Expand/Collapse all
- 1. Basic Capabilities Modeling
- 1.1. Domains
- 1.2. Physical Models
- 1.2.1. Steady State and Transient Flows
- 1.2.2. Mesh Deformation
- 1.2.2.1. None
- 1.2.2.2. Regions of Motion Specified
- 1.2.2.2.1. Displacement Relative To
- 1.2.2.2.2. Mesh Stiffness
- 1.2.2.2.2.1. Increase Near Small Volumes
- 1.2.2.2.2.2. Increase Near Boundaries
- 1.2.2.2.2.3. Blended Distance and Small Volumes
- 1.2.2.2.2.4. Value (Specified Stiffness)
- 1.2.2.2.3. Mesh Motion Options
- 1.2.2.2.3.1. Conservative Interface Flux
- 1.2.2.2.3.2. Unspecified
- 1.2.2.2.3.3. Stationary
- 1.2.2.2.3.4. Specified Displacement
- 1.2.2.2.3.5. Specified Location
- 1.2.2.2.3.6. Periodic Displacement
- 1.2.2.2.3.7. Parallel to Boundary
- 1.2.2.2.3.8. Surface of Revolution
- 1.2.2.2.3.9. System Coupling
- 1.2.2.2.3.10. Rigid Body Solution
- 1.2.2.3. Periodic Regions of Motion
- 1.2.2.3.1. Periodic Regions of Motion: Complex Displacement
- 1.2.2.3.1.1. Boundary conditions
- 1.2.2.3.1.2. Complex Displacement Solution
- 1.2.2.4. Junction Box Routine
- 1.2.3. Laminar Flow
- 1.2.4. Turbulence and Turbulence Models
- 1.2.5. Heat Transfer
- 1.2.5.1. None
- 1.2.5.2. Isothermal
- 1.2.5.3. Thermal Energy
- 1.2.5.4. Total Energy
- 1.2.5.5. Turbulent Flux Closure
- 1.2.6. Conjugate Heat Transfer
- 1.2.7. Compressible Flow
- 1.2.7.1. Mixed Subsonic/Supersonic Boundaries
- 1.2.8. Setting a Reference Pressure
- 1.2.9. Buoyancy
- 1.2.9.1. Full Buoyancy Model (Density Difference)
- 1.2.9.2. Boussinesq Model
- 1.2.9.3. Buoyancy and Pressure
- 1.2.9.4. Buoyancy In Rotating Domains
- 1.2.10. Immersed Solids
- 1.2.10.1. Immersed Boundary Tracking
- 1.2.10.2. Limitations to using Immersed Solids
- 1.2.11. Multicomponent Flow
- 1.2.11.1. Assumptions About Multicomponent Flow
- 1.2.11.2. Multicomponent Flow Terminology
- 1.2.11.2.1. Pure Substance
- 1.2.11.2.2. Component
- 1.2.11.2.3. Multicomponent Fluid
- 1.2.11.2.4. Fluid
- 1.2.11.2.5. Additional Variable
- 1.2.11.2.6. Ideal Mixture
- 1.2.11.2.7. Transport Equation
- 1.2.11.2.8. Constraint Equation
- 1.2.11.2.9. Algebraic Equation
- 1.2.11.3. Multicomponent Flow Examples
- 1.2.11.3.1. Example 1: Multicomponent Multiphase
- 1.2.11.3.2. Example 2: Smoke in Air
- 1.2.11.4. Component Domain Settings
- 1.2.11.4.1. Algebraic Slip
- 1.2.11.4.2. Kinematic Diffusivity
- 1.2.11.4.3. Turbulent Flux Closure
- 1.2.11.5. Boundary Conditions
- 1.2.11.6. Multicomponent Energy Diffusion
- 1.2.12. Additional Variables
- 1.2.12.1. Transported and Algebraic Additional Variables
- 1.2.12.1.1. Kinematic Diffusivity
- 1.2.12.1.2. Turbulent Flux Closure
- 1.2.12.1.3. Volumetric and Specific Additional Variable
- 1.2.12.1.4. Additional Variables In Units Other Than Mass
- 1.2.12.1.5. Unspecified Additional Variables
- 1.2.12.1.6. Tensor Type
- 1.2.12.2. Dynamic Additional Variables
- 1.2.13. Non-Newtonian Flow
- 1.2.14. Coordinate Frames
- 1.2.14.1. Global Coordinate Frame (Coord 0)
- 1.2.14.2. Local Coordinate Frames
- 1.2.14.3. Cartesian Coordinate Frames
- 1.2.15. Rotating Frames of Reference (RFR)
- 1.2.15.1. Alternate Rotation Model
- 1.2.16. Electric Field
- 1.3. Sources
- 1.3.1. Locators for Sources
- 1.3.1.1. Boundary Sources
- 1.3.1.2. Subdomains
- 1.3.1.3. Injection Regions
- 1.3.1.4. Source Points
- 1.3.2. Types of Sources
- 1.3.2.1. General Sources
- 1.3.2.1.1. Source Coefficient / Total Source Coefficient
- 1.3.2.2. Momentum Sources
- 1.3.2.2.1. Isotropic and Directional Loss Models
- 1.3.2.2.2. General Momentum Source
- 1.3.2.2.2.1. Postprocessing the Momentum Sources
- 1.3.2.2.3. Immersed Solids Sources
- 1.3.2.3. Mass (Continuity) Sources
- 1.3.2.3.1. Mass (Continuity) Source Coefficients
- 1.3.2.4. Bulk Sources
- 1.3.2.5. Solid Sources
- 1.3.2.6. Radiation Sources
- 1.3.2.7. Particle User Sources
- 1.3.3. Multiplying Sources by Porosity
- 1.4. Material Properties
- 1.4.1. CEL Expressions
- 1.4.2. Coordinate Frame
- 1.4.3. Equation of State
- 1.4.3.1. Option
- 1.4.3.1.1. Value
- 1.4.3.1.2. Ideal Gas
- 1.4.3.1.3. Real Gas
- 1.4.3.1.4. IAPWS Library
- 1.4.3.2. Molar Mass
- 1.4.4. Specific Heat Capacity
- 1.4.4.1. Value
- 1.4.4.2. NASA Format
- 1.4.4.3. Zero Pressure Polynomial
- 1.4.4.4. Real Gas
- 1.4.4.5. Reference State Properties
- 1.4.4.5.1. Reference Temperature and Reference Pressure
- 1.4.4.5.2. Reference Specific Enthalpy and Entropy
- 1.4.5. Density and Specific Heat Dependencies
- 1.4.6. Table Generation Pressure and Temperature Limits
- 1.4.7. Transport Properties
- 1.4.7.1. Dynamic Viscosity
- 1.4.7.1.1. Value
- 1.4.7.1.2. Rigid Non Interacting Sphere and Interacting Sphere Models
- 1.4.7.1.3. Non-Newtonian Model
- 1.4.7.1.4. Ideal Mixture
- 1.4.7.1.5. Sutherland’s Formula
- 1.4.7.2. Thermal Conductivity
- 1.4.7.2.1. Sutherland’s Formula
- 1.4.7.2.2. Modified Euken Model
- 1.4.8. Radiation Properties
- 1.4.9. Buoyancy Properties
- 1.4.9.1. Thermal Expansivity
- 1.4.10. Electromagnetic Properties
- 1.4.10.1. Electrical Conductivity
- 1.4.10.2. Magnetic Permeability
- 1.4.11. Library Materials
- 1.4.11.1. Adding to the MATERIALS file
- 1.5. Mixture Properties (Fixed, Variable, Reacting)
- 1.5.1. Equation of State/Density
- 1.5.2. Molar Mass
- 1.5.3. Specific Heat Capacity
- 1.5.4. Electromagnetic Properties
- 1.6. Efficiency Calculation
- 1.6.1. Isentropic Efficiency and Total Enthalpy
- 1.6.2. Polytropic Efficiency
- 1.6.3. Activating Efficiency Output
- 1.6.3.1. CFX-Solver Manager Output Variables
- 1.6.3.2. Results File Output Variables
- 1.6.4. Restrictions
- 1.7. Wall Condensation Model
- 1.7.1. CFX-Pre Set-up
- 1.7.1.1. Domain Fluid Model Specification
- 1.7.1.2. Boundary Condition Specification
- 1.7.1.3. Restrictions
- 1.7.1.4. Convergence Tip
- 1.7.2. Condensation Mass Flux in CFD-Post
- 2. Boundary Condition Modeling
- 2.1. The Purpose of Boundary Conditions
- 2.2. Available Boundary Conditions
- 2.2.1. Fluid Boundaries
- 2.2.2. Solid Boundaries
- 2.3. Using Boundary Conditions
- 2.3.1. Specifying Well-Posed Boundary Conditions
- 2.3.2. Recommended Configurations of Boundary Conditions
- 2.3.3. Using Inlets, Outlets and Openings
- 2.3.3.1. Inlets
- 2.3.3.2. Outlets
- 2.3.3.3. Openings
- 2.3.3.4. Using Pressure Specified Boundaries with Buoyant Flows
- 2.3.4. Using CEL Expressions With Boundary Conditions
- 2.4. Inlet
- 2.4.1. Mesh Motion
- 2.4.2. Inlet (Subsonic)
- 2.4.2.1. Mass and Momentum
- 2.4.2.1.1. Normal Speed
- 2.4.2.1.2. Cartesian Velocity Components
- 2.4.2.1.3. Cylindrical Velocity Components
- 2.4.2.1.4. Mass Flow Rate
- 2.4.2.1.5. Total Pressure (Stable)
- 2.4.2.1.6. Stationary Frame Total Pressure (Stable)
- 2.4.2.1.7. Static Pressure
- 2.4.2.1.8. Fluid Velocity
- 2.4.2.2. Flow Direction
- 2.4.2.3. Turbulence
- 2.4.2.3.1. Default Intensity and Autocompute Length Scale
- 2.4.2.3.2. Intensity and Autocompute Length Scale
- 2.4.2.3.3. Intensity and Length Scale
- 2.4.2.3.4. Low (Intensity = 1%)
- 2.4.2.3.5. Medium (Intensity = 5%)
- 2.4.2.3.6. High (Intensity = 10%)
- 2.4.2.3.7. Specified Intensity and Eddy Viscosity Ratio
- 2.4.2.3.8. k and Epsilon
- 2.4.2.3.9. Zero Gradient
- 2.4.2.4. Heat Transfer
- 2.4.2.4.1. Static Temperature
- 2.4.2.4.2. Total Temperature
- 2.4.2.4.3. Stat. Frame Total Temperature
- 2.4.2.4.4. Total Enthalpy
- 2.4.2.4.5. Stationary Frame Total Enthalpy
- 2.4.2.5. Thermal Radiation
- 2.4.2.5.1. Radiative Heat Flux (P1 Model)
- 2.4.2.5.2. Radiation Intensity (P1 Model)
- 2.4.2.5.3. External Blackbody Temperature
- 2.4.2.5.4. Local Temperature
- 2.4.2.5.5. Sources (Discrete Transfer and Monte Carlo models)
- 2.4.2.6. Transported Additional Variables at an Inlet
- 2.4.3. Inlet (Supersonic)
- 2.4.3.1. Mass and Momentum
- 2.4.4. Inlet (Mixed Subsonic-Supersonic)
- 2.4.4.1. Supported Material Types
- 2.4.4.2. Mass and Momentum
- 2.4.4.2.1. Cartesian Velocity Components and (Total) Pressure
- 2.4.4.2.2. Cylindrical Velocity Components and (Total) Pressure
- 2.4.4.2.3. Normal Speed and (Total) Pressure
- 2.4.4.3. Heat Transfer
- 2.4.4.3.1. Static Temperature
- 2.4.4.3.2. Total Temperature
- 2.4.4.3.3. Total Enthalpy
- 2.4.4.4. Initial Guess Recommendation
- 2.5. Outlet
- 2.5.1. Mass and Momentum
- 2.5.1.1. Static Pressure
- 2.5.1.2. Normal Speed
- 2.5.1.3. Cartesian Velocity Components
- 2.5.1.4. Cylindrical Velocity Components
- 2.5.1.5. Average Static Pressure
- 2.5.1.5.1. Average Over Whole Outlet
- 2.5.1.5.2. Average Above Specified Radius
- 2.5.1.5.3. Average Below Specified Radius
- 2.5.1.5.4. Circumferential
- 2.5.1.5.5. Radial Equilibrium
- 2.5.1.6. Mass Flow Rate (Bulk Mass Flow Rate for Multiphase)
- 2.5.1.7. Exit Corrected Mass Flow Rate
- 2.5.1.8. Mass Flow Outlet Constraint
- 2.5.1.8.1. Pressure Shape Unconstrained
- 2.5.1.8.2. Uniform Mass Flux
- 2.5.1.8.3. Pressure Shape Constrained
- 2.5.1.8.3.1. Circumferential Pressure Averaging
- 2.5.1.9. Degassing Condition (Multiphase only)
- 2.5.1.10. Fluid Velocity (Multiphase only)
- 2.5.1.11. Supercritical (Multiphase only)
- 2.5.2. Turbulence, Heat Transfer, and Additional Variables
- 2.5.3. Thermal Radiation
- 2.5.4. Mesh Motion
- 2.5.5. Outlet (Supersonic)
- 2.6. Opening
- 2.6.1. Mass and Momentum
- 2.6.1.1. Cartesian Velocity Components
- 2.6.1.2. Cylindrical Velocity Components
- 2.6.1.3. Opening Pressure and Direction
- 2.6.1.4. Static Pressure and Direction
- 2.6.1.5. Entrainment
- 2.6.1.6. Fluid Velocity
- 2.6.2. Loss Coefficient
- 2.6.2.1. For a Pressure-Specified Opening
- 2.6.2.2. For a Static-Pressure-Specified Opening
- 2.6.3. Heat Transfer
- 2.6.4. Turbulence
- 2.6.5. Thermal Radiation
- 2.6.6. Additional Variables
- 2.6.7. Mesh Motion
- 2.7. Wall
- 2.7.1. Mass and Momentum
- 2.7.1.1. No Slip Wall
- 2.7.1.2. Free Slip Wall
- 2.7.1.3. Finite Slip Wall
- 2.7.1.4. Specified Shear
- 2.7.1.5. Counter-rotating Wall
- 2.7.1.6. Rotating Wall
- 2.7.2. Wall Roughness
- 2.7.3. Wall Contact Model
- 2.7.4. Wall Adhesion
- 2.7.5. Heat Transfer
- 2.7.5.1. Adiabatic
- 2.7.5.2. Fixed Temperature
- 2.7.5.3. Heat Flux and Wall Heat Flux
- 2.7.5.4. Heat Transfer Coefficient and Wall Heat Transfer Coefficient
- 2.7.5.5. System Coupling
- 2.7.5.6. Results File Variables for Postprocessing
- 2.7.5.6.1. Wall Temperature (Tw
)
- 2.7.5.6.2. Wall Heat Flux and Heat Flux
(qw
)
- 2.7.5.6.3. Wall Heat Transfer Coefficient
(hc
) and Wall Adjacent
Temperature (Tnw
)
- 2.7.5.6.4. Wall External Heat Transfer Coefficient and Wall External Temperature
- 2.7.6. Mesh Motion
- 2.7.7. Thermal Radiation
- 2.7.7.1. Opaque
- 2.7.7.2. Sources
- 2.7.8. Equations Governing Additional Variables
- 2.8. Symmetry Plane
- 2.8.1. Mesh Motion
- 2.9. Profile Boundary Conditions
- 2.9.1. Using a Profile From One Location at Another Location
- 2.9.2. Standard Variable Names
- 2.9.3. Non-Standard Variable Names
- 2.9.4. Custom Variables
- 2.9.5. Using r-Theta Profiles
- 2.9.6. Data Interpolation Method
- 2.9.7. Extracting Profile Data from Results Files
- 2.10. General Non-Reflecting Boundary Conditions
- 2.10.1. Overview
- 2.10.2. Restrictions and Limitations
- 2.10.3. Theory
- 2.10.4. Acoustic Reflectivity Settings in CFX-Pre
- 2.11. Limitations
- 3. Initial Condition Modeling
- 3.1. Setting the Initial Conditions in CFX-Pre
- 3.1.1. Automatic
- 3.1.2. Automatic with Value
- 3.1.3. Using Expressions with Initial Conditions
- 3.2. Initialization Parameters
- 3.2.1. Coordinate Frame
- 3.2.2. Frame Type
- 3.2.2.1. Considerations for Multiple Domains and Global Initialization
- 3.2.3. Velocity Type
- 3.2.3.1. Cartesian Coordinate Frame, Cartesian Velocity Components
- 3.2.3.2. Cartesian Coordinate Frame, Cylindrical Velocity Components
- 3.2.3.3. Cylindrical Coordinate Frame, Cartesian Velocity Components
- 3.2.3.4. Cylindrical Coordinate Frame, Cylindrical Velocity Components
- 3.2.4. Cartesian Velocity Components
- 3.2.4.1. Automatic Values
- 3.2.4.2. Recommended Values
- 3.2.5. Cylindrical Velocity Components
- 3.2.5.1. Automatic Values
- 3.2.5.2. Recommended Values
- 3.2.6. Velocity Scale
- 3.2.7. Velocity Fluctuation
- 3.2.8. Static Pressure
- 3.2.8.1. Automatic Values
- 3.2.8.2. Recommended Values
- 3.2.9. Temperature
- 3.2.9.1. Automatic Values
- 3.2.9.2. Recommended Values
- 3.2.10. K (Turbulent Kinetic Energy)
- 3.2.10.1. Automatic Values
- 3.2.10.2. Recommended Values
- 3.2.11. Epsilon (Turbulence Eddy Dissipation)
- 3.2.11.1. Automatic Values
- 3.2.11.2. Recommended Values
- 3.2.11.3. Manual Specification
- 3.2.12. Omega (Turbulence Eddy Frequency)
- 3.2.12.1. Automatic Values
- 3.2.12.2. Recommended Values
- 3.2.12.3. Manual Specification
- 3.2.13. Reynolds Stress Components
- 3.2.14. Initialization of Additional Variables
- 3.2.15. Component
- 3.2.16. Volume Fraction
- 3.2.17. Radiation Intensity
- 3.2.18. Initialization of Solid Domains
- 3.2.19. Initial Conditions for a Multiphase Simulation
- 3.2.19.1. Volume Fraction
- 3.2.19.2. Velocity
- 3.2.20. Initialization Advice
- 3.3. Reading the Initial Conditions from a File
- 3.3.1. Using Configuration Results to Provide Initial Values
- 3.3.2. Continuing the History
- 3.3.3. Using Multiple Files to Provide Initial Conditions
- 3.3.4. Using the Mesh from the Initial Values File
- 3.3.5. Using an Initial Values File that Contains Particles
- 3.4. Using the CFX-Interpolator
- 3.4.1. Interpolating from a Single File
- 3.4.1.1. Mapping Data from the Source File to the Target File
- 3.4.2. Interpolating from Multiple Files
- 3.4.3. Interpolation Mapping
- 3.4.3.1. Defining Transformations for use in Interpolation Mapping Alignment
Transformations
- 3.4.3.2. Creating Interpolation Mapping Objects
- 3.4.4. Adjusting the Bounding Box Tolerance
- 3.4.5. Interpolating Onto a Solver Input File with Results Fields
- 3.4.6. Miscellaneous Limitations of the CFX-Interpolator
- 3.4.7. Using the CFX-Interpolator to Calculate Difference Variables
- 4. Turbulence and Near-Wall Modeling
- 4.1. Turbulence Models
- 4.1.1. The Laminar Model
- 4.1.2. The Zero Equation Model
- 4.1.3. The k-epsilon Model
- 4.1.4. The RNG k-epsilon Model
- 4.1.5. The k-omega and SST Models
- 4.1.5.1. GEKO model
- 4.1.6. Curvature Correction for Two-Equation Models
- 4.1.7. Corner Correction
- 4.1.8. The Reynolds Stress Model
- 4.1.9. Omega-Based Reynolds Stress Models
- 4.1.10. Explicit Algebraic Reynolds Stress Model
- 4.1.11. Ansys CFX Laminar-Turbulent Transition Models
- 4.1.11.1. Estimating when the Transition Model Should be Used
- 4.1.11.2. Grid Requirements
- 4.1.11.3. Specifying Inlet Turbulence Levels
- 4.1.11.4. Summary
- 4.1.12. The Large Eddy Simulation Model (LES)
- 4.1.12.1. Using the LES model in CFX
- 4.1.12.2. Introduction to LES
- 4.1.12.3. When to use LES
- 4.1.12.4. Setting up an LES Simulation
- 4.1.12.4.1. Geometry for LES
- 4.1.12.4.2. Meshing
- 4.1.12.4.3. Boundary Layers
- 4.1.12.4.4. Analysis Type
- 4.1.12.4.5. Domains
- 4.1.12.4.6. LES Boundary Conditions: Inlet
- 4.1.12.4.7. LES Boundary Conditions: Outlets and Openings
- 4.1.12.4.8. LES Initialization
- 4.1.12.4.9. LES Solver Control
- 4.1.12.4.10. LES Timestep Considerations
- 4.1.12.5. Solver Memory
- 4.1.12.6. Useful Values For LES Runs
- 4.1.12.6.1. Statistical Reynolds Stresses
- 4.1.12.6.2. Delaying the Start of Reynolds Stress Calculations
- 4.1.13. The Detached Eddy Simulation Model (DES)
- 4.1.13.1. Using the Detached Eddy Simulation Model in CFX
- 4.1.13.1.1. When to use DES
- 4.1.13.2. Setting up a DES Simulation
- 4.1.13.2.1. Geometry for DES
- 4.1.13.2.2. Meshing Requirements for DES
- 4.1.13.2.3. DES Timestep Considerations
- 4.1.13.2.4. Boundary Conditions
- 4.1.13.2.5. DES Initialization
- 4.1.13.2.6. Monitoring a DES Simulation
- 4.1.13.3. Limitations/Concerns of Using the DES Model
- 4.1.14. The Stress-Blended Eddy Simulation (SBES) Model
- 4.1.15. The Scale-Adaptive Simulation (SAS)
- 4.1.15.1. Using the Scale Adaptive Simulation model in CFX
- 4.1.16. Buoyancy Turbulence
- 4.2. Modeling Flow Near the Wall
- 4.2.1. Standard Wall Functions
- 4.2.2. Scalable Wall Functions
- 4.2.2.1. Shear Velocity Scaling Model
- 4.2.3. Automatic Near-Wall Treatment for Omega-Based Models
- 4.2.4. Treatment of Rough Walls
- 4.2.5. Solver Yplus and Yplus
- 4.2.6. Guidelines for Mesh Generation
- 4.2.6.1. Minimum Node Spacing
- 4.2.6.1.1. Determination of the Near Wall Spacing
- 4.2.6.2. Minimum Number of Nodes
- 4.2.6.2.1. Goal
- 4.2.6.2.2. Formulation
- 5. Domain Interface Modeling
- 5.1. Overview of Domain Interfaces
- 5.2. Interface Type
- 5.3. Interface Models
- 5.3.1. Translational Periodicity
- 5.3.2. Rotational Periodicity
- 5.3.3. General Connection
- 5.3.3.1. Frame Change/Mixing Model
- 5.3.3.1.1. None
- 5.3.3.1.2. Frozen Rotor
- 5.3.3.1.2.1. Rotational Offset
- 5.3.3.1.3. Stage (Mixing Plane)
- 5.3.3.1.3.1. Pressure Profile Decay
- 5.3.3.1.3.2. Downstream Velocity Constraint
- 5.3.3.1.3.3. Implicit Stage Averaging
- 5.3.3.1.4. Transient Rotor-Stator
- 5.3.3.2. Pitch Change
- 5.3.3.2.1. None
- 5.3.3.2.2. Automatic
- 5.3.3.2.3. Value
- 5.3.3.2.4. Specified Pitch Angles
- 5.3.4. Mass and Momentum Models
- 5.3.4.1. Translational Periodicity
- 5.3.4.2. General Connection
- 5.3.4.2.1. Specified Pressure Change
- 5.3.4.2.2. Specified Mass Flow Rate
- 5.3.4.3. Further Comments
- 5.4. Mesh Connection Options
- 5.4.1. Automatic Connections
- 5.4.2. Direct (One-to-One) Connections
- 5.4.3. GGI (General Grid Interface) Connections
- 5.4.3.1. Non-overlap Boundary Conditions
- 5.4.3.2. Conditional Connections
- 5.4.4. Mesh Connection Recommendations
- 5.5. Defining Domain Interfaces as Thin Surfaces
- 5.5.1. Modeling Thin Surfaces: Overview
- 5.6. Recommendations For Using Domain Interfaces
- 5.6.1. Using Domain Interfaces
- 5.6.2. Using Multiple Domain Interfaces
- 5.6.3. Using Domain Interfaces in Turbomachinery Applications
- 5.6.3.1. Case 1: Impeller/Volute
- 5.6.3.2. Case 2: Step change between rotor and stator
- 5.6.3.3. Case 3: Blade Passage at or close to the edge of a domain
- 5.6.3.4. Case 4: Blade Passage at or close to the edge of a domain
- 5.6.3.5. Case 5: Blade with thick trailing edge
- 5.7. Automatic Creation and Treatment of Domain Interfaces
- 6. Turbomachinery Blade Row Modeling
- 6.1. Transient Blade Row Modeling
- 6.1.1. Transient Blade Row Modeling Terminology
- 6.1.1.1. Abbreviations Used in this Document
- 6.1.2. Setting up a Transient Blade Row Model
- 6.1.2.1. Setting up Monitors to Check Results
- 6.1.3. Running and Postprocessing a Simulation that uses a Transient Blade Row Model
- 6.1.3.1. Stopping and then Restarting Simulations with an Increased Number of Time Steps
Per Period
- 6.1.4. Profile Transformation
- 6.1.5. Time Transformation
- 6.1.5.1. Time Transformation: Workflow Requirements
- 6.1.6. Fourier Transformation
- 6.1.6.1. Fourier Transformation: Workflow Requirements
- 6.1.7. Guidelines for Using Transient Blade Row Features
- 6.1.7.1. General Setup Guidelines
- 6.1.7.2. Guidelines for using the Time Transformation Feature
- 6.1.7.3. Guidelines for using the Fourier Transformation Feature
- 6.1.7.4. General Postprocessing Guidelines
- 6.1.8. Use Cases
- 6.1.8.1. Case 1: Transient Rotor Stator Single Stage
- 6.1.8.1.1. Profile Transformation and Fourier Transformation using Harmonic Analysis
- 6.1.8.2. Case 2: Flow Boundary Disturbance
- 6.1.8.2.1. Flow Boundary Disturbance using Harmonic Analysis
- 6.1.8.2.2. Multiple Disturbances
- 6.1.8.3. Case 3: Blade Flutter
- 6.1.8.3.1. Setting Up a Blade Flutter Simulation
- 6.1.8.3.2. Running a Blade Flutter Simulation
- 6.1.8.3.3. Blade Flutter using Harmonic Analysis
- 6.1.8.4. Case 4: Harmonic Forced Response
- 6.1.8.5. Case 5: Transient Rotor Stator Multi-Stage Cases
- 6.1.8.5.1. Modeling a Single-pitch-ratio Multistage Turbomachine using the Time
Transformation Method
- 6.1.8.5.2. Modeling 1.5 Stages with Two Different Pitch Ratios using the Time
Transformation Method
- 6.1.8.5.3. Modeling a multistage turbomachine with Time Transformation TRS and other
interfaces: Profile Transformation & Stage
- 6.1.8.5.4. Modeling a multistage turbomachine with Time Transformation TRS and
single-sided Time Transformation interfaces (STT-TRS)
- 6.1.8.6. Case 6: Transient Rotor Stator Cases with Asymmetric Flow
- 6.1.8.6.1. Modeling an Impeller in a Vaneless Volute
- 6.1.8.6.2. Modeling an Impeller in a Vaned Volute
- 6.2. Blade Film Cooling
- 6.2.1. Options for Modeling Blade Film Cooling
- 6.2.1.1. Modeling Blade Film Cooling with Injection Regions
- 7. Multiphase Flow Modeling
- 7.1. Multiphase Terminology
- 7.1.1. Multiphase Flow
- 7.1.2. Eulerian-Eulerian
- 7.1.3. Inhomogeneous Multiphase Flow
- 7.1.4. Homogeneous Multiphase Flow
- 7.1.5. Multicomponent Multiphase Flow
- 7.1.6. Volume Fraction
- 7.1.7. Free Surface Flow
- 7.1.8. Surface Tension
- 7.2. Multiphase Examples
- 7.2.1. Water Droplets in Air
- 7.2.2. Air Bubbles in Water
- 7.2.3. Gas-Solid and Liquid-Solid Flow
- 7.2.4. Three-Phase Flow
- 7.2.5. Polydispersed Flow
- 7.3. Eulerian-Eulerian Multiphase Versus Particle Transport
- 7.4. Specifying Fluids for Multiphase Flow
- 7.4.1. Morphology
- 7.4.1.1. Continuous Fluid
- 7.4.1.2. Dispersed Fluid
- 7.4.1.3. Dispersed Solid
- 7.4.1.4. Particle Transport Fluid
- 7.4.1.5. Particle Transport Solid
- 7.4.1.6. Polydispersed Fluid
- 7.4.1.7. Droplets (Phase Change)
- 7.4.2. Mean Diameter
- 7.4.3. Minimum Volume Fraction
- 7.4.4. Maximum Packing
- 7.5. The Homogeneous and Inhomogeneous Models
- 7.5.1. The Inhomogeneous (Interfluid Transfer) Model
- 7.5.1.1. The Particle Model
- 7.5.1.2. The Mixture Model
- 7.5.1.3. The Free Surface Model
- 7.5.2. The Homogeneous Model
- 7.6. Buoyancy in Multiphase Flow
- 7.6.1. Fluid Buoyancy Model
- 7.6.1.1. Density Difference
- 7.6.1.2. Boussinesq
- 7.7. Multicomponent Multiphase Flow
- 7.8. Interphase Momentum Transfer Models
- 7.8.1. Interphase Drag
- 7.8.1.1. Interphase Drag for the Particle Model
- 7.8.1.1.1. Specifying a Drag Coefficient
- 7.8.1.1.2. Sparsely Distributed Solid Particles
- 7.8.1.1.2.1. Sparsely Distributed Solid Particles: Schiller Naumann Drag
Model
- 7.8.1.1.3. Densely Distributed Solid Particles
- 7.8.1.1.3.1. Densely Distributed Solid Particles: Wen Yu Drag Model
- 7.8.1.1.3.2. Densely Distributed Solid Particles: Gidaspow Drag Model
- 7.8.1.1.4. Sparsely Distributed Fluid Particles (drops and bubbles)
- 7.8.1.1.4.1. Sparsely Distributed Fluid Particles: Ishii-Zuber Drag Model
- 7.8.1.1.4.2. Sparsely Distributed Fluid Particles: Grace Drag Model
- 7.8.1.1.4.3. Sparsely Distributed Fluid Particles: Availability
- 7.8.1.1.5. Densely Distributed Fluid Particles
- 7.8.1.1.5.1. Densely Distributed Fluid Particles: Ishii-Zuber Drag Model
- 7.8.1.1.5.2. Densely Distributed Fluid Particles: Grace Drag Model
- 7.8.1.2. Interphase Drag for the Mixture Model
- 7.8.2. Lift Force
- 7.8.3. Virtual Mass Force
- 7.8.4. Wall Lubrication Force
- 7.8.5. Interphase Turbulent Dispersion Force
- 7.8.5.1. Favre Averaged Drag Model
- 7.8.5.2. Lopez de Bertodano Model
- 7.9. Solid Particle Collision Models
- 7.9.1. Solid Pressure Force Model
- 7.9.2. Maximum Packing
- 7.9.3. Kinetic Theory Models
- 7.10. Interphase Heat Transfer
- 7.10.1. Inhomogeneous Interphase Heat Transfer Models
- 7.10.1.1. Particle Model Correlations for Overall Heat Transfer Coefficient
- 7.10.1.2. Mixture Model Correlations for Overall Heat Transfer Coefficient
- 7.10.1.3. Two Resistance Model for Fluid Specific Heat Transfer Coefficients
- 7.10.2. Homogeneous Heat Transfer in Multiphase Flow
- 7.11. Polydispersed, Multiple Size Group (MUSIG) Model
- 7.11.1. Setting up a Polydispersed (MUSIG or IMUSIG) Simulation
- 7.11.1.1. Creating a Polydispersed (MUSIG) Fluid
- 7.11.1.2. Boundary Conditions
- 7.11.1.3. Initial Conditions
- 7.11.1.4. Sources
- 7.11.1.5. Postprocessing Variables
- 7.11.2. MUSIG Modeling Advice
- 7.12. Turbulence Modeling in Multiphase Flow
- 7.12.1. Phase-Dependent Turbulence Models
- 7.12.1.1. Algebraic Models
- 7.12.1.2. Two Equation Models
- 7.12.1.3. Reynolds Stress Models
- 7.12.2. Homogeneous Turbulence in Inhomogeneous Flow
- 7.12.3. Enhanced Turbulence Production Models
- 7.12.4. Turbulence in Homogeneous Multiphase Flow
- 7.13. Additional Variables in Multiphase Flow
- 7.13.1. Additional Variable Interphase Transfer Models
- 7.13.1.1. Particle Model Correlations
- 7.13.1.1.1. Ranz-Marshall Correlation
- 7.13.1.1.2. Hughmark Correlation
- 7.13.1.1.3. Sherwood Number
- 7.13.1.1.4. Additional Variable Transfer Coefficient
- 7.13.1.1.5. Interface Flux
- 7.13.1.2. Mixture Model Correlations
- 7.13.2. Homogeneous Additional Variables in Multiphase Flow
- 7.14. Sources in Multiphase Flow
- 7.14.1. Fluid-Specific Sources
- 7.14.2. Bulk Sources
- 7.15. Interphase Mass Transfer
- 7.15.1. Double Precision Solver
- 7.15.2. User Specified Mass Transfer
- 7.15.3. Thermal Phase Change Model
- 7.15.3.1. Saturation Temperature
- 7.15.3.2. Wall Boiling Model
- 7.15.3.2.1. RPI Model
- 7.15.3.2.2. Using a Wall Boiling Model
- 7.15.3.3. Latent Heat
- 7.15.3.4. Heat Transfer Models
- 7.15.3.5. Interphase Heat Transfer Correlations
- 7.15.3.6. Modeling Advice
- 7.15.3.6.1. Saturated Vapor Bubbles in Subcooled or Superheated Liquid
- 7.15.3.6.2. Subcooled or Superheated Droplets in Saturated Vapor
- 7.15.3.6.3. Superheated Vapor Bubbles in Liquid
- 7.15.3.6.4. Thermal Energy and Total Energy Models
- 7.15.4. Cavitation Model
- 7.15.4.1. Rayleigh Plesset Model
- 7.15.4.2. User Defined Cavitation Models
- 7.15.5. Interphase Species Mass Transfer
- 7.15.5.1. Component Pairs
- 7.15.5.2. Two Resistance Model
- 7.15.5.3. Single Resistance Model
- 7.15.5.4. Interfacial Equilibrium Models
- 7.15.5.4.1. Liquid Evaporation (Raoult’s Law)
- 7.15.5.4.2. Gas Absorption / Dissolution (Henry’s Law)
- 7.15.5.4.3. Other Situations
- 7.15.5.5. Species Mass Transfer Coefficients
- 7.15.5.6. Modeling Advice
- 7.15.5.6.1. Liquid Evaporation
- 7.15.5.6.2. Gas Dissolution
- 7.15.5.6.3. Mixture Properties
- 7.15.5.6.4. Current Limitations
- 7.15.6. Droplet Condensation Model
- 7.16. Boundary Conditions in Multiphase Flow
- 7.16.1. Wall Boundaries in Multiphase
- 7.16.1.1. Bulk Wall Boundary Conditions
- 7.16.1.1.1. Area Contact Model
- 7.16.1.2. Fluid Dependent Wall Boundary Conditions
- 7.16.1.3. Wall Deposition
- 7.16.2. Mass Flow Inlet
- 7.16.3. Mass Flow Outlet
- 7.17. Modeling Advice for Multiphase Flow
- 7.17.1. Turbulence Models
- 7.17.2. Minimum Volume Fraction Setting
- 7.17.3. Buoyancy
- 7.17.4. Initial Conditions
- 7.17.5. Timestepping
- 7.17.6. Convergence
- 7.17.7. Transient Simulations
- 7.18. Free Surface Flow
- 7.18.1. Interface Compression Level
- 7.18.2. Supercritical and Subcritical Flow
- 7.18.3. Multiphase Model Selection
- 7.18.4. Surface Tension
- 7.18.4.1. Background
- 7.18.4.2. Discretization Options
- 7.18.4.2.1. Volume Fraction Smoothing Type
- 7.18.4.2.2. Curvature Under-Relaxation Factor
- 7.18.4.3. Initial Conditions
- 7.18.4.4. Wall Adhesion
- 7.18.5. Modeling Advice for Free Surface Flow
- 7.18.5.1. Domains
- 7.18.5.2. Turbulence Model
- 7.18.5.3. Boundary Conditions
- 7.18.5.3.1. Pressure Reference
- 7.18.5.3.2. Outlets
- 7.18.5.4. Initial Conditions
- 7.18.5.5. Timestep
- 7.18.5.6. Mesh Adaption
- 7.18.5.7. Body Forces
- 7.18.5.8. Convergence
- 7.18.5.9. Parallel
- 7.19. Algebraic Slip Model (ASM)
- 7.19.1. Algebraic Slip Model Specification
- 7.19.1.1. Fluid Models
- 7.19.1.2. Wall Deposition
- 7.19.1.3. Limitations
- 7.20. Multiphase Flow Restrictions
- 8. Particle Transport Modeling
- 8.1. Model Validity
- 8.2. Particle Transport Versus Eulerian-Eulerian Multiphase
- 8.3. Forces Acting on the Particles
- 8.3.1. Drag Force
- 8.3.2. Reference Frame Rotational Forces
- 8.3.3. Buoyancy Force
- 8.4. Creating Particle Materials
- 8.5. Particle Domain Options
- 8.5.1. Basic Settings
- 8.5.1.1. Particle Morphology Options
- 8.5.2. Fluid Models
- 8.5.2.1. Multiphase Reactions
- 8.5.2.2. Buoyancy for Particles
- 8.5.2.3. Turbulence for Particles
- 8.5.2.4. Heat Transfer for Particles
- 8.5.2.5. Radiation for Particles
- 8.5.3. Fluid Specific Models
- 8.5.3.1. Particle Diameter Distribution
- 8.5.3.1.1. Specified Diameter
- 8.5.3.1.2. Uniform in Diameter by Number
- 8.5.3.1.3. Uniform in Diameter by Mass
- 8.5.3.1.4. Normal in Diameter by Number
- 8.5.3.1.5. Normal in Diameter by Mass
- 8.5.3.1.6. Rosin Rammler
- 8.5.3.1.7. Nukiyama Tanasawa
- 8.5.3.1.8. Discrete Diameter Distribution
- 8.5.3.2. Particle Shape Factors
- 8.5.3.3. Particle Diameter Change Due to Swelling
- 8.5.3.4. Heat Transfer
- 8.5.3.5. Erosion
- 8.5.3.5.1. Finnie
- 8.5.3.5.2. Tabakoff
- 8.5.3.5.3. User Defined
- 8.5.3.6. Particle-Rough Wall Model (Virtual Wall Model)
- 8.5.3.6.1. Sommerfeld-Frank Model
- 8.5.3.7. Particle Breakup Model
- 8.5.3.8. Particle Collision Model
- 8.5.3.8.1. Requirements for the Applicability of Particle-Particle Collision
Model
- 8.5.3.9. Fluid Buoyancy Model
- 8.5.4. Fluid Pairs
- 8.5.4.1. Particle Fluid Pair Coupling Options
- 8.5.4.2. Drag Force for Particles
- 8.5.4.2.1. Particle User Source Example
- 8.5.4.2.2. Linearization Blend Factor
- 8.5.4.3. Particle User Source
- 8.5.4.4. Non-Drag Forces
- 8.5.4.4.1. Virtual Mass Force
- 8.5.4.4.2. Turbulent Dispersion Force
- 8.5.4.4.3. Pressure Gradient Force
- 8.5.4.5. Interphase Heat Transfer
- 8.5.4.5.1. Particle User Source
- 8.5.4.6. Interphase Radiation Transfer
- 8.5.4.6.1. Opaque
- 8.5.4.6.2. Blended Particle Emissivity
- 8.5.4.7. Mass Transfer
- 8.5.4.7.1. Ranz Marshall
- 8.5.4.7.2. Liquid Evaporation Model
- 8.5.4.7.3. Liquid Evaporation Model: Spray Dryer with Droplets Containing a Solid
Substrate
- 8.5.4.7.4. Liquid Evaporation Model: Oil Evaporation/Combustion
- 8.5.4.7.5. Latent Heat
- 8.5.4.8. Particle User Sources
- 8.5.4.8.1. Particle User Source example
- 8.5.5. Particle Injection Regions
- 8.6. Particle Boundary Options and Behavior
- 8.6.1. Inlet/Opening Boundaries
- 8.6.1.1. Mass and Momentum
- 8.6.1.2. Particle Position
- 8.6.1.2.1. Uniform Injection
- 8.6.1.2.2. Uniform Injection within Annulus
- 8.6.1.2.3. Injection With Line Weighting
- 8.6.1.2.4. Injection With Point Weighting
- 8.6.1.2.5. Injection With Circular Weighting
- 8.6.1.2.6. Injection With User Defined Weighting
- 8.6.1.2.7. Injection at Face Centers
- 8.6.1.2.8. Injection at IP Face Centers
- 8.6.1.2.9. Number of Positions
- 8.6.1.2.10. Point Data Format
- 8.6.1.3. Particle Locations
- 8.6.1.4. Particle Diameter Distribution
- 8.6.1.5. Particle Mass Flow Rate
- 8.6.1.6. Heat Transfer
- 8.6.1.7. Component Details
- 8.6.1.8. Particle Actions at Inlets and Openings
- 8.6.2. Outlet Boundaries
- 8.6.2.1. Particle Actions at Outlets
- 8.6.3. Wall Boundaries
- 8.6.3.1. Wall Interaction
- 8.6.3.1.1. Standard Particle-Wall Interaction
- 8.6.3.1.1.1. Restitution Coefficients for Particles
- 8.6.3.1.2. Wall Film Modeling
- 8.6.3.1.2.1. User Defined Wall Film Modeling
- 8.6.3.1.3. User Defined Particle-Wall Interaction
- 8.6.3.2. Erosion Model
- 8.6.3.3. Particle-Rough Wall Model (Virtual Wall Model)
- 8.6.3.4. Particle Breakup
- 8.6.3.5. Mass Flow Absorption
- 8.6.3.6. Mass and Momentum
- 8.6.3.7. Particle Impact Angle
- 8.6.3.8. Particle Position
- 8.6.3.9. Particle Diameter Distribution
- 8.6.3.10. Particle Mass Flow Rate
- 8.6.4. Symmetry Plane Boundaries
- 8.6.5. Interface Boundaries
- 8.6.6. Domain Interfaces
- 8.6.6.1. Fluid-Fluid
- 8.6.6.1.1. Frame Change Option = None
- 8.6.6.1.2. Frame Change Option = Frozen Rotor
- 8.6.6.1.3. Frame Change Option = Stage (Mixing-Plane)
- 8.6.6.1.4. Frame Change Option = Transient Rotor Stator
- 8.6.6.2. Periodic Connections
- 8.7. Subdomains
- 8.8. Particle Injection Regions
- 8.8.1. Sphere
- 8.8.2. Cone
- 8.8.2.1. Injection Velocity
- 8.8.2.2. An Example of a Point Cone
- 8.8.2.3. An Example of a Point Cone Using the Dispersion Angle
- 8.8.2.4. An Example of a Hollow Cone using the Dispersion Angle
- 8.8.3. Cone with Primary Breakup
- 8.8.4. User Defined Injection Regions
- 8.9. Particle Output Control
- 8.9.1. Transient Particle Diagnostics
- 8.9.1.1. User Diagnostics Routine
- 8.9.1.1.1. Example User Routine: CCL
- 8.9.1.1.2. Example User Routine: Mainline Routine
- 8.9.1.1.3. Example User Routine: Subroutine
- 8.9.1.1.4. Example: Complete CCL
- 8.9.1.2. Particle Track Output
- 8.9.2. List of Particle Variables
- 8.10. Particle Solver Control
- 8.10.1. Particle Coupling Control
- 8.10.1.1. First Iteration for Particle Calculation
- 8.10.1.2. Iteration Frequency
- 8.10.1.3. Particle Source Change Target
- 8.10.2. Particle Under-Relaxation Factors
- 8.10.2.1. Under-Relaxation Factor for Velocity, Energy, and Mass
- 8.10.2.2. Under-Relaxation Factor for First Particle Integration
- 8.10.2.3. Under-Relaxation at Time Step Start
- 8.10.3. Particle Integration
- 8.10.3.1. Number of Integration Steps Per Element
- 8.10.3.2. Maximum Particle Integration Time Step
- 8.10.3.3. Chemistry Time Step Multiplier
- 8.10.4. Particle Termination Control
- 8.10.4.1. Maximum Tracking Time
- 8.10.4.2. Maximum Tracking Distance
- 8.10.4.3. Maximum Number of Integration Steps
- 8.10.4.4. Minimum Diameter
- 8.10.4.5. Minimum Total Mass
- 8.10.4.6. Mass Fraction Limits
- 8.10.5. Particle Ignition
- 8.10.6. Particle Source Smoothing
- 8.10.7. Vertex Variable Smoothing
- 8.10.8. Particle Source Control
- 8.10.8.1. Particle Heat Source Bounding
- 8.10.8.2. Particle Momentum Source Bounding
- 8.10.8.3. Linearization of Particle Mass Sources
- 8.10.8.3.1. Simple Mass Transfer Model
- 8.10.8.3.2. Liquid Evaporation Model
- 8.10.8.3.2.1. Droplet Temperature Below Boiling Point
- 8.10.8.3.2.2. Droplet Temperature Above Boiling Point
- 8.10.8.4. Particle Source Control Usage Notes
- 8.11. Multiphase Reactions and Combustion
- 8.11.1. Specification of a Binary Mixture
- 8.11.2. Reactants/Products
- 8.11.2.1. Example
- 8.11.3. Multiphase Reactions
- 8.11.3.1. Mass Arrhenius
- 8.11.3.2. Field Char Oxidation Model
- 8.11.3.3. Gibb Char Oxidation Model
- 8.11.3.4. Particle User Routine
- 8.11.3.5. Heat Release/Heat Release Distribution
- 8.11.4. Hydrocarbon Fuel Model Setup
- 8.11.4.1. Setup using Library Template (Recommended)
- 8.11.4.2. Set Up Manually (Experts)
- 8.11.4.3. Using Generic Multiphase Reactions Setup
- 8.12. Restrictions for Particle Transport
- 8.13. Restrictions for Particle Materials
- 8.14. Convergence Control for Particle Transport
- 8.15. Expert Parameters for Particle Tracking
- 8.16. Particle Diagnostics
- 8.17. Integrated Particle Sources for the Coupled Continuous Phase
- 8.18. Transient Simulations: What is Different for Particles?
- 9. Combustion Modeling
- 9.1. Reaction Models
- 9.1.1. Naming Convention for Reaction Schemes
- 9.1.2. Reaction Rate Types
- 9.1.2.1. Arrhenius
- 9.1.2.2. Arrhenius with Temperature PDF
- 9.1.2.3. Expression
- 9.1.2.4. Equilibrium
- 9.2. Using Combustion Models
- 9.2.1. Which Model is the Most Appropriate?
- 9.3. Eddy Dissipation Model
- 9.3.1. Fluid Models
- 9.3.1.1. Chemical Time Scale
- 9.3.1.2. Extinction Temperature
- 9.3.1.3. Maximum Flame Temperature
- 9.3.1.4. Mixing Rate Limit
- 9.3.1.5. Eddy Dissipation Model Coefficient A/B
- 9.3.1.6. Component Details
- 9.3.2. Initialization
- 9.3.3. Solver Parameters
- 9.4. Finite Rate Chemistry Model
- 9.4.1. Fluid Models
- 9.4.1.1. Chemical Time Scale
- 9.4.1.2. Extinction Temperature
- 9.4.1.3. Component Details
- 9.4.2. Initialization
- 9.4.3. Solver Parameters
- 9.5. Combined EDM/Finite Rate Chemistry Model
- 9.5.1. Fluid Models
- 9.5.1.1. Chemical Time Scale
- 9.5.1.2. Extinction Temperature
- 9.5.1.3. Component Details
- 9.5.2. Initialization
- 9.5.3. Solver Parameters
- 9.6. Reaction-Step Specific Combustion Model Control
- 9.7. Laminar Flamelet with PDF Model
- 9.7.1. Fluid Models
- 9.7.1.1. Component Details
- 9.7.2. Boundary Settings
- 9.7.2.1. Fuel
- 9.7.2.2. Oxidizer
- 9.7.2.3. Mixture Fraction
- 9.7.2.4. Mixture Fraction Mean and Variance
- 9.7.3. Initialization
- 9.7.4. Solver Parameters
- 9.8. Burning Velocity Model (Premixed or Partially Premixed)
- 9.8.1. Fluid Models
- 9.8.1.1. Component Details
- 9.8.2. Turbulent Burning Velocity
- 9.8.2.1. Value
- 9.8.2.2. Zimont Correlation
- 9.8.2.3. Peters Correlation
- 9.8.2.4. Mueller Correlation
- 9.8.3. Spark Ignition Model
- 9.8.3.1. Spark Kernel
- 9.8.3.2. Ignition Time
- 9.8.3.3. Spark Energy
- 9.8.4. Boundary Settings
- 9.8.4.1. Fuel
- 9.8.4.2. Oxidizer
- 9.8.4.3. Mixture Fraction
- 9.8.4.4. Mixture Fraction Mean and Variance
- 9.8.4.5. Reaction Progress
- 9.8.5. Initialization
- 9.8.5.1. Reaction Progress
- 9.8.6. Solver Parameters
- 9.8.7. Other Parameters
- 9.9. Extended Coherent Flame Model (ECFM)
- 9.9.1. Fluid Models
- 9.9.1.1. Laminar Flame Thickness
- 9.9.1.2. Component Details
- 9.9.2. Spark Ignition Model
- 9.9.2.1. Spark Kernel
- 9.9.2.2. Ignition Time
- 9.9.2.3. Spark Energy
- 9.9.3. Boundary Settings
- 9.9.3.1. Mixture
- 9.9.3.2. Reaction Progress
- 9.9.3.3. Flame Surface Density
- 9.9.4. Initialization
- 9.9.4.1. Mixture
- 9.9.4.2. Reaction Progress
- 9.9.4.3. Flame Surface Density
- 9.9.5. Solver Parameters
- 9.9.6. Other Parameters
- 9.10. Residual Material Model
- 9.10.1. Fluid Models
- 9.10.1.1. Reinitialization
- 9.10.2. Laminar Burning Velocity
- 9.10.3. Boundary Settings
- 9.10.4. Initialization
- 9.10.5. Other Parameters
- 9.11. Flamelet Libraries
- 9.11.1. Loading Flamelet Libraries
- 9.11.2. Flamelet Library (FLL) File Format
- 9.11.2.1. Flamelet Library (FLL) File Contents
- 9.11.2.2. Flamelet Library (FLL) File Format
- 9.11.2.2.1. Detailed FLL File Format
- 9.11.2.2.1.1. Comment Section
- 9.11.2.2.1.2. Header
- 9.11.2.2.1.3. Unburnt Flamelet
- 9.11.2.2.1.4. Burnt Flamelet Solution
- 9.11.2.2.2. Example FLL File
- 9.11.3. Stoichiometric Mixture Fraction
- 9.11.3.1. Value
- 9.11.3.2. Reactants
- 9.11.3.3. Automatic
- 9.11.4. Laminar Burning Velocity
- 9.11.4.1. Value
- 9.11.4.2. Metghalchi and Keck
- 9.11.4.3. Equivalence Ratio Correlation
- 9.11.4.3.1. Reference Burning Velocity
- 9.11.4.3.2. Flammability Limits
- 9.11.4.3.3. Preheat Temperature Dependency
- 9.11.4.3.4. Pressure Dependency
- 9.11.4.3.5. Residual Material Dependency
- 9.12. Autoignition Model
- 9.12.1. Ignition Delay Time
- 9.12.2. Customize Knock Reaction Rate
- 9.13. NO Model
- 9.13.1. Introduction to the NO Model
- 9.13.1.1. NO Model with Eddy Dissipation / Finite Rate Chemistry / Combined
Model
- 9.13.1.2. NO Model with Flamelet Model
- 9.13.1.3. NO Model for Coal Combustion / Hydrocarbon Fuel Model
- 9.13.2. Fluid Models
- 9.13.2.1. Component Details
- 9.13.2.2. Boundary Conditions
- 9.13.3. Initialization
- 9.13.4. Solver Parameters
- 9.14. Chemistry Postprocessing
- 9.14.1. Fluid Models
- 9.14.1.1. Chemistry Postprocessing
- 9.14.1.2. Materials List
- 9.14.1.3. Reactions List
- 9.14.2. Boundary and Initial Conditions
- 9.14.3. Solver Parameters
- 9.15. Soot Model
- 9.15.1. Fluid Models
- 9.15.1.1. Soot Model
- 9.15.1.2. Fuel Material
- 9.15.1.3. Soot Material
- 9.15.1.4. Fuel Consumption Reaction
- 9.15.1.5. Fuel Carbon Mass Fraction
- 9.15.1.6. Soot Particle Mean Diameter
- 9.15.2. Boundary Settings
- 9.15.2.1. Mass Concentration and Nuclei Concentration
- 9.15.2.2. Mass Fraction and Specific Nuclei Specific Concentration
- 9.15.3. Initialization
- 9.16. Phasic Combustion
- 9.17. General Advice for Modeling Combusting Flows in CFX
- 9.17.1. General Procedure for Running Simulations
- 9.17.2. Advantages and Disadvantages of Multistep Reaction Mechanisms
- 9.17.3. Tips for Improving Convergence
- 9.17.4. Advanced Combustion Controls
- 10. Radiation Modeling
- 10.1. Comparison of the Radiation Models
- 10.2. Terminology
- 10.2.1. Absorptivity
- 10.2.2. Diffuse
- 10.2.3. Gray
- 10.2.4. Opaque
- 10.2.5. Reflectivity
- 10.2.6. Spectral
- 10.2.7. Transmissivity
- 10.3. Material Properties for Radiation
- 10.4. Rosseland Model
- 10.4.1. Fluid Models
- 10.4.1.1. Include Boundary Temperature Slip
- 10.4.1.2. Spectral Model
- 10.4.1.3. Scattering Model
- 10.4.2. Initial Conditions
- 10.4.3. Solver Control
- 10.5. The P1 Model
- 10.5.1. Fluid Models
- 10.5.1.1. Spectral Model
- 10.5.1.2. Scattering Model
- 10.5.2. Initial Conditions
- 10.5.3. Solver Control
- 10.6. The Discrete Transfer Model
- 10.6.1. Fluid Models
- 10.6.1.1. Number of Rays
- 10.6.1.2. Transfer Mode
- 10.6.1.3. Spectral Model
- 10.6.1.4. Scattering Model
- 10.6.2. Initial Conditions
- 10.6.3. Solver Control
- 10.7. The Monte Carlo Model
- 10.7.1. Fluid Models
- 10.7.1.1. Number of Histories
- 10.7.1.2. Transfer Mode
- 10.7.1.3. Spectral Model
- 10.7.1.4. Scattering Model
- 10.7.2. Initial Conditions
- 10.7.3. Solver Control
- 10.8. General Radiation Considerations
- 10.8.1. Domain Considerations
- 10.8.2. Domain Interface Considerations
- 10.8.3. Boundary Details
- 10.8.3.1. External Blackbody Temperature
- 10.8.3.2. Local Temperature
- 10.8.3.3. Radiation Intensity
- 10.8.3.4. Radiative Heat Flux
- 10.8.3.5. Emissivity
- 10.8.3.6. Diffuse Fraction
- 10.8.4. Sources
- 10.8.4.1. Directional Radiation Source
- 10.8.4.2. Isotropic Radiation Source
- 10.8.4.3. Directional Radiation Flux
- 10.8.4.4. Combining Radiation Sources
- 10.8.4.5. Isotropic Radiation Flux
- 10.8.5. Thermal Radiation Control
- 10.8.5.1. Iteration Interval
- 10.8.5.2. Diagnostic Output Level
- 10.8.5.3. Ray Reflection Control
- 10.8.5.4. Coarsening Control
- 10.8.5.4.1. Target Coarsening Rate
- 10.8.5.4.2. Minimum Blocking Factor
- 10.8.5.4.3. Maximum Blocking Factor
- 10.8.5.4.4. Small Coarse Grid Size
- 10.8.5.4.5. Diagnostic Output Level
- 10.8.5.5. Ray Tracing Control
- 10.8.5.5.1. Iteration Interval
- 10.8.5.5.2. Maximum Buffer Size
- 10.8.5.5.3. Maximum Number of Track Segments
- 10.8.5.5.4. Maximum Number of Iterations
- 10.8.5.5.5. Iteration Convergence Criterion
- 10.8.5.5.6. Ray Reflection Threshold
- 10.8.5.5.7. File Path
- 10.8.6. Spectral Model
- 10.8.6.1. Gray
- 10.8.6.2. Multiband
- 10.8.6.3. Multigray/Weighted Sum of Gray Gases
- 10.8.6.4. When is a Non-Gray Spectral Model Appropriate?
- 10.8.7. Scattering Model
- 10.8.7.1. Option = None
- 10.8.7.2. Option = Isotropic
- 10.8.7.3. Option = Linear Anisotropy
- 10.8.8. Radiometers
- 11. Rigid Body Modeling
- 11.1. Introduction to Rigid Body Modeling
- 11.2. Rigid Body Motion
- 11.3. Modeling a Rigid Body
- 11.3.1. Modeling a Rigid Body as a Collection of 2D Regions
- 11.3.2. Modeling a Rigid Body using an Immersed Solid
- 11.4. CEL Access of the Rigid Body State Variables
- 11.5. Monitor Plots related to Rigid Bodies
- 11.6. Solver Control of Rigid Bodies
- 11.7. Limitations to using Rigid Bodies
- 12. Real Fluid Properties
- 12.1. Setting up a Dry Real Gas Simulation
- 12.1.1. Using a Real Gas Equation of State
- 12.1.1.1. Redlich Kwong Dry Steam
- 12.1.1.2. Redlich Kwong Dry Refrigerants
- 12.1.1.3. Redlich Kwong Dry Hydrocarbons
- 12.1.1.4. Dry Redlich Kwong
- 12.1.2. Metastable States and Saturation Curve Clipping
- 12.1.3. Additional Comments
- 12.1.4. Using the IAPWS Equation of State
- 12.1.5. Using Real Gas Property (RGP) Tables
- 12.1.5.1. Loading .rgp files
- 12.1.5.2. Comments on Pressure and Temperature Ranges
- 12.1.5.3. Saturation Curve Clipping
- 12.1.6. Using a General Set-up (CEL or User Fortran)
- 12.1.6.1. Saturation Curve Clipping
- 12.2. Table Interpolation and Saturation Curve Clipping
- 12.2.1. Table Interpolation
- 12.2.2. Table Inversion
- 12.3. Equilibrium Phase Change Model
- 12.4. Setting up an Equilibrium Phase Change Simulation
- 12.4.1. Using a Real Gas Equation of State
- 12.4.1.1. Redlich Kwong Wet Steam
- 12.4.1.2. Redlich Kwong Wet Refrigerants
- 12.4.1.3. Redlich Kwong Wet Hydrocarbons
- 12.4.1.4. Wet Redlich Kwong
- 12.4.1.5. Creating a Liquid Phase Material
- 12.4.1.6. Creating the Homogeneous Binary Mixture
- 12.4.2. Using Real Gas Property (.rgp) table files
- 12.4.2.1. Loading an .rgp file
- 12.4.2.2. Creating the Homogeneous Binary Mixture
- 12.4.3. Using a General Set-up
- 12.4.3.1. Constants or Expressions
- 12.4.3.2. Antoine Equation
- 12.4.4. CFX-Pre Domain Models Set-up
- 12.5. Important Considerations
- 12.5.1. Properties
- 12.5.2. Inlet Boundary Conditions
- 12.6. Real Gas Property (RGP) File Contents
- 12.6.1. Superheat Region
- 12.6.2. Saturated Region
- 12.7. Real Gas Property (RGP) File Format
- 12.7.1. Organization of an .rgp File
- 12.7.1.1. Detailed .rgp File Format
- 12.7.1.2. Example .rgp File
- 12.8. Parameters in the .rgp File Controlling the Real Gas Model
- 12.8.1. REAL_GAS_MODEL
- 12.8.2. P_CRITICAL, T_CRITICAL
- 12.8.3. UNITS
- 12.8.4. MIN_PROPERTY_T, MAX_PROPERTY_T,
MIN_PROPERTY_P and MAX_PROPERTY_P
- 12.8.5. MOLECULAR_VISCOSITY, MOLECULAR_CONDUCTIVITY
- 12.8.6. GAS_CONSTANT
- 12.8.7. TMIN_SATURATION, TMAX_SATURATION
- 12.8.8. P_TRIPLE, T_TRIPLE
- 12.8.9. SUPERCOOLING
- 13. Operating Maps and Operating Point Cases
- 13.1. Defining an Operating Point Case
- 13.2. Limitations
- 13.3. Running an Operating Point Case
- 13.4. Post-processing an Operating Point Case
- 14. Coupling CFX to an External Solver
- 14.1. Coupling CFX to an External Solver: System Coupling Simulations
- 14.1.1. Supported Capabilities and Limitations
- 14.1.2. Variables Available for System Coupling
- 14.1.2.1. Wall Force Data transferred from CFX System to System Coupling System
- 14.1.2.2. Displacement transferred from System Coupling System to CFX System
- 14.1.2.3. Thermal Data exchange between CFX and System Coupling
- 14.1.3. System Coupling Related Settings in CFX
- 14.1.4. Restarting CFX Analyses as Part of System Coupling
- 14.1.4.1. Generating CFX Restart Files
- 14.1.4.2. Specify a Restart Point in CFX
- 14.1.4.3. Making Changes in CFX Before Restarting
- 14.1.4.4. Recovering the CFX Restart Point after a Workbench Crash
- 14.1.4.5. Restarting from the Beginning of the Coupled Analysis in Workbench
- 14.1.5. Initializing a Coupled CFX Analysis from an Independent CFX
Analysis
- 14.1.6. Running CFX as a Participant from System Coupling's GUI or CLI
- 14.1.7. Product Licensing Considerations when using System Coupling
- 14.2. Coupling CFX to an External Solver: Functional Mock-up Interface (FMI) Co-simulation
- 14.2.1. Limitations of using CFX with FMI
- 14.2.2. Units of FMU Output Variables
- 14.3. Coupling CFX to an External Solver: GT-SUITE Coupling Simulations
- 14.3.1. Supported Capabilities and Limitations
- 14.3.2. GT-SUITE Coupling Related Settings in CFX
- 14.3.3. Setting up a CFX Simulation to use GT-SUITE
- 14.3.3.1. Initializing or Re-initializing a GT-SUITE Model
- 14.3.3.2. Editing a GT-SUITE Model
- 14.3.4. Restarting CFX Analyses as Part of GT-SUITE Coupling
- 15. Aerodynamic Noise Analysis
- 15.1. Overview of Aerodynamic Noise Analysis
- 15.1.1. Near Field Noise Prediction
- 15.1.2. Far Field Noise Prediction
- 15.2. Types of Noise Sources
- 15.2.1. Monopole Sources
- 15.2.2. Dipole and Rotating Dipole Sources
- 15.2.3. Quadrupole Sources
- 15.3. Noise Source Strength Estimation in CFX
- 15.3.1. Monopole Sources
- 15.3.1.1. Monopole Data in the CFX-Solver Manager
- 15.3.1.2. Exporting Surface Monopole Data
- 15.3.2. Dipole or Rotating Dipole Sources
- 15.3.2.1. Dipole Data in the CFX-Solver Manager
- 15.3.2.2. Exporting Surface Dipole Data
- 15.3.3. Important Boundary Results Export Notes
- 15.3.4. Quadrupole Sources
- 15.3.4.1. Exporting Acoustic Quadrupole Data
- 15.4. The CGNS Export Data Format
- 15.4.1. File Naming Conventions
- 15.4.1.1. Important Notes
- 15.4.2. CGNS File Structure
- 15.4.2.1. Common Nodes for Mesh and Solution Files
- 15.4.2.2. Mesh File Specific Nodes
- 15.4.2.3. Solution File Specific Nodes
- 16. Advice on Flow Modeling
- 16.1. Solving Problems with Ansys CFX
- 16.2. Modeling 2D Problems
- 16.3. Mesh Issues
- 16.3.1. Physical Modeling Errors: YPLUS and Mesh Resolution Near the
Wall
- 16.3.2. Measures of Mesh Quality
- 16.3.2.1. Mesh Orthogonality
- 16.3.2.2. Mesh Expansion
- 16.3.2.3. Mesh Aspect Ratio
- 16.4. Timestep Selection
- 16.4.1. Steady-state Time Scale Control
- 16.4.1.1. Max. Iterations
- 16.4.1.2. Minimum Number of Iterations
- 16.4.1.3. Time Scale Control
- 16.4.1.3.1. Auto Timescale
- 16.4.1.3.1.1. Length Scale Option
- 16.4.1.3.1.2. Timescale Factor
- 16.4.1.3.1.3. Maximum Timescale
- 16.4.1.3.1.4. Controlling the Time Scale with the Command File Editor
- 16.4.1.3.2. Local Time Scale Factor
- 16.4.1.3.3. Physical Time Scale
- 16.4.1.4. Solid Time Scale Control
- 16.4.1.4.1. Solid Timescale Factor
- 16.4.1.5. Controlling the Timescale for Each Equation
- 16.4.2. Transient Timestep Control
- 16.4.2.1. Time Duration
- 16.4.2.2. Timesteps: Timesteps List
- 16.4.2.3. Timesteps: Timesteps for the Run List
- 16.4.2.4. Timesteps: Adaptive
- 16.4.2.5. Initial Time
- 16.4.2.6. Max. Iter. Per Step
- 16.4.2.7. Transient Scheme
- 16.4.2.7.1. First Order Backward Euler
- 16.4.2.7.2. Second Order Backward Euler
- 16.4.2.7.2.1. Timestep Initialization
- 16.4.2.7.3. High Resolution
- 16.4.2.7.4. Harmonic Balance
- 16.4.2.7.5. Bounded Harmonic Balance
- 16.4.2.7.6. None
- 16.5. Advection Scheme Selection
- 16.5.1. Upwind
- 16.5.2. High Resolution
- 16.5.3. Specified Blend Factor
- 16.5.4. Central Difference
- 16.5.5. Advection Scheme for Turbulence Equations
- 16.5.6. Advection Schemes for Multiphase Volume Fractions
- 16.5.7. Comparisons to CFX-TASCflow
- 16.6. Dynamic Model Control
- 16.6.1. Global Dynamic Model Control
- 16.6.2. Turbulence Control
- 16.6.3. Combustion Control
- 16.6.4. Hydro Control
- 16.6.5. Harmonic Balance Control
- 16.7. Pressure Level Information
- 16.8. Interpolation Scheme
- 16.8.1. Pressure Interpolation Type
- 16.8.2. Velocity Interpolation Type
- 16.8.3. Shape Function Option
- 16.9. Temperature Damping
- 16.9.1. Option
- 16.9.2. Temperature-Damping Limit
- 16.9.3. Under-Relaxation Factor
- 16.10. Monitoring and Obtaining Convergence
- 16.10.1. Residuals
- 16.10.1.1. Residual Type and Target Levels
- 16.10.1.1.1. RMS Residual Level
- 16.10.1.1.2. MAX Residual Level
- 16.10.2. Using Interrupt Control in Cases with Transient Convergence
Behavior
- 16.10.3. Global Balances and Integrated Quantities
- 16.10.3.1. Positive and Negative Domain Source Totals
- 16.10.3.2. Conservation Target
- 16.10.4. Convergence Rate
- 16.10.5. Problems with Convergence
- 16.10.5.1. Start-up Problems
- 16.10.5.2. Later Problems
- 16.11. Solver Issues
- 16.11.1. Robustness and Accuracy
- 16.11.2. Linear Solver Failure
- 16.12. How CEL Interacts with the CFX-Solver
- 16.13. Best Practice Guides
- 17. Using the Solver in Parallel
- 17.1. Partitioning
- 17.1.1. Node-based and Element-based Partitioning
- 17.1.2. Multilevel Graph Partitioning Software - MeTiS
- 17.1.3. Recursive Coordinate Bisection
- 17.1.4. Optimized Recursive Coordinate Bisection
- 17.1.5. Simple Assignment
- 17.1.6. User Specified Direction
- 17.1.7. Directional Recursive Coordinate Bisection
- 17.1.8. Radial
- 17.1.9. Circumferential
- 17.2. Setup for Parallel Runs
- 17.3. Message Passing Interface (MPI) for Parallel
- 17.4. Advice on Using Ansys CFX in Parallel
- 17.4.1. Optimizing Mesh Partitioning
- 17.4.2. Optimizing the Parallel Run
- 17.4.3. Error Handling
- 17.4.3.1. Problems with Intel MPI
- 17.4.3.1.1. Semaphores and Shared-memory Segments
- 17.4.3.1.2. Typical Problems When You Run Out of Semaphores
- 17.4.3.1.3. Checking How Many Semaphores Are in Use, and by Whom
- 17.4.3.1.4. Deleting the Semaphores You Are Using
- 17.4.3.1.5. Shared-memory Segment Size Problems
- 17.4.3.1.6. Checking Semaphore ID and Shared Memory Segment Limits
- 17.4.3.1.6.1. Linux
- 17.4.3.1.7. Increasing the Maximum Number of Semaphores for Your System
- 17.4.3.1.8. Max Locked Memory
- 17.4.3.2. Problems with the Ansys CFX Executables
- 17.4.3.3. Problems with Ansys CFX Licenses
- 17.4.3.4. Windows Problems
- 17.4.3.5. Linux Problems
- 17.4.3.6. Convergence Problems
- 17.4.4. Measuring Parallel Performance
- 17.4.4.1. Wall Clock Performance
- 17.4.4.2. Memory Efficiency
- 17.4.4.3. Visualizing Mesh Partitions
- 18. Expert Control Parameters
- 18.1. When to Use Expert Control Parameters
- 18.2. Modifying Expert Control Parameters
- 18.3. CFX-Solver Expert Control Parameters
- 18.3.1. Discretization Parameters
- 18.3.2. Linear Solver Parameters
- 18.3.3. I/O Control Parameters
- 18.3.4. Convergence Control Parameters
- 18.3.5. Physical Model Parameters
- 18.3.6. Particle Tracking Parameters
- 18.3.7. Transient Blade Row Model Parameters
- 18.3.8. Run Control Parameters
- 18.3.9. Model Override Parameters
- 19. User Fortran
- 19.1. User CEL Functions and Routines
- 19.1.1. Structure of User CEL Functions
- 19.1.2. User CEL Function Units
- 19.2. User Junction Box Routines
- 19.2.1. Junction Box Routine Options and Parameters
- 19.2.2. Calling Junction Box Routines
- 19.2.3. Reading Data with the User Input Option
- 19.2.4. Writing Data with the User Output Option
- 19.2.5. Other Junction Box Location Options
- 19.2.6. Structure of the User Junction Box Routines
- 19.2.7. Which Call
- 19.3. Shared Libraries
- 19.3.1. Creating the Shared Libraries
- 19.3.2. Default Fortran Compilers and Compiler Options
- 19.4. User Parameters
- 19.4.1. Adding and Modifying User Parameters
- 19.4.2. Parameter Names
- 19.4.3. Parameter Values
- 19.4.4. Example of CCL File User Parameters
- 19.4.5. Looking up a String Value
- 19.4.6. String Value Example
- 19.4.7. Looking Up List Values
- 19.4.8. Real Value Example
- 19.4.9. Looking up Sizes of Lists and Strings
- 19.4.10. Real List Example
- 19.4.11. Printing Parameters
- 19.5. Utility Routines for User Functions
- 19.5.1. Introduction to Utility Routines for User Functions
- 19.5.2. Data Acquisition Routines
- 19.5.2.1. USER_GETVAR
- 19.5.2.1.1. Boundcon Operator
- 19.5.2.1.2. Variable Shape and Dimensions
- 19.5.2.2. USER_GET_GVAR
- 19.5.2.2.1. USER_GET_GVAR with Multiphase Flow
- 19.5.2.3. USER_CALC_INFO
- 19.5.2.4. USER_GET_MESH_INFO
- 19.5.2.4.1. Global Mesh Information: CZONE = ‘ ‘, LOCALE = ‘ ‘
- 19.5.2.4.2. Zonal Information: CZONE = ‘ZNm’, LOCALE = ‘ ‘
- 19.5.2.4.3. Boundary Condition Patch Information: CZONE = ‘ZNm’,
LOCALE = ‘BCPn‘
- 19.5.2.4.3.1. Face Set Information: CZONE = ‘ZNm’, LOCALE = ‘FCSn‘
- 19.5.2.4.3.2. Element Set or Element Group Information: CZONE = ‘ZNm’,
LOCALE = ‘ELSn‘ or ‘IELGn‘ or ‘BELGn‘
- 19.5.2.5. USER_GET_MESHDATA
- 19.5.2.6. USER_GET_PHYS_INFO
- 19.5.2.6.1. Zonal Information: CZONE = ‘ZNm’, CPHASE = ‘ ‘
- 19.5.2.6.2. Phase Information: CZONE = ‘ZNm’, CPHASE = ‘FLm‘
or ‘SLm’
- 19.5.2.7. USER_GET_TRANS_INFO
- 19.5.2.8. USER_ASSEMBLE_INFO
- 19.5.2.9. GET_PARALLEL_INFO
- 19.5.2.10. CAL_MESHMAP
- 19.5.3. Name Conversions
- 19.5.3.1. CONVERT_NAME_U2S
- 19.5.3.2. CONVERT_NAME_S2U
- 19.5.3.3. VAR_ALIAS
- 19.5.3.4. LOCALE_ALIAS
- 19.5.3.5. CONVERT_USER_NAMES
- 19.5.3.6. GET_PHASE_FROM_VAR
- 19.5.3.7. PARSMP
- 19.5.4. Character Handling
- 19.5.4.1. CFROMD
- 19.5.4.2. CFROMI
- 19.5.4.3. CFROMR
- 19.5.4.4. DFROMC
- 19.5.4.5. IFROMC
- 19.5.4.6. RFROMC
- 19.5.4.7. LENACT
- 19.5.4.8. EDIT
- 19.5.4.9. IOPNAM
- 19.5.4.10. CCATI
- 19.5.5. Output Routines
- 19.5.5.1. MESAGE
- 19.5.5.2. ERRMSG
- 19.6. CFX Memory Management System (MMS)
- 19.6.1. Introduction to the Memory Management System
- 19.6.2. Error Conventions
- 19.6.3. Stack Pointers
- 19.6.4. Subroutines
- 19.6.4.1. Directories
- 19.6.4.1.1. MAKDIR
- 19.6.4.1.2. DELDIR
- 19.6.4.1.3. CHGDIR
- 19.6.4.1.4. CHMDIR
- 19.6.4.1.5. PSHDIR
- 19.6.4.1.6. PSHDRH
- 19.6.4.1.7. POPDIR
- 19.6.4.1.8. LISDAT
- 19.6.4.1.9. PUTDIR
- 19.6.4.1.10. FNDFIL
- 19.6.4.2. Data Areas
- 19.6.4.2.1. MAKDAT
- 19.6.4.2.2. MAKVEC
- 19.6.4.2.3. GRBSTK
- 19.6.4.2.4. SQZDAT
- 19.6.4.2.5. RESIZE
- 19.6.4.2.6. DELDAT
- 19.6.4.2.7. LOCDAT
- 19.6.4.2.8. INFDAT
- 19.6.4.3. Renaming And Linking
- 19.6.4.3.1. RENAM
- 19.6.4.3.2. MAKLNK
- 19.6.4.3.3. DELLNK
- 19.6.4.4. Copying
- 19.6.4.4.1. COPDAT
- 19.6.4.4.2. COPDIR
- 19.6.4.5. Setting and Reading Individual Values
- 19.6.4.5.1. POKECA
- 19.6.4.5.2. POKECS
- 19.6.4.5.3. POKED
- 19.6.4.5.4. POKEI
- 19.6.4.5.5. POKEL
- 19.6.4.5.6. POKER
- 19.6.4.5.7. PEEKCA
- 19.6.4.5.8. PEEKCS
- 19.6.4.5.9. PEEKD
- 19.6.4.5.10. PEEKI
- 19.6.4.5.11. PEEKL
- 19.6.4.5.12. PEEKR
- 19.6.4.6. Name lists
- 19.6.4.6.1. NAMLST
- 19.6.4.7. Memory Management Statistics
- 19.6.4.7.1. GETMMS
- 19.6.4.7.2. WSTAT
- 19.7. User Fortran in Ansys Workbench
- 19.8. User CEL Examples
- 19.8.1. User CEL Example 1: User Defined Momentum Source
- 19.8.1.1. Problem Setup
- 19.8.1.2. Creating the User CEL Function
- 19.8.1.3. User Fortran Routine
- 19.8.2. User CEL Example 2: Using Gradients for an Additional Variable
Source
- 19.8.2.1. Problem Setup
- 19.8.2.1.1. Creating the Additional Variables
- 19.8.2.1.2. Creating the Domain
- 19.8.2.1.3. Creating the User CEL Routine and Function
- 19.8.2.1.4. Defining the Source Term
- 19.8.2.2. User Fortran Routine
- 19.8.3. User CEL Example 3: Integrated Quantity Boundary Conditions
- 19.8.3.1. Problem Setup
- 19.8.3.1.1. Creating the User Function
- 19.8.3.2. User Fortran Routine
- 19.9. User Junction Box Examples
- 19.9.1. Junction Box Example 1: Profile Boundary Conditions
- 19.9.1.1. Problem Setup
- 19.9.1.1.1. Creating the Junction Box Routine and User CEL Function
- 19.9.1.1.2. Setting the Boundary Condition
- 19.9.1.1.3. Enabling the Junction Box Routine
- 19.9.1.2. User Fortran Junction Box Routines
- 19.9.2. Junction Box Example 2: Integrated Residence Time Distribution
- 19.9.2.1. Problem Setup
- 19.9.2.1.1. Creating the Additional Variables
- 19.9.2.1.2. Creating the Domains
- 19.9.2.1.3. Creating the Subdomains and Additional Variable Sources
- 19.9.2.1.4. Creating the Junction Box Routine
- 19.9.2.1.5. Enabling the Junction Box Routine
- 19.9.2.2. User Fortran Junction Box Routine
- 19.9.3. Junction Box Example 3: Timestep Control
- 19.9.4. Junction Box Example 4: Solver Control
- 19.9.5. Junction Box Example 5: Transient Information
- 19.10. Using CFX-4 Routines in CFX
- 19.11. State Point Evaluation
- 19.11.1. General Usage Notes
- 19.11.2. Supported Independent Thermodynamic Input Properties
- 19.11.3. Supported Thermodynamic Output Properties
- 19.11.4. Input and Output Property Name Format
- 19.11.4.1. Pure Substance Example
- 19.11.4.2. Mixture Example
- 19.11.5. Supported Material Types
- 19.11.6. Error Checks
- 19.11.7. USER_STATEPT Example 1
- 19.11.8. USER_STATEPT Example 2
- 19.12. Calculating the Particle Drag Coefficient
- 19.12.1. USER_PARTICLE_INFO Routine