical Boundary Conditions
28.5.3. Loading
28.6. Analysis and Solution Controls
28.7. Results and Discussion
28.7.1. Deformation and Stresses
28.7.2. Temperature Results
28.7.3. Welding Results
28.8. Recommendations
28.9. References
28.10. Workbench Input Files and Project Files
29. Rocket Nozzle Extension Simulation: Operation
29.1. Introduction
29.2. Problem Description
29.3. Modeling Overview
29.3.1. Use of Ansys Composite PrepPost to Model Composite Layers
29.3.2. Geometry and Mesh
29.3.3. Contact Modeling Between Reinforcing Ring and Nozzle
29.3.4. Cyclic Symmetry Modeling
29.4. Setting up the ACP (Pre) System
29.4.1. Insert ACP (Pre) and define a custom material in Workbench
29.4.2. Specify Modeling Details in Mechanical
29.4.3. Specify Composite Layers in ACP
29.4.4. Transfer Modeling and Composite Specifications to Downstream Thermal and Structural Analyses in Workbench
29.4.5. View the Transferred Composite Layers in Mechanical
29.5. Material Properties
29.6. Boundary Conditions and Loading
29.6.1. Boundary Conditions for the Thermal Analysis
29.6.2. Boundary Conditions and Loads for the Structural Analysis
29.7. Analysis and Solution Controls
29.8. Results and Discussion
29.9. Recommendations
29.10. Workbench Input Files and Project Files
30. (reserved)
31. Fitting Parameters for a Chaboche Kinematic Hardening Model
31.1. Introduction
31.2. Problem Description
31.3. Geometry
31.4. Modeling
31.4.1. Chaboche Nonlinear Kinematic Hardening Model
31.4.2. Determining Material Parameters
31.5. Modeling and Meshing
31.6. Material Properties: Chaboche Kinematic Hardening Material Model
31.6.1. Input Uniaxial Plastic Strain Test Data into Workbench
31.6.2. Chaboche Material Curve-Fitting Process
31.6.3. Use the Calculated Material Constants in the Analysis
31.7. Boundary Conditions and Loading
31.8. Analysis Settings
31.9. Results
31.10. References
31.11. Workbench Input Files and Project Files
32. (reserved)
33. Analysis of a Piezoelectric Flextensional Transducer in Water
33.1. Introduction
33.2. Problem Description
33.3. Modeling and Meshing
33.3.1. 2D Transducer Model
33.3.2. 3D Transducer Model
33.4. Material Properties
33.5. Boundary Conditions and Loading
33.5.1. Structural Boundary Conditions
33.5.2. Acoustic Boundary Conditions and Flags
33.5.3. Piezoelectric Boundary Conditions
33.6. Analysis and Solution Controls
33.7. Results and Discussion
33.8. Recommendations
33.9. References
33.10. Input Files
34. (reserved)
35. Elastoplastic Creep Analysis of Lead-Free Solder Bumps
35.1. Introduction
35.2. Problem Description
35.3. Geometry
35.4. Meshing
35.5. Material Properties
35.6. Boundary Conditions and Loading
35.6.1. Thermal Analysis
35.6.2. Structural Analysis
35.7. Results
35.8. Recommendations
35.9. References
35.10. Workbench Input Files and Project Files
36. (reserved)
37. Bolt Thread
37.1. Introduction
37.2. Problem Description
37.3. Modeling
37.3.1. Bolt Thread Correction method
37.3.2. MPC Method
37.3.3. True Thread Simulation:
37.4. Material Properties
37.5. Results
37.5.1. Comparison of Computation Time
37.6. Recommendations
37.7. Workbench Input Files and Project Files
38. (reserved)
39. Wire Bonding Ultrasonic Transducer
39.1. Introduction
39.2. Problem Description
39.3. Material Properties
39.4. Modeling
39.5. Boundary Conditions and Loading
39.5.1. Structural Boundary Condition
39.5.2. Piezoelectric Boundary Conditions
39.6. Analysis and Solution Controls
39.6.1. Prestressed Modal Analysis with Linear Perturbation Method
39.6.2. Prestressed Full Harmonic Response Analysis
39.7. Results and Discussion
39.7.1. Results from Prestressed Modal Analysis with Linear Perturbation Method
39.7.2. Results from Prestressed Full Harmonic Response Analysis
39.8. Recommendations
39.9. References
39.10. Input / Workbench Project Files
40. Shape Memory Alloy (SMA) with Thermal Effect
40.1. Introduction
40.2. SMA Thermal Effect Simulations
40.2.1. Simulation of a Spinal Spacer Implant
40.2.2. Simulation of a Spring Actuator
40.3. Recommendations
40.4. References
40.5. Workbench Input Files and Project Files
41. Acoustic Analysis of a Viscothermal Resonator
41.1. Introduction
41.2. Problem Description
41.3. Modeling
41.4. Material Properties
41.5. Boundary Conditions and Loading
41.6. Analysis and Solution Controls
41.7. Results and Discussion
41.8. Recommendations
41.9. References
41.10. Input / Workbench Project Files
42. Wire Crimping Modeled with General Contact
42.1. Introduction
42.2. Problem Description
42.3. Modeling
42.3.1. Model the Grip and Wire
42.3.2. Model the Rigid Punch and Base Support
42.3.3. Model the Contact Using the General Contact Method
42.4. Material Properties
42.5. Boundary Conditions and Loading
42.6. Analysis and Solution Controls
42.7. Results and Discussion
42.8. Recommendations
42.9. Workbench Input Files and Project Files
43. Contact Surface Wear Simulation
43.1. Introduction
43.2. Problem Description
43.3. Material Properties
43.4. Modeling and Meshing
43.4.1. Modeling Wear
43.4.2. Improving Mesh Quality During the Solution
43.5. Load and Boundary Conditions
43.6. Analysis and Solution Controls
43.7. Results
43.8. Recommendations
43.9. Workbench Input Files and Project Files
44. C*-integral Evaluation for 3-D Surface Flaws
44.1. Introduction
44.2. Problem Description
44.2.1. Rectangular Block with a Semicircular Surface Flaw
44.2.2. X-Joint Pipe with Warped Surface Flaw
44.3. Material Properties
44.4. Modeling
44.4.1. System Setup on Project Schematic in Workbench
44.4.2. Fully Define Systems in the Mechanical Application
44.4.3. Crack Modeling
44.5. Meshing
44.6. Loads and Boundary Conditions
44.7. Analysis Settings
44.8. Results
44.8.1. Rectangular Block with a Semicircular Surface Flaw
44.8.2. X-Joint Pipe with Warped Surface Flaw
44.9. Recommendations
44.10. References
44.11. Input Files
45. (reserved)
46. (reserved)
47. Electromigration in a Solder Ball
47.1. Introduction
47.2. Problem Description
47.3. Modeling and Meshing
47.4. Material Properties
47.5. Load and Boundary Conditions
47.6. Analysis and Solution Controls
47.7. Results
47.8. Recommendations
47.9. References
47.10. Workbench Input Files and Project Files
48. Active and Passive Lateral Earth Pressure Analysis
48.1. Introduction
48.2. Problem Description
48.3. Modeling
48.4. Material Properties
48.5. Boundary Conditions and Loading
48.6. Analysis and Solution Controls
48.6.1. Defining the Initial Stress State
48.7. Results and Discussion
48.8. Bibliography
48.9. Workbench Input Files and Project Files
49. Load Limit Analysis of a Reinforced Concrete Slab
49.1. Introduction
49.2. Problem Description and Geometry
49.3. Modeling and Meshing
49.4. Boundary Conditions and Loading
49.5. Material Properties
49.6. Analysis and Solution Controls
49.7. Results and Discussion
49.8. Recommendations
49.9. References
49.10. Workbench Input Files and Project Files
50. (reserved)
51. Multi-Filar Coil Inside a Tube Modeled with Beam-to-Beam Contact
51.1. Introduction
51.2. Problem Description
51.3. Modeling and Meshing
51.3.1. Model the Five-Filar Coil
51.3.2. Model the Tube
51.3.3. Model the Contact Pairs
51.4. Material Properties
51.5. Boundary Conditions and Loading
51.6. Analysis and Solution Controls
51.7. Results and Discussion
51.8. Recommendations
51.9. Workbench Input Files and Project Files
52. (reserved)
53. Acoustic Analysis of a MEMS Microphone
53.1. Introduction
53.2. Problem Description
53.3. Material Properties
53.4. Modeling and Meshing
53.5. Boundary Conditions and Loading
53.6. Analysis Settings and Controls
53.7. Results
53.7.1. Coupled-field Static Analysis Results
53.7.2. Prestressed Coupled-field Harmonic Analysis Results
53.8. Recommendations
53.9. References
53.10. Workbench Input Files and Project Files
54. (reserved)
55. Inverse-Solving Analysis of a Rotor Fan Blade with Disk
55.1. Introduction
55.2. Problem Description
55.3. Modeling
55.4. Material Properties
55.5. Boundary Conditions and Loading
55.6. Analysis and Solution Controls
55.7. Results and Discussion
55.8. Recommendations
55.9. Workbench Input Files and Project Files
56. Threaded Connection Analysis
56.1. Introduction
56.2. Problem Description
56.3. Modeling
56.3.1. Contact Modeling
56.4. Material Properties
56.5. Boundary Conditions and Loading
56.5.1. Boundary Conditions and Loadings for the 2-D Axisymmetric Analysis
56.5.2. Loadings on the 3-D Extruded Model
56.6. Analysis and Solution Controls
56.6.1. Step 1: Perform a 2-D Axisymmetric Analysis with Pressure and End-Cap Loading
56.6.2. Step 2: Extrude the 2-D Model to 3-D
56.6.3. Step 3: Solve the 3-D Model with Bending Load
56.7. Results and Discussion
56.8. Recommendations
56.9. Workbench Input Files and Project Files
57. (reserved)
58. Suction Pile Analysis
58.1. Introduction
58.2. Problem Description
58.3. Modeling
58.4. Material Properties
58.5. Three Sequential Analyses
58.5.1. Analysis I. Nonlinear Static Analysis with Nominal Geometry
58.5.2. Analysis II. Linear Buckling Analysis with Nominal Geometry
58.5.3. Analysis III. Nonlinear Static Analysis with Modified Geometry
58.6. Recommendations
58.7. Bibliography
58.8. Workbench Input Files and Project Files
59. Thermal-Structural Analysis of a Printed Circuit Board
59.1. Introduction
59.2. Problem Description
59.3. Geometry
59.4. Modeling and Meshing
59.5. Material Properties
59.6. Boundary Conditions and Loading
59.6.1. Steady-State Thermal Analysis
59.6.2. Static Structural Analysis
59.7. Analysis and Solution Controls
59.7.1. Steady-State Thermal Analysis Settings
59.7.2. Static Structural Analysis Settings
59.8. Results
59.9. Recommendations
59.10. Workbench Input Files and Project Files
60. (reserved)