Expand/Collapse all
Using This Manual
1. The Contents of This Manual
2. The Contents of the Ansys Polyflow Manuals
3. How to Use This Manual
3.1. For the Beginner
3.2. For the Experienced User
4. Typographical Conventions Used in This Manual
1. Getting Started
1.1. Introduction
1.2. Program Structure
1.3. Overview of Using Ansys Polymat
1.3.1. Planning Your Ansys Polymat Analysis
1.3.2. Steps for Fitting Material Parameters
1.4. Starting Ansys Polymat
1.5. Starting Ansys Polycurve
1.6. Sample Session
1.6.1. Problem Description
1.6.2. Outline of Procedure
1.6.3. Using the Non-Automatic Fitting Method
1.6.3.1. Defining the Experimental Data
1.6.3.2. Specifying the Curves to be Calculated
1.6.3.3. Defining Numerical Parameters
1.6.3.4. Defining the Type of Fluid Model
1.6.3.5. Fitting the Material Parameters
1.6.3.5.1. Finding the Value of K
1.6.3.5.1.1. Trying K=1
1.6.3.5.2. Trying Other Values of K
1.6.3.5.2.1. Finding the Value of n
1.6.3.6. Saving the Parameters to a Material Data File
1.6.3.7. Saving the Experimental Data to a File
1.6.3.8. Exiting from Ansys Polymat
1.6.4. Using the Automatic Fitting Method
1.6.4.1. Defining the Type of Fluid Model
1.6.4.2. Fixing the Values of Parameters to Remain Constant
1.6.4.3. Reading in the Experimental Data
1.6.4.4. Drawing the Experimental Data Curve
1.6.4.5. Limiting the Range of the Fitting Calculation
1.6.4.6. Specifying a Name for the Material Data File
1.6.4.7. Performing the Automatic Fitting
2. User Interface
2.1. Polymat GUI Components
2.1.1. The Menu Bar
2.1.2. The Menu Buttons
2.1.3. The Menu
2.1.4. The Chart Buttons
2.1.5. The Chart Window
2.1.6. The Curve Buttons
2.1.7. The Curve List
2.1.8. The Curve Settings
2.1.9. The Output Text Window
2.2. Polycurve GUI Components
3. Reading and Writing Files
3.1. Files Written or Read by Ansys Polymat and Ansys Polycurve
3.2. Reading Experimental Data
3.2.1. Reading Experimental Data Curves for the Non-Automatic Fitting Method
3.2.2. Reading Experimental Data Curves for the Automatic Fitting Method
3.3. Saving Experimental Data
3.4. Reading and Writing Material Data
3.5. Reading CAMPUS Material Property Files
4. Unit Systems
4.1. Overview of Units
4.2. Converting to a New Unit System
4.3. Restrictions on Units
5. Fitting Material Parameters
5.1. Introduction
5.2. Non-Automatic Fitting
5.2.1. Steps for Non-Automatic Fitting
5.2.2. Specifying the Curves to be Calculated
5.2.3. Defining Numerical Parameters
5.2.4. Selecting the Type of Fluid Model
5.2.5. Defining Initial Values for the Material Parameters
5.2.6. Performing the Fitting Analysis
5.3. Automatic Fitting
5.3.1. Steps for Automatic Fitting
5.3.2. Selecting the Type of Fluid Model
5.3.3. Fixing Values for Selected Material Parameters
5.3.4. Defining Numerical Parameters
5.3.5. Drawing the Experimental Curves
5.3.6. Specifying a Name for the Material Data File
5.3.7. Performing the Automatic Fitting Analysis
5.3.7.1. Evaluating the Automatic Fitting
5.3.7.1.1. Evaluating the Distance Between Two Successive Solutions
5.3.7.1.2. Evaluating the Distance Between Solution and Experimental Points
6. Material Data Parameters
6.1. Overview of Fluid Properties and Flow Characteristics
6.2. Generalized Newtonian Flow
6.2.1. Introduction
6.2.1.1. Equations
6.2.1.2. Inputs
6.2.2. Shear-Rate Dependence of Viscosity
6.2.2.1. Constant
6.2.2.2. Bird-Carreau Law
6.2.2.3. Power Law
6.2.2.4. Bingham Law
6.2.2.5. Modified Bingham Law
6.2.2.6. Herschel-Bulkley Law
6.2.2.7. Modified Herschel-Bulkley Law
6.2.2.8. Cross Law
6.2.2.9. Modified Cross Law
6.2.2.10. Log-Log Law
6.2.2.11. Carreau-Yasuda Law
6.2.3. Temperature Dependence of Viscosity
6.2.3.1. Arrhenius Law
6.2.3.2. Approximate Arrhenius Law
6.2.3.3. Arrhenius Shear-Stress Law
6.2.3.4. Approximate Arrhenius Shear-Stress Law
6.2.3.5. Fulcher Law
6.2.3.6. WLF Law
6.2.3.7. WLF Shear-Stress Law
6.2.3.8. Mixed-Dependence Law
6.3. Differential Viscoelastic Flow
6.3.1. Introduction
6.3.1.1. Equations
6.3.1.2. Inputs
6.3.2. Differential Viscoelastic Models
6.3.2.1. Upper-Convected Maxwell Model
6.3.2.1.1. Equations
6.3.2.1.2. Inputs
6.3.2.1.3. Behavior Analysis
6.3.2.2. Oldroyd-B Model
6.3.2.2.1. Equations
6.3.2.2.2. Inputs
6.3.2.2.3. Behavior Analysis
6.3.2.3. White-Metzner Model
6.3.2.3.1. Equations
6.3.2.3.2. Guidelines for Fitting
6.3.2.3.3. Inputs
6.3.2.3.4. Behavior Analysis
6.3.2.4. Phan-Thien-Tanner Model
6.3.2.4.1. Equations
6.3.2.4.2. Inputs
6.3.2.4.3. Behavior Analysis
6.3.2.5. Giesekus Model
6.3.2.5.1. Equations
6.3.2.5.2. Inputs
6.3.2.5.3. Behavior Analysis
6.3.2.6. FENE-P Model
6.3.2.6.1. Equations
6.3.2.6.2. Inputs
6.3.2.6.3. Behavior Analysis
6.3.2.7. POM-POM Model [DCPP]
6.3.2.7.1. Inputs
6.3.2.7.2. Behavior Analysis
6.3.2.8. Leonov Model
6.3.2.8.1. Inputs
6.3.2.8.2. Identification of Model Parameters and Functions
6.3.2.8.3. Behavior Analysis
6.3.3. Temperature Dependence of Viscosity
6.3.4. Multiple Relaxation Times for Differential Viscoelastic Flows
6.4. Integral Viscoelastic Flow
6.4.1. Introduction
6.4.1.1. Equations
6.4.1.2. Inputs
6.4.2. Integral Viscoelastic Models
6.4.2.1. Doi-Edwards Model
6.4.2.2. KBKZ Model
6.4.2.3. Influence of Damping Functions and Their Parameters
6.4.2.3.1. Oscillatory Shear Flow
6.4.2.3.2. Simple Shear Flow
6.4.2.3.3. Extensional Flow
6.4.2.3.4. Transient Shear Flow
6.4.3. Temperature Dependence of Viscosity
6.5. Simplified Viscoelastic Model
6.5.1. Equations
6.5.2. Identification of Model Parameters and Functions
6.5.3. Inputs
6.5.4. Behavior Analysis
7. Rheological Properties
7.1. Steady Simple Shear Flow
7.2. Steady Extensional Flow
7.3. Oscillatory Shear Flow
7.4. Transient Shear Flow
7.5. Transient Extensional Flow
8. Defining and Plotting Curves
8.1. Overview
8.1.1. Definitions of Terms
8.2. Working with Curves
8.2.1. Defining Experimental Data Curves
8.2.2. Reading Curve Files
8.2.3. Deleting a Curve
8.2.4. Modifying a Curve Definition
8.2.5. Saving a Curve
8.2.6. Moving or Copying a Curve
8.2.7. Modifying Curve Display Attributes
8.3. Adding, Removing, and Modifying Charts
8.3.1. Adding and Removing a Chart
8.3.2. Modifying the Title and Legend
8.3.3. Modifying the Range and Scaling
8.3.4. Modifying the Axis Attributes
9. Guidelines for Viscoelastic Models
9.1. Introduction
9.2. The Weissenberg Number
9.3. Viscometric and Rheometric Measurements
9.3.1. Oscillatory Properties
9.3.2. Steady-State Shear Viscosity
9.3.3. First Normal-Stress Difference
9.3.4. Transient Uniaxial Elongational Viscosity
9.4. General Strategy for Fitting
9.4.1. Weighting Measured Data
9.4.2. Assigning a Value to a Parameter
9.4.3. Using Identical or Independent Nonlinear Parameters
9.4.4. Relaxation Time vs. Relaxation Spectrum in Extrusion, Fiber Spinning, and Film Casting
9.4.5. Relaxation Time vs. Relaxation Spectrum in Blow Molding and Thermoforming
9.4.6. Relaxation Time vs. Relaxation Spectrum in Pressing
9.5. Guidelines for Extrusion
9.5.1. Important Effects
9.5.1.1. 2D Extrusion
9.5.1.2. 3D Extrusion
9.5.2. Recommended Experimental Data
9.5.3. Recommended Models and Parameters
9.6. Guidelines for Fiber Spinning
9.6.1. Important Effects
9.6.1.1. 2D Fiber Spinning
9.6.1.2. 3D Fiber Spinning
9.6.2. Recommended Experimental Data
9.6.3. Recommended Models and Parameters
9.7. Guidelines for Film Casting
9.7.1. Important Effects
9.7.2. Recommended Experimental Data
9.7.3. Recommended Models and Parameters
9.8. Guidelines for Blow Molding and Thermoforming
9.8.1. Important Effects
9.8.2. Recommended Experimental Data
9.8.3. Recommended Models and Parameters
9.8.3.1. 2D and 3D Blow Molding and Thermoforming
9.8.3.2. Blow Molding and Thermoforming with Shell Models
9.9. Guidelines for Pressing
9.9.1. Important Effects
9.9.2. Recommended Experimental Data
9.9.3. Recommended Models and Parameters
9.10. Empirical Rules and Principles
9.10.1. Cox-Merz Rule
9.10.2. Gleissle Mirror Relationships
9.10.3. First Normal Stress Difference Relationships
9.10.4. Time-Temperature Equivalence
10. Examples
10.1. Example 1: Non-Isothermal Generalized Newtonian Model
10.1.1. Experimental Data
10.1.2. Fitting Procedure in Ansys Polymat
10.1.2.1. Step 1: Define the Fluid Model Type
10.1.2.2. Step 2: Specify the Material Data Models and Fix Parameters
10.1.2.3. Step 3: Read in and Draw the Experimental Data Curves
10.1.2.4. Step 4: Run the Fitting Calculation
10.1.2.5. Results
10.2. Example 2: Non-Isothermal Differential Viscoelastic Model
10.2.1. Experimental Data
10.2.2. Fitting Procedure in Ansys Polymat
10.2.2.1. Step 1: Define the Fluid Model Type
10.2.2.2. Step 2: Specify the Material Data Models and Fix Parameters
10.2.2.3. Step 3: Read in and Draw the Experimental Data Curves
10.2.2.4. Step 4: Set Numerical Options and Run the Fitting Calculation
10.2.2.5. Results
10.3. Example 3: Non-Isothermal Integral Viscoelastic Model
10.3.1. Experimental Data
10.3.2. Fitting Procedure in Ansys Polymat
10.3.2.1. Step 1: Define the Fluid Model Type
10.3.2.2. Step 2: Specify the Material Data Models and Fix Parameters
10.3.2.3. Step 3: Read in and Draw the Experimental Data Curves
10.3.2.4. Step 4: Set Numerical Options and Run the Fitting Calculation
10.3.2.5. Results
10.4. Example 4: Isothermal Differential Viscoelastic Model
10.4.1. Experimental Data
10.4.2. Fitting Procedure in Ansys Polymat
10.4.2.1. Step 1: Define the Fluid Model Type
10.4.2.2. Step 2: Specify the Material Data Models
10.4.2.3. Step 3: Read in and Draw the Experimental Data Curves
10.4.2.4. Step 4: Set Numerical Options and Run the Fitting Calculation
10.4.2.5. Results
Bibliography