The veneer is represented by viscoelastic material behavior while the core is assumed to behave elastically.
The following material property data is available for this problem:
The following material properties are used for the transient thermal analysis.
Temperature (°C) | Conductivity (W/mm °C) | Specific Heat (J/kg °C) | Density (kg/mm3) |
---|---|---|---|
Core | |||
30 | 0.004002012 | 914.540 | 2.514E-6 |
200 | 0.003254307 | 1119.296 | |
500 | 0.002973238 | 1284.875 | |
700 | 0.003255384 | 1347.341 | |
Veneer | |||
30 | 0.010005623 | 742.274 | 2.531E-6 |
200 | 0.006603368 | 947.144 | |
500 | 0.004560125 | 1105.625 | |
700 | 0.004299903 | 1167.299 |
The thermal contact conductance is 4E-5 W/(mm2 °C).
The following material properties are used for the static structural analysis.
Core
Young’s Modulus (GPa) | Poisson's Ratio | Density (kg/mm3) | Temperature (°C) | Coefficients of Thermal Expansion |
---|---|---|---|---|
96 | 0.24 | 2.514E-6 | 30 | 1.019E-5 |
40 | 1.007E-5 | |||
50 | 9.955E-6 | |||
60 | 9.848E-6 | |||
100 | 9.499E-6 | |||
200 | 9.190E-6 | |||
300 | 9.689E-6 | |||
400 | 1.099E-5 | |||
500 | 1.311E-5 | |||
700 | 1.975E-5 |
Veneer
Young’s Modulus (GPa) | Poisson's Ratio | Density (kg/mm3) | Reference Temperature Tref (°C) | H/R (° K) [a] |
---|---|---|---|---|
65 | 0.26 | 2.531E-6 | 700 | 46400 |
[a] * H/R = activation energy / ideal gas constant
Prony Series | Shift Function Constants | |||
---|---|---|---|---|
Gi / G0 | τi | Fictive Temperature (°C) | Weight | Relaxation Time (Sec) |
0.48844 | 1.58E-05 | 750 | 0.25 | 1.58E-05 |
0.44003 | 0.000163 | 726 | 0.25 | 0.000163 |
0.03576 | 0.003853 | 705 | 0.25 | 0.003853 |
0.00487 | 0.008050 | 687 | 0.25 | 0.008050 |
Following are the polynomial coefficients for glass and liquid thermal expansion:
= 10.7510E-6 ppm / °C |
= -2.4208E-8 ppm / °C |
= 5.7267E-11 ppm / °C |
According to the reference results, volume relaxation for glass occurs much less rapidly than the shear relaxation. The Prony series input for volume decay is therefore not considered in this problem.