Expand/Collapse all
1. Forte User's Guide Introduction
1.1. Overview of the Workflow
1.2. The Ansys Product Improvement Program
2. Overview of Ansys Forte Simulation
2.1. Graphical User Interface
2.2. Window, Ribbon, and Menus
2.3. Toolbar Shortcuts
2.4. Workflow Tree
2.5. Editor Panels
2.5.1. Standard Buttons in Editor Panels
2.5.2. Expand/Collapse Button (+)
2.5.3. Entering Profile Data
2.6. 3-D View Panel
2.6.1. Mouse Behavior
2.6.2. Setting Mesh Display Attributes
2.7. User Preferences
2.7.1. Display Settings Preferences
2.7.2. Preferred Applications Preferences
2.7.3. Units Preferences
2.7.4. File Preferences
2.8. Data Entry and Management Tools
2.8.1. Profile Editor
2.8.2. Composition Calculator
2.8.3. Mixture Editor
2.8.4. Initial Conditions Table Editor
2.8.5. Boundary Condition Table Editor
2.8.6. Flame-Speed Table Editor
2.8.7. Creating Real Gas Property Tables
2.8.8. Point Cloud Editor
2.8.9. Control Surface Editor
2.8.10. Parameter Studies
2.8.11. Reference Frames
2.8.12. Time Frames
2.8.13. Clip Planes
2.8.14. Sub-Volumes
2.8.15. Compression Ratio Calculator
2.8.16. Solid Phase Editor and Dispersed Phase Editor for Particle Tracking
2.8.17. Valve Lift Profile Utility
2.8.18. Engine Performance Utility
3. Modeling Guide
3.1. Geometry Node
3.1.1. Sector Mesh Generator
3.1.2. Import Geometry
3.1.3. Export Geometry
3.1.4. Merge Meshes Utility
3.1.5. Join Meshes Utility
3.1.6. Measure Geometry Utility
3.2. Mesh Controls Node
3.2.1. Mesh Controls for Automatic Meshing
3.2.2. Mesh Controls for Body-Fitted (Including Sector) Meshes
3.3. Models Node
3.3.1. Chemistry/Materials
3.3.1.1. Chemistry
3.3.1.2. Equation of State
3.3.1.2.1. Use Real Gas Properties File
3.3.1.3. Gas-Phase and Eulerian Two-Phase Flow Simulations
3.3.1.3.1. Phase Equilibrium (BETA)
3.3.1.4. Flame Model
3.3.2. Transport
3.3.2.1. Turbulence
3.3.3. Spray Model
3.3.3.1. Solid-Cone, Hollow-Cone, Slit, and VOF Injector Panels
3.3.3.1.1. Injection Panel
3.3.3.1.2. Nozzle Panel
3.3.4. Spark Ignition
3.3.4.1. Spark Panel
3.3.5. Crevice Model
3.3.6. Soot Model
3.3.7. Source
3.3.8. Radiation
3.4. Boundary Conditions Node
3.4.1. Inlet Panel
3.4.2. Outlet Panel
3.4.3. Wall Boundary
3.4.3.1. Slider Crank Motion
3.4.3.2. Offset Table Motion
3.4.3.3. Rotation Motion
3.4.3.4. Planetary Motion
3.4.3.5. Movement Type
3.4.3.6. Valve-Seating Utility
3.4.3.7. Valve Definitions (Body-fitted Mesh Only)
3.4.4. Periodicity Boundary
3.5. Initial Conditions Node
3.5.1. Configuration of Initialization Regions for Body-fitted Mesh
3.5.2. Configuration of Initialization Regions for Automatic-mesh Generation
3.5.2.1. Strategy 1: Let the Valves and/or Sliding Port Interfaces Separate Regions
3.5.2.2. Strategy 2: Let User-defined Volumes Separate Regions
3.5.2.3. Assigning Region Types
3.5.3. Initialization Panel
3.5.3.1. Specifying Constant Initial Conditions
3.5.3.1.1. Using Swirl Ratio to Initialize Velocity
3.5.3.2. Specifying Spatially Varying Initial Conditions
3.6. Simulation Controls Node
3.6.1. Simulation Limits Sub-panel
3.6.2. Time Step Panel
3.6.3. Chemistry Solver Panel
3.6.4. Transport Terms Panel
3.6.5. Steady-State Simulation
3.7. Output Controls Node
3.7.1. Spatially Resolved Panel
3.7.1.1. Configuring the Solution Files
3.7.1.2. Output User Routine Option
3.7.2. Spatially Averaged and Spray Panel
3.7.2.1. Pocket Tracking
3.7.2.2. Equivalence Ratio Histogram
3.7.2.3. Time Averaging Outputs
3.7.2.4. Summary Data Reported in Ansys Forte Log, for Engine Simulations
3.7.2.5. Engine Performance Utility
3.7.2.6. Customized Spray Analysis
3.7.2.7. Port Flow Monitor
3.7.3. Restart Data Panel
3.7.4. Additional Output
3.8. Monitor Probes Panel
3.8.1. Probes for Instantaneous, Spatially Averaged Data
3.8.2. Probes for Time-Averaged and Spatially Resolved Data
3.8.3. Spray Patternators (Special Type of Monitor Probe)
3.9. Simulation Notes Node
3.9.1. Simulation Notes Panel
3.10. Preview Simulation Node
3.10.1. Boundary Motion Panel
3.10.2. Mesh Generation Panel
3.10.2.1. Preview Settings Panel
3.10.2.2. Creating the Preview Mesh
3.10.3. Examining the Preview Mesh
4. Built-in Fluid-Structure Interaction (FSI)
4.1. Rigid Body Motion Based on Spring Mass System With Damping
4.1.1. Translational Motion on Spring Mass System
4.1.2. Rotational Motion on Spring Mass System
4.2. Cantilever Deformation According to Euler's Beam Equations
4.3. User-Defined Functions for Fluid Structure Interaction
4.4. Monitoring FSI Behavior During Simulations
5. Workflows: Preparing and Executing Runs
5.1. Introduction
5.2. Prerequisites to Preparing Runs
5.2.1. Run Settings Panel
5.2.2. Windows Settings Panel
5.2.3. Linux Settings Panel
5.3. Preparing Runs
5.3.1. Run Preparation Using the Forte User Interface
5.3.1.1. Single Run Execution
5.3.2. Run Preparation Using the Command Line Interface
5.4. Example of CLI Workflow: Prepare and Run
5.4.1. CLI Runs on Windows Systems
5.4.2. CLI Runs on Linux Systems
5.5. Resource Management
5.5.1. Distributed Parallel on Linux Using a Hostfile
5.5.2. Distributed Parallel Using a Queuing System
5.5.2.1. UGE Cluster Example
5.5.2.2. Slurm Cluster Example
5.6. Executing Runs
5.6.1. Executing Runs Using the Forte User Interface
5.6.2. Executing Runs Using the Command Line Interface
5.6.2.1. Running On a Remote Server
5.7. Monitoring Runs
5.7.1. Log Files
5.7.2. Input Files
5.7.3. Run Control Files
5.7.4. Job Results Files
5.7.5. Interpreting Parallel Timing Results
5.8. Calculation of Knock and Phi-T
5.8.1. Calculating Knock Intensity Index
5.8.2. Phi-T Plots and Other Contour Overlay Plots
5.9. Restarting Runs
5.9.1. Restart Files and Processing
5.9.1.1. Restarting from the Forte User Interface
5.9.1.2. Restarting from the Forte Command Line Interface
5.10. User Defined Functions (UDF)
6. Command-line Interface
6.1. Setting Up the Environment
6.2. Command Line Interface
6.2.1. Preparing and Submitting Runs with the CLI
6.2.2. Commands
6.2.2.1. Project-based Commands
6.2.2.2. Inputs for Geometry and Chemistry
6.2.3. Text Representation of Project Data
6.2.4. Command-line Interface Examples
6.2.5. Modify Default Behavior in Project Preparation
6.3. Chemistry Set Pre-Processing Utility
7. Commands for Replay Scripting
7.1. Command Syntax
7.2. Command Context
7.3. Replay File Creation and Loading
7.4. Replay File Example
8. Forte Simulation in Workbench
8.1. Working in Forte
8.1.1. Geometry
8.1.2. Set Up a Forte Component System
8.1.3. Solving the Case in the Forte Component System
9. System Coupling
9.1. Overview of System Coupling Analysis Using Forte
9.1.1. Supported Capabilities and Limitations
9.1.2. Variables Available for System Coupling
9.1.3. System Coupling Related Settings
9.1.4. Steady-State and Transient Coupled Analysis
9.2. How to Set Up and Run a Coupled Simulation
9.2.1. Step 1: Set up Forte Project for System Coupling
9.2.2. Step 2: Set Up the Other Participants for System Coupling
9.2.3. Step 3: Set Up a Working Folder for the System Coupling Run
9.2.4. Step 4a: Create a System Coupling Python Run Script
9.2.5. Step 4b: Use the System Coupling Graphical User Interface
9.2.6. How To Run System Coupling
9.2.7. Monitoring Progress of System Coupling and Examining Results
9.2.8. Workflow and File Structure of Forte Runs During a System Coupling Simulation
9.2.9. Forte System Coupling Restart Runs
10. Getting Help and Support
10.1. Tool Tips
10.2. User Manuals
10.3. Technical Support
10.3.1. Troubleshooting
10.3.2. Contacting Technical Support
A. Setting Up Environment, Launching
A.1. Environment Setup Requirement for Linux Only
A.2. Java Memory Settings
A.3. Requirements for Ansys Forte User Interface on Linux
A.4. Check for Required System Libraries on Linux
A.5. libstdc++ Library Mismatch
A.6. Launching Ansys Forte on Linux
A.7. Launching Ansys Forte on Windows
B. Forte MPI Support and Known Issues
B.1. MPI Versions Supported by Forte
B.2. MPI Compatibility
B.2.1. Supported MPI Versions
B.2.2. Ubuntu and Intel MPI 2018
B.2.3. MPI Incompatibility on Virtual Machines
B.3. MPI Hydra Bootstrap Variable
B.4. Incompatibility with xpmem Component
B.5. Issues on Ubuntu Machines when Running Forte Across More Than One Machine
B.6. Intel MPI Default shm Setting for Windows
B.7. Support of HPC Clusters Hosted on AWS
C. Advanced Settings and Scripts
C.1. Advanced Settings for Linux or Windows Systems
C.2. Additional Scripts - Background Information
D. Fuel Library
D.1. Fuel Species
D.2. Species Information and Property Entries
D.3. Temperature-Dependent Properties
D.3.1. Liquid Density
D.3.2. Vapor Pressure
D.3.3. Liquid Specific Heat (Heat Capacity, Liquid)
D.3.4. Liquid Viscosity
D.3.5. Surface Tension
D.3.6. Liquid Thermal Conductivity
D.3.7. Heat of Vaporization (Enthalpy of Vaporization)
E. Fuel Chemistry Sets Included with Ansys Forte
E.1. Reduced Mechanisms for Diesel Engine Applications
E.1.1. D.2.1. Semi-detailed n-Heptane Model for Simulation of Ignition in Conventional Diesel Engines
E.1.2. n-Heptane-Methane Model for Simulations of Compression-Ignition Diesel and Natural-Gas–Diesel Fueled Engines
E.1.3. 2-Component Model, Focus on Soot Particle Tracking
E.1.4. 2-Component Model, with a Focus on Soot Using Pseudo-Gas Model
E.2. Reduced Mechanisms for Gasoline SI Engine Applications
E.2.1. 1-Component Fuel Model for Spark-Ignition Simulations Without Knocking
E.2.2. TRF-Ethanol Model for Spark-Ignition Simulations for Non-knocking Conditions, Focus on Soot Particle Tracking
E.2.3. TRF-Ethanol Model for Spark-Ignition Gasoline for Knocking Conditions and Gasoline HCCI Engine Simulations, with a Focus on Soot Using Pseudo-Gas Model
E.3. Reduced Mechanisms for Natural Gas SI Engine Applications
E.3.1. Natural Gas 1-Component Surrogate (Methane) for SI Engine Emissions Predictions
E.4. Air-Only Mechanism
E.4.1. 2-Species Mechanism for Flow Conditions
E.5. Creating a Surrogate for a Specific Test Fuel
F. Flame-Speed Tables Installed with Ansys Forte
F.1. Table Library Option
F.2. Table Lookup Option
F.3. Power Law Option
F.4. Reaction Mechanisms Used in the Table Generation
G. File Formats
G.1. List of Summaries
G.2. VOF Input File Format
G.2.1. Example of VOF Input Data
Bibliography