Expand/Collapse all
1. Introduction
1.1. About Ansys
1.2. The Ansys Product Improvement Program
1.3. List of Symbols
1.4. FENSAP-ICE System
1.4.1. Flow Solver (FENSAP)
1.4.2. Mesh Adaptation and CAD Reconstruction (OptiGrid)
1.4.3. Water Droplet/Ice Crystal Impingement (DROP3D)
1.4.4. Ice Accretion and Water Runback (ICE3D)
1.4.5. Conjugate Heat Transfer (CHT3D, C3D)
1.4.5.1. Icing Simulations
1.5. FENSAP-ICE-TURBO
1.6. Layout of this Manual
1.7. Contact Information
1.8. Known Limitations in Ansys FENSAP-ICE 2024 R2
2. The FENSAP-ICE Project Manager
2.1. The Project Manager
2.1.1. Create a New Project
2.1.2. Open an Existing Project
2.1.3. Display Projects
2.1.4. Assign Units to a Project
2.1.5. Close a Project
2.1.6. Mouse Options
2.2. The Run Manager
2.2.1. Create a New Run
2.2.2. List of Runs
2.2.3. Chronological and Hierarchical Views
2.2.4. Search Box
2.2.5. Select a File, Drag & Drop or Copy-Paste
2.2.6. Archive a Calculation
2.2.7. Mouse Options
2.2.8. Information and Properties
2.3. The Grid File
2.3.1. Cylindrical to Cartesian Coordinates Conversion
2.3.2. Converting the Grid Coordinates to Meters
2.3.3. Importing a Grid from Fluent or Other Solvers
2.3.4. Menu Options
2.4. Input Parameters
2.5. Solution Files
2.5.1. List of Output Files
2.5.2. Post-Processing
2.5.3. Mouse Options
2.6. Preferences
2.6.1. Font Size
2.7. Quit FENSAP-ICE
3. The FENSAP-ICE Solver Manager
3.1. The Graphical Window
3.1.1. Graphical Display
3.1.2. Add/Remove Details from View
3.1.2.1. Remove/Activate the Graphical Display
3.1.2.2. Full and Simple Views
3.1.2.3. Configure
3.1.2.4. Axis Display and Alignment
3.1.2.5. Fit to View
3.1.2.6. Apply Translational and Rotational Periodicity
3.1.2.7. Panning/Rotation
3.1.2.8. Selection
3.1.3. Advanced Graphical Operations
3.2. The Run Window
3.2.1. Calculation Settings
3.2.1.1. Parallel Calculations
3.2.1.2. Queuing Systems
3.2.1.3. Save Your Preferences
3.2.2. Start the Calculation
3.2.2.1. Compute Drag Polar Curves
3.2.3. Monitoring a Run
3.2.3.1. The Solver Log File
3.2.3.2. The Convergence Graphs
4. FENSAP - Flow Solution
4.1. The Physical Model
4.1.1. Grid File Assignment
4.1.2. The Continuity and Momentum Equations
4.1.3. The Energy Equation
4.1.3.1. Adiabatic Flows
4.1.3.2. Conservative Energy Equation
4.1.4. Turbulent Flows
4.1.4.1. The Spalart-Allmaras Model
4.1.4.2. The Low Reynolds k-ω Model
4.1.4.3. The k-ω SST Model
4.1.5. Surface Roughness
4.1.5.1. Sand-Grain Roughness
4.1.5.2. The NASA Roughness Model
4.1.5.3. The Shin et al. Roughness Model
4.1.5.4. Variable Roughness from a File
4.1.5.5. Variable Roughness from the Boundary Conditions
4.1.5.6. Variable Roughness from the Beading Model
4.1.6. Transition to Turbulence
4.1.7. Body Forces
4.1.7.1. Gravity
4.1.7.2. Rotating Frame of Reference
4.2. Flow Conditions
4.2.1. Reference Conditions
4.2.2. Setting Pressure from Altitude
4.2.3. Initial Solution
4.2.3.1. Velocity Components
4.2.3.2. Velocity Angles
4.2.3.3. Displaying the Initial Velocity Vector
4.2.4. Restarting a Calculation
4.3. Boundary Conditions
4.3.1. Inlets and Far-fields – 1000-BCs
4.3.1.1. Subsonic
4.3.1.2. Supersonic or Far-Field
4.3.1.3. Stagnation
4.3.1.4. Mass Flow
4.3.1.5. Riemann
4.3.1.6. Engine Inlet – Mass Flow Rate
4.3.1.7. Engine Inlet – Mach Number
4.3.1.8. From Restart
4.3.2. Walls – 2000-BCs
4.3.2.1. No-Slip
4.3.2.2. Slip
4.3.2.3. Sand-Grain Roughness Distribution on a Wall
4.3.2.4. Rotating Walls (Axisymmetric)
4.3.3. Exits and Outlets – 3000-BCs
4.3.3.1. Subsonic
4.3.3.1.1. Radial Equilibrium
4.3.3.2. Supersonic
4.3.3.3. Mass Flow
4.3.3.4. From Restart
4.3.4. Symmetry – 4000-BCs
4.3.5. Periodic – 5000-BCs
4.3.6. Internal Surfaces – 6000-BCs
4.3.6.1. Actuator Disks
4.3.6.2. Screen Models
4.3.6.2.1. Brundrett
4.3.6.2.2. Idel’Chik – Sharp-Edged Orifices
4.3.6.2.3. Idel’Chik – Circular Metal Wires
4.3.6.3. Disabled (Transparent) Boundary Conditions
4.3.7. Non-Conformal Interfaces – 7000-BCs
4.3.8. Importing Boundary Conditions from Reference Conditions
4.3.9. Boundary Conditions Varying in Space
4.3.9.1. Inlet Profiles for Turbulence
4.4. Domains
4.4.1. Unsteady Rotor-Fuselage Interaction
4.4.1.1. Initial Rotor Acceleration
4.4.2. Multi-Domain Initialization
4.5. Solver Parameters
4.5.1. Steady-State Flows
4.5.1.1. Variable Relaxation
4.5.2. Unsteady Flows
4.5.2.1. Constant Time Stepping
4.5.2.2. Dual-Time Stepping
4.5.3. Artificial Dissipation
4.5.3.1. The Streamline Upwind (SU) Scheme
4.5.3.2. Streamline Upwind for Shocks
4.5.3.3. Central Schemes
4.5.4. Advanced Solver Settings
4.5.4.1. Residual Convergence
4.5.4.2. Dissipation Scaling
4.5.4.3. Solver Settings
4.6. Output
4.6.1. Log Files
4.6.2. Solution File
4.6.3. ALE Formulation
4.6.4. Lift, Drag and Moments
4.6.5. Probe Point Interpolation
5. DROP3D - Droplet and Ice Crystal Impingement
5.1. Assigning Grid and Air Solution Files
5.2. The Physical Model
5.2.1. The Particle Transport System
5.2.2. Particle Drag Correlations
5.2.3. Ice Crystal Drag Correlations
5.2.4. Droplets and Crystals
5.2.5. Vapor Transport Equation
5.2.5.1. Vapor Nucleation
5.2.6. Vapor Solution Fields
5.2.7. Vapor, Air Particle Energy Coupling
5.3. Supercooled Large Droplets (SLD)
5.3.1. Droplet Break-Up
5.3.2. Droplet Deformation
5.3.3. Splashing and Bouncing by Post-Processing
5.3.4. Splashing and Bouncing by Body Force
5.3.5. Mundo Model
5.3.5.1. Splashing
5.3.5.2. Bouncing
5.3.6. Honsek-Habashi Model
5.3.6.1. Splashing
5.3.6.2. Bouncing
5.3.6.3. Spreading or Disintegration
5.3.7. Wright-Potapczuk Model
5.3.7.1. Splashing
5.3.7.2. Bouncing
5.3.8. Terminal Velocity
5.4. Particle Conditions
5.4.1. Reference Flow Conditions
5.4.2. Droplets Reference Conditions
5.4.3. Ice Crystals Reference Conditions
5.4.4. Appendix C
5.4.5. Appendix O - Supercooled Large Droplets
5.4.5.1. Choosing the SLD Icing Condition
5.4.5.2. Choosing the SLD Droplet Distribution
5.4.6. Appendix D - Ice Crystals
5.4.7. Droplet Initial Solution
5.4.8. Initial Velocity Display
5.4.9. Restarting DROP3D
5.5. DROP3D Boundary Conditions
5.5.1. Inlets and Far Fields
5.5.2. Vapor Transport – Wet Walls
5.5.3. LWC Capture on Screens
5.6. Droplets Solver Parameters
5.6.1. Steady-State Solution
5.6.2. Artificial Viscosity
5.6.3. Advanced Solver Settings
5.7. Output
5.7.1. Solution Files with SLD
5.8. Particle Reinjection in External Flows
5.8.1. Crystal Reinjection in External Flows
5.8.2. SLD Reinjection
5.9. The DROP3D Run Environment
6. ICE3D - Ice Accretion and Water Runback
6.1. Governing Equations
6.2. Model Setup
6.2.1. Grid and Air/Droplets Solution Files
6.2.2. Restart Conditions
6.2.3. Icing Model
6.2.3.1. Glaze Ice
6.2.3.2. Rime Ice
6.2.3.3. Water Film
6.2.4. Concavity Check
6.2.5. Ice Shape Smoothing Iterations
6.2.6. Sand-Grain Roughness Output
6.2.7. Beading
6.2.8. Compute EID (Extended Icing Data)
6.2.9. Crystal Bouncing Models
6.2.9.1. NTI Bouncing Model
6.2.9.2. NRC Bouncing Model
6.2.9.3. Custom Bouncing Model
6.2.9.4. User Defined Functions
6.2.9.5. Variables
6.2.9.6. UDF Syntax
6.2.9.7. Error Handling
6.2.9.8. UDF Template
6.2.10. Ice Shedding on Rotating Components
6.2.10.1. Introduction
6.2.10.2. Ice Shedding Model in ICE3D
6.2.10.3. Ice-Surface Interface
6.2.10.4. Crack Detection Criteria
6.2.10.5. Ice Material Properties
6.2.10.6. Shedding Evaluation and Outputs
6.2.11. Body Forces
6.2.11.1. Gravity
6.2.11.2. Rotating Frame of Reference
6.3. Icing Conditions
6.3.1. Reference Air and Droplets Conditions
6.3.1.1. The Recovery Factor
6.3.2. The Icing Parameters
6.3.2.1. The Icing Air Temperature
6.3.2.2. Fluid Properties
6.3.2.3. Relative Humidity
6.3.2.4. Radiation
6.3.2.5. Ice Density
6.3.2.6. Impact Ice Density model
6.3.2.7. Appendix C
6.3.3. Advanced Settings
6.4. Boundary Conditions
6.4.1. Sink Boundaries
6.4.2. Rotating Spinners
6.4.3. Sliding Wall Boundaries
6.4.4. Screen Icing
6.5. Solver
6.5.1. Time Integration
6.6. Output
6.6.1. Generate a 3D Displaced Grid
6.6.2. Compute IPS Load Requirements
7. C3D - Unsteady Heat Conduction
7.1. The Physical Model
7.2. C3D Configuration
7.3. Settings
7.3.1. Initial Conditions
7.3.2. Electrothermal Model
7.3.3. Thermostats
7.4. Properties
7.5. Materials
7.6. Boundary Conditions
7.6.1. Walls
7.6.1.1. Thermal Boundary Conditions
7.6.1.2. Electrical Boundary Conditions
7.6.2. Thermostat
7.6.3. Heater Pads
7.6.3.1. Specified Heat Flux
7.6.3.2. Specified Power Density
7.7. Boundary Conditions Cycles
7.7.1. Cycle
7.7.2. Functional Input
7.7.3. Examples
7.7.4. Sequence
7.8. Numerical Parameters
7.9. Output
7.9.1. Temperature Probes
8. CHT3D - 3D Conjugate Heat Transfer
8.1. CHT Best Practices
8.1.1. Planning the CHT Computational Domains and Interface Layouts
8.1.2. Meshing Guidelines for CHT Simulations
8.1.3. CHT Workflow Recommendations
8.2. CHT3D Run Settings
8.3. Dry Air Regime
8.3.1. Input Parameters
8.3.2. Initial Flow Solutions
8.4. Wet Air Regime
8.4.1. Input Parameters
8.4.2. Initial Flow and Droplet Solutions
8.4.3. CHT Wet With Vapor Transport and EID
8.5. CHT3D Input Parameters
8.5.1. Anti-Icing Parameters
8.5.2. De-Icing Parameters
8.5.3. Domain Interfaces
8.5.4. Reference Temperatures
9. FENSAP-ICE-TURBO
9.1. Multi-Component Simulations
9.1.1. Adding a Turbo Run
9.1.2. The Turbo Panel
9.1.2.1. Grid File Assignment
9.1.2.2. Specifying Component Rotation
9.1.2.3. Reviewing Periodicity
9.1.2.4. Component Interfaces
9.1.2.5. Advanced Settings
9.1.3. Turbo Part
9.2. Airflow Through a Turbomachine
9.2.1. Physical Model for Static and Rotating Components
9.2.2. Airflow Setup in FENSAP-TURBO
9.2.2.1. Reference Conditions
9.2.2.2. Initial Conditions and Restarting a Calculation
9.2.3. Boundary Conditions
9.2.3.1. Engine Inlet
9.2.3.2. Counter-Rotating Walls
9.2.3.3. Radial Equilibrium at the Exit Boundary
9.2.4. Extended Icing Data for Turbomachinery Applications
9.2.5. Importing a CFX Flow Calculation
9.2.5.1. Auto-Configure a Run from a CFX File
9.3. Multiphase Droplet and Ice Crystal Simulations
9.3.1. Assigning an Airflow Solution
9.3.2. The DROP3D-TURBO Physical Model
9.3.2.1. The Particle Equations
9.3.2.2. Particle Thermal Equation
9.3.3. Particle Reference Conditions
9.3.4. Particle Initial Solution
9.3.4.1. Initial Velocity Components
9.3.4.2. Specifying Velocity Angles
9.3.4.3. Vapor Initialization
9.3.4.4. Restarting from a Previous Solution
9.3.4.5. User Defined Input Profile
9.3.4.6. Restart + Input Profile
9.3.4.7. Dry Initialization
9.3.5. Coupled-Turbo Run
9.4. Ice Accretion in Turbomachines
9.4.1. ICE3D-TURBO Physical Models
9.4.1.1. Icing on Rotating Components
9.4.1.2. Effect of Ice Crystals
9.4.2. Boundary Conditions
9.4.2.1. Enabled and Disabled Walls
9.4.2.2. Counter-Rotating Walls
9.4.2.3. Sliding Wall Boundaries
9.4.2.4. Water Pooling and Sinks
9.5. Computing Re-Injected Particles
9.5.1. Simplified Reinjection
9.5.2. Complete Reinjection
9.6. Output Files
9.7. Specification of Mixed-Type Boundary Conditions
9.8. Completing a Run
10. Automated Sequences and Multishot Icing Calculations
10.1. Multishot Run Creation and Basic Configuration
10.1.1. Creating the Run
10.1.2. Defining the Input Grid
10.1.3. Configuring the Solvers
10.1.4. Setting up the Initial Solution
10.1.5. Multishot Primary Configuration
10.1.5.1. Multishot Iterations
10.1.5.2. Variable Values
10.1.5.3. Variables
10.1.5.4. Restart Types
10.1.6. Execution
10.1.7. Post-Processing
10.2. Multishot Icing Sequences
10.2.1. Multishot with FENSAP
10.2.2. Multishot with Fluent
10.2.2.1. Input Grid Configuration
10.2.2.2. Fluent Configuration
10.2.2.3. Recommendations to Set up a Fluent Calculation
10.2.2.4. DROP3D and ICE3D Configurations
10.2.2.5. Multishot Configuration
10.2.2.6. Execution
10.2.2.7. Post-Processing
10.2.3. Multishot with CFX
10.2.3.1. Input Grid Configuration
10.2.3.2. CFX Configuration
10.2.3.3. Recommendations to Set up a CFX Calculation
10.2.3.4. DROP3D and ICE3D Configurations
10.2.3.5. Multishot Configuration
10.2.3.6. Execution
10.2.3.7. Post-Processing
10.2.4. Multishot with Remeshing
10.2.4.1. Automatic Remeshing Using Fluent Meshing
10.2.4.2. Custom Remeshing Script Guide
10.3. OptiGrid Mesh Adaptation Sequences
11. FENSAP-ICE-Unsteady
11.1. Two-Phase Flows: Coupling Flow and Droplets
11.1.1. The Physical Model
11.1.2. Steady-State Multiphase Flows
11.1.3. Unsteady Multiphase Flows
11.1.3.1. Constant Time Step
11.1.3.2. Dual-Time Stepping
11.1.4. Output Files
11.2. Three-Phase Flows: Coupling Flow, Droplets and Ice
11.2.1. Rime Ice
11.2.2. Glaze Ice
11.2.3. Output Files
11.2.4. View Ice Accretion in Time
11.3. Ice Accretion on Screens
11.3.1. Mass Loss in the Droplet Continuity Equation
11.4. Rigid Motion
12. OptiGrid - Mesh Adaptation
12.1. Theoretical Background
12.1.1. Error Estimation in 1D
12.1.2. Error Estimation in 3D
12.1.3. Adaptation Strategies in 3D
12.1.3.1. Node Movement
12.1.3.2. Refinement and Coarsening
12.1.3.3. Edge Swapping
12.1.4. Adaptation Sequence
12.2. Input Files
12.2.1. Initial and Adapted Grids
12.2.2. Initial Flow Solution
12.2.3. Assign Flow Variables for Error Estimation
12.2.3.1. Scalar Variables
12.2.3.2. Edit Variable Labels
12.2.3.3. Guidelines
12.2.4. Geometry (CAD)
12.3. Boundaries
12.3.1. View and Edit the Boundary Surfaces
12.3.2. Y+ Adaptation
12.3.2.1. Number of Layers
12.3.2.2. Y+ Label
12.3.2.3. Constraints on Hexahedral/Prismatic Elements
12.3.2.4. Transition
12.3.2.5. Constraints on Tetrahedral Elements
12.3.3. Advanced Options
12.3.3.1. Dead Zones
12.3.3.2. No-Slip Wall
12.3.3.3. Floating Periodicity
12.4. Adaptation Strategy
12.4.1. Mesh Operations
12.4.2. Number of Adaptation Iterations
12.4.3. Error Control
12.4.4. Advanced Options
12.4.4.1. Node Movement Algorithm
12.4.4.2. Error Computation
12.5. Mesh Constraints
12.5.1. Minimum and Maximum Edge Lengths
12.5.2. Quality of Tetrahedral Elements
12.5.3. Quality of Prism Elements
12.5.4. Quality of Hexahedral Elements
12.5.5. Other Mesh Constraints
12.6. Performing Mesh Adaptation
12.6.1. Post-Processing the Adapted Grid
12.6.2. Viewmerical Display
12.6.3. Solver-Adaptation Coupling
12.6.4. Tips for a Successful Adaptation
12.7. Troubleshooting
13. OptiGrid - CAD Reconstruction
13.1. GUI-Assisted CAD Reconstruction
13.2. The CAD Reconstruction Process
13.2.1. Input/Output Geometry Files
13.2.2. Initial Edge Detection
13.2.3. Edge Edition
13.2.4. View the Reconstructed CAD
13.2.5. CAD Attributes
13.2.6. Periodicity
13.2.7. Save the Geometry File
13.3. Advanced CAD Edition
13.3.1. Edge Tolerance
13.3.2. Edge Filtering
13.3.3. Edge Edition – Edge by Edge
13.3.4. Add a Group of Edges
13.3.5. Prescribed Points
13.3.6. Delete an Edge
13.3.7. Refresh the Geometry
14. FENSAP-ICE File Formats
14.1. The Grid File - ASCII Format
14.1.1. The Grid Header
14.1.2. The Coordinate Table
14.1.3. The Connectivity Table
14.1.4. The Boundary Face Table
14.1.5. The Domains Table
14.2. The Grid File – Binary Format
14.3. The FENSAP Solution File – Binary Format
14.4. The Actuator Disk File
14.5. The Probe Coordinate File (probe.dat)
14.6. The Probe Output File (probe.out)
14.7. The timebc.dat file
14.8. The Sand-Grain Roughness Distribution File (roughness.dat)
15. Tools Reference
15.1. Environment Setup
15.1.1. Command-Line Tools
15.2. Expression Syntax
15.2.1. Operators
15.2.2. Functions
15.3. Grid Operations
15.3.1. Convertgrid
15.3.1.1. Description
15.3.1.2. Command Line Reference
15.3.1.3. Examples
15.3.2. fluent2fensap
15.3.2.1. Description
15.3.2.2. Command Line Reference
15.3.2.3. Reference Values
15.3.2.4. Examples
15.3.3. fensap2fluent
15.3.3.1. Description
15.3.3.2. Command Line Reference
15.3.4. cfx2fensap
15.3.4.1. Description
15.3.4.2. Command Line Reference
15.3.4.3. Boundary and Reference Conditions
15.3.5. Conversion from FENSAP to CFX
15.4. Solution File Operations
15.4.1. solnEdit
15.4.1.1. Description
15.4.1.2. Command Line Reference
15.4.1.3. Examples
15.4.2. soln2soln
15.4.2.1. Description
15.4.2.2. Command Line Reference
15.4.2.3. Examples
15.5. TimeBC Operations
15.5.1. TimeBC Files
15.5.2. interpTimeBC
15.5.2.1. Description
15.5.2.2. Command Line Reference
15.5.2.3. Examples
15.5.3. genTimeBC
15.5.3.1. Description
15.5.3.2. Command Line Reference
15.5.4. interpTurboDropTimeBC (TURBO)
15.5.4.1. Description
15.5.4.2. Command Line Reference
15.5.4.3. Examples
15.5.5. mergebcs
15.5.6. generateRoughnessDat
15.5.6.1. Description
15.5.6.2. Command Line Reference
15.5.6.3. Examples
16. Post-Processing
16.1. Post-processing
16.2. Viewmerical
16.2.1. Introduction to Viewmerical
16.2.1.1. Launch from the FENSAP-ICE Project Manager
16.2.1.2. Setup in FENSAP-ICE as Primary Post-Processor
16.2.1.3. Launch from FENSAP-ICE - Secondary Post-Processor
16.2.1.3.1. From the Run View
16.2.1.3.2. From the Execution Panel
16.2.1.4. Launch from the Command Line/Start Menu
16.2.2. 3D Display
16.2.2.1. Mouse Controls
16.2.2.2. Toolbar
16.2.2.3. Axis Display
16.2.2.4. Interactive Menu
16.2.2.5. Keyboard Shortcuts
16.2.3. Data Management
16.2.3.1. Open Files Dialog
16.2.3.2. Adding/Removing Datasets
16.2.3.3. Dataset Visibility
16.2.3.4. Current Selection
16.2.3.5. Multiple Selection
16.2.3.6. Lock Selection
16.2.4. Object Panel
16.2.4.1. Shading Mode
16.2.4.2. Object Color
16.2.4.3. Repetition (Mirror/Periodicity)
16.2.4.4. Split Screen
16.2.5. Cutting Plane Panel
16.2.6. Scalar Solution Visualization
16.2.6.1. Files Panel
16.2.6.1.1. Unsteady or Numbered Solutions
16.2.6.1.2. Color Range
16.2.6.1.3. Shared Range
16.2.6.1.4. Global Range
16.2.6.1.5. Advanced Options
16.2.6.2. IsoValues Panel
16.2.6.3. Vector Data Panel
16.2.6.3.1. Vector Scaling
16.2.6.3.2. Coordinate Clamping
16.2.6.4. Displacement Panel
16.2.6.4.1. Real-Time Update
16.2.6.4.2. Advanced Settings
16.2.7. View Options
16.2.7.1. Window Panel
16.2.7.2. Anaglyph 3D Display
16.2.8. Query Mode
16.2.8.1. 2D Plot
16.2.8.2. Selection Panel
16.2.8.3. Computation/Integration
16.2.8.3.1. Surface Integration
16.2.8.3.2. Mass Flow Integration
16.2.8.3.3. Volume Integration
16.2.9. ICE3D Solutions
16.2.9.1. The ICE3D Panel
16.2.9.2. CAD Output
16.2.9.2.1. CAD Surface Cleanup
16.2.9.2.2. Boundary Edge Smoothing
16.2.9.2.3. Output
16.2.9.3. MCCS Extraction
16.2.10. Command Line Usage
16.3. CFD-Post Macros
16.3.1. Introduction to CFD-Post Macros
16.3.2. FENSAP-ICE Turbo
16.3.2.1. Requirements
16.3.2.2. Usage
16.3.3. Ice Cover – 3D-View
16.3.3.1. Features
16.3.3.2. Usage
16.3.3.3. Input Parameters
16.3.4. Ice Cover – 2D-Plot
16.3.4.1. Usage
16.3.4.2. Features
16.3.4.3. Input Parameters
16.3.5. Ice Cover – Turbo 3D-View
16.3.5.1. Features
16.3.5.2. Usage
16.3.5.3. Input Parameters
16.3.5.4. Extended Usage
16.3.6. Post-Processing Multiple Icing Solutions
16.3.6.1. Loading Multiple Icing Solutions Into CFD-Post
16.3.6.2. Post-Processing of Multiple Icing Solutions
17. Directory Structure
17.1. Installation Directory
17.2. User Account – Linux
17.3. User Account - Windows
18. Configuration Options
18.1. config/gui.txt (Linux only)
18.2. config/mpi.txt
19. MPI
19.1. Network Types
19.2. Intel MPI
19.2.1. Platform Notes
19.3. MPI Setup in FENSAP-ICE
19.3.1. FENSAP-ICE Advanced MPI Configuration
19.3.1.1. Override mpirun
19.3.1.2. Additional mpirun Parameters
19.3.2. Machinefile
19.3.3. Per-Solver machinefile
19.3.4. Saving the Configuration to the Project
20. Queuing Systems
20.1. PBS
20.1.1. $PBS_NODEFILE
20.1.2. PBS Job Settings
20.1.3. The qsub.cfg file
20.1.4. Special Files
20.2. SGE Queue
20.2.1. SGE Job Settings
20.2.2. Special Files
20.3. SLURM Queue
20.3.1. SLURM Job Settings
20.3.2. Special Files
20.3.3. CFX, FLUENT and SLURM
20.4. "NULL" Queue
20.5. "CUSTOM" Queue
20.5.1. "CUSTOM" Queue for Windows
21. Advanced MPI Topics
21.1. Software Licenses and Parallel Jobs
21.2. Sweep, Langmuir, FENSAP-ICE-TURBO and Machinefiles
22. References
22.1. Journal Publications in Mesh Adaptation
22.2. Conference Publications in Mesh Adaptation
22.3. Von Karman Lecture Series in Mesh Adaptation
22.4. Chapters in Books in In-Flight Icing
22.5. Refereed Journal Publications in In-Flight Icing
22.6. Conference Publications in In-Flight Icing
22.7. Referenced Within This Manual