Expand/Collapse all
1. Explicit Dynamics Analysis Guide Overview
2. Explicit Dynamics Workflow
2.1. Introduction
2.2. Create the Analysis System
2.3. Define Engineering Data
2.4. Attach Geometry
2.5. Define Part Behavior
2.5.1. Using the Reference Frame Setting
2.5.1.1. Eulerian Reference Frame
2.5.1.1.1. Supported Material Properties
2.5.1.1.2. Known Limitations of Euler Solutions
2.5.1.2. Particle Reference Frame
2.5.1.2.1. Contact
2.5.1.2.2. Supported Boundary Conditions
2.5.1.2.3. Limitations and Efficiency
2.6. Define Connections
2.7. Setting up Symmetry
2.7.1. Explicit Dynamics Symmetry
2.7.1.1. General Symmetry
2.7.1.2. Global Symmetry Planes
2.7.2. Symmetry in Euler and Particle Domains
2.8. Define Remote Points
2.8.1. Explicit Dynamics Remote Points
2.8.2. Explicit Dynamics Remote Boundary Conditions
2.8.3. Initial Conditions on Remote Points
2.8.4. Constraints and Remote Points
2.9. Apply Mesh Controls/Preview Mesh
2.10. Establish Analysis Settings
2.11. Define Initial Conditions
2.12. Apply Loads and Supports
2.13. Solve
2.13.1. Solving from Time = 0
2.13.2. Resume Capability for Explicit Dynamics Analyses
2.13.2.1. Load and Constraint Behavior when Extending Analysis End Time
2.13.3. Explicit Dynamics Performance in Parallel
2.14. Postprocessing
2.15. Commands Objects in Explicit Dynamics
3. Defining Connections
3.1. Spot Welds in Explicit Dynamics Analyses
3.2. Body Interactions in Explicit Dynamics Analyses
3.2.1. Properties for Body Interactions Folder
3.2.1.1. Contact Detection
3.2.1.2. Formulation
3.2.1.3. Sliding Contact
3.2.1.4. Manual Contact Treatment
3.2.1.5. Shell Thickness Factor and Nodal Shell Thickness
3.2.1.6. Body Self Contact
3.2.1.7. Element Self Contact
3.2.1.8. Tolerance
3.2.1.9. Pinball Factor
3.2.1.10. Time Step Safety Factor
3.2.1.11. Limiting Time Step Velocity
3.2.1.12. Edge on Edge Contact
3.2.2. Interaction Type Properties for Body Interaction Object
3.2.2.1. Frictionless Type
3.2.2.2. Frictional Type
3.2.2.3. Bonded Type
3.2.2.4. Reinforcement Type
3.2.3. Identifying Body Interactions Regions for a Body
3.2.4. Additional Considerations for Robust Contact between Particle Bodies and Lagrange Bodies
3.3. Manual Contact Regions in Explicit Dynamics Analyses
3.3.1. Manual Contact Region Behavior for Proximity Based Contact and Trajectory Contact with Discrete Sliding or Manual Contact Treatment set to Lumped
3.3.2. Manual Contact Region Behavior for Trajectory Contact with Connected Surface Sliding and Manual Contact Treatment set to Pairwise
3.4. Joints in an Explicit Dynamics Analysis
3.4.1. Joint Solver
3.4.2. Scoping to Geometry
3.4.3. Initial Conditions
3.4.4. Boundary Conditions
3.4.5. Using Contact with Joints
3.4.6. Postprocessing
4. Establishing Analysis Settings
4.1. Analysis Settings for Explicit Dynamics Analyses
4.1.1. Explicit Dynamics Step Controls
4.1.2. Explicit Dynamics Solver Controls
4.1.3. Explicit Dynamics Euler Domain Controls
4.1.4. Explicit Dynamics Damping Controls
4.1.5. Explicit Dynamics Erosion Controls
4.1.6. Explicit Dynamics Output Controls
4.1.7. Explicit Dynamics SPH Controls
4.1.8. Explicit Dynamics Data Management Settings
4.1.9. Recommendations for Analysis Settings in Explicit Dynamics
4.2. Body Control
5. Applying Loads and Supports
5.1. Impedance Boundary
5.2. Limit Boundary
5.3. SPH Activation and Deactivation
5.4. Detonation Point
5.5. Activation/Deactivation of Loads in Explicit Dynamics
5.6. Importing External Loads
6. Postprocessing
6.1. Solution Output
6.2. Result Trackers
6.2.1. Point Scoped Result Trackers for Explicit Dynamics
6.2.2. Body Scoped Result Trackers for Explicit Dynamics
6.2.3. Spring Result Trackers for Explicit Dynamics
6.2.4. Viewing and Filtering Result Tracker Graphs for Explicit Dynamics
6.2.5. Force Reaction Result Trackers for Explicit Dynamics
6.3. Review Results
6.4. Eroded Nodes in Explicit Dynamics Analyses
6.5. Euler Domain in Explicit Dynamics Analyses
6.6. User Defined Results for Explicit Dynamics Analyses
7. Command Objects in Explicit Dynamics
7.1. Explicit Dynamics Commands
7.1.1. Penaltyfactor
8. Transforming an Implicit Model to run in Explicit Dynamics
8.1. When Implicit Models Can be Run in Explicit
8.2. When to Consider an Explicit Analysis
8.2.1. Incorrect Model Setup
8.2.2. Large Deformations
8.2.3. Large Contact Models
8.2.4. Rigid Body Deformations
8.3. Setting up the Explicit Dynamics Analysis
8.3.1. Attaching an Explicit Dynamics System to an Existing Static Structural System
8.3.2. Materials
8.3.3. Meshing
8.3.3.1. Uniform Mesh Works Best
8.3.3.2. Midside Nodes not Used
8.3.3.3. Hex/Rectangular Mesh Elements most Effective
8.3.4. Contact/Connections
8.3.4.1. Contacts Tab
8.3.4.2. Body Interactions Tab
8.3.5. Boundary Conditions
8.3.5.1. Adjusting Load Cases for Reasonable Run Times
8.3.5.2. Missing Boundary Conditions from Explicit Dynamics
8.3.5.3. Avoiding Conflicting Boundary Conditions
8.3.5.4. Initial Conditions
8.4. Analysis Settings
8.4.1. Analysis Setting Preference
8.4.2. Step Controls
8.4.2.1. End Time
8.4.2.2. Timestep Controls
8.4.2.3. Restarting an Analysis
8.4.3. Solution Stability
8.4.3.1. Mass Scaling
8.4.3.2. Erosion
8.4.3.3. Damping
8.4.4. Output Controls
8.5. Solution Information
8.6. Postprocessing
8.6.1. Result Trackers
8.6.2. Result Sets
8.6.3. Improving your Simulation
9. Applying Pre-Stress Effects for Explicit Analysis
9.1. Recommended Guidelines for Pre-Stress Explicit Dynamics
9.2. Pre-Stress Object Properties
10. Explicit Dynamics Theory Guide
10.1. What is Explicit Dynamics?
10.1.1. Basic Formulations
10.1.1.1. Implicit Transient Dynamics
10.1.1.2. Explicit Transient Dynamics
10.1.2. Time Integration
10.1.2.1. Implicit Time Integration
10.1.2.2. Explicit Time Integration
10.1.2.3. Mass Scaling
10.1.3. Wave Propagation
10.1.3.1. Elastic Waves
10.1.3.2. Plastic Waves
10.1.3.3. Shock Waves
10.1.4. Reference Frame
10.1.4.1. Lagrangian, Eulerian, and Particle Reference Frames
10.1.4.2. Eulerian (Virtual) Reference Frame in Explicit Dynamics
10.1.4.2.1. Multiple Material Stress States
10.1.4.2.2. Multiple Material Transport
10.1.4.3. Particle (SPH) Reference Frame in Explicit Dynamics
10.1.5. Explicit Fluid Structure Interaction (Euler-Lagrange Coupling)
10.1.5.1. Shell Coupling
10.1.5.2. Sub-cycling
10.2. Analysis Settings
10.2.1. Step Controls
10.2.2. Damping Controls
10.2.3. Solver Controls
10.2.4. Erosion Controls
10.3. References
11. Material Models Used in Explicit Dynamics Analysis
11.1. Introduction
11.2. Explicit Material Library
11.3. Density
11.4. Linear Elastic
11.4.1. Isotropic Elasticity
11.4.2. Orthotropic Elasticity
11.4.3. Viscoelastic
11.5. Test Data
11.6. Hyperelasticity
11.7. Plasticity
11.7.1. Bilinear Isotropic Hardening
11.7.2. Multilinear Isotropic Hardening
11.7.3. Bilinear Kinematic Hardening
11.7.4. Multilinear Kinematic Hardening
11.7.5. Johnson-Cook Strength
11.7.6. Cowper-Symonds Strength
11.7.7. Steinberg-Guinan Strength
11.7.8. Zerilli-Armstrong Strength
11.7.9. Orthotropic Strength Model
11.8. Brittle/Granular
11.8.1. Drucker-Prager Strength Linear
11.8.2. Drucker-Prager Strength Stassi
11.8.3. Drucker-Prager Strength Piecewise
11.8.4. Johnson-Holmquist Strength Continuous
11.8.5. Johnson-Holmquist Strength Segmented
11.8.6. RHT Concrete Strength
11.8.7. MO Granular
11.9. Equations of State
11.9.1. Background
11.9.2. Bulk Modulus
11.9.3. Shear Modulus
11.9.4. Ideal Gas EOS
11.9.5. Polynomial EOS
11.9.6. Shock EOS Linear
11.9.7. Shock EOS Bilinear
11.9.8. JWL EOS
11.10. Porosity
11.10.1. Porosity-Crushable Foam
11.10.2. Compaction EOS Linear
11.10.3. Compaction EOS Non-Linear
11.10.4. P-alpha EOS
11.11. Failure
11.11.1. Plastic Strain Failure
11.11.2. Principal Stress Failure
11.11.3. Principal Strain Failure
11.11.4. Stochastic Failure
11.11.5. Tensile Pressure Failure
11.11.6. Crack Softening Failure
11.11.7. Johnson-Cook Failure
11.11.8. Grady Spall Failure
11.12. Strength
11.13. Erosion
11.14. Thermal Specific Heat
11.15. Rigid Materials
11.16. References
12. Using the Drop Test Wizard
12.1. Loading the Drop Test Wizard
12.2. Preparing the Geometry for Use in the Drop Test Wizard
12.3. Setting up the Drop Parameters
12.4. Complete the Analysis
12.5. Notes on Usage and Current Limitations
13. Model Size Limitations in Explicit Dynamics
Index