Expand/Collapse all
- 1. Ansys CFX Launcher
- 1.1. The Ansys CFX Launcher Interface
- 1.1.1.1. File Menu
- 1.1.1.1.1. Save As
- 1.1.1.1.2. Quit
- 1.1.1.2. Edit Menu
- 1.1.1.2.1. Clear
- 1.1.1.2.2. Find
- 1.1.1.2.3. Options
- 1.1.1.2.3.1. Graphical User Interface Style
- 1.1.1.2.3.2. Font and Formatted Font
- 1.1.1.3. CFX Menu
- 1.1.1.4. Show Menu
- 1.1.1.4.1. Show Installation
- 1.1.1.4.2. Show All
- 1.1.1.4.3. Show System
- 1.1.1.4.4. Show Variables
- 1.1.1.5. Tools Menu
- 1.1.1.5.1. Ansys Client Licensing Utility
- 1.1.1.5.2. Command Line
- 1.1.1.5.3. Configure User Startup Files (Linux only)
- 1.1.1.5.4. Edit File
- 1.1.1.5.5. Edit Site-wide Configuration File
- 1.1.1.6. User Menu
- 1.1.1.7. Help Menu
- 1.1.2. Toolbar
- 1.1.3. Working Directory Selector
- 1.1.4. Output Window
- 1.2. Customizing the Ansys CFX Launcher
- 1.2.1. CCL Structure
- 1.2.1.1. GROUP
- 1.2.1.2. APPLICATION
- 1.2.1.2.1. Including Environment Variables
- 1.2.1.3. DIVIDER
- 1.2.2. Example: Adding the Windows Calculator
- 2. Volume Mesh Import API
- 2.1. Valid Mesh Elements in CFX
- 2.2. Creating a Custom Mesh Import Executable for CFX-Pre
- 2.2.1. Compiling Code with the Mesh Import API
- 2.2.2. Linking Code with the Mesh Import API
- 2.2.2.1. Linking a Customized Mesh Import Executable on a Windows Platform
- 2.2.2.1.1. Linking a Customized C Mesh Import Executable on a Windows Platform
- 2.2.2.1.2. Linking a Customized Fortran Mesh Import Executable on a Windows Platform
- 2.2.2.2. Linking a Customized Mesh Import Executable on a Linux Platform
- 2.2.2.2.1. Linking a Customized C Mesh Import Executable on a Linux Platform
- 2.2.2.2.2. Linking a Customized Fortran Mesh Import Executable on a Linux
Platform
- 2.3. Details of the Mesh Import API
- 2.3.1. Defined Constants
- 2.3.1.1. Element Types
- 2.3.1.2. Region Types
- 2.3.2. Initialization Routines
- 2.3.2.1. cfxImportStatus
- 2.3.2.2. cfxImportInit
- 2.3.2.3. cfxImportTest
- 2.3.3. Termination Routines
- 2.3.3.1. cfxImportDone
- 2.3.3.2. cfxImportTotals
- 2.3.4. Error Handling Routines
- 2.3.4.1. cfxImportError
- 2.3.4.2. cfxImportFatal
- 2.3.5. Node Routines
- 2.3.5.1. cfxImportNode
- 2.3.5.2. cfxImportGetNode
- 2.3.5.3. cfxImportNodeList
- 2.3.6. Element Routines
- 2.3.6.1. cfxImportElement
- 2.3.6.2. cfxImportGetElement
- 2.3.6.3. cfxImportElementList
- 2.3.6.4. cfxImportGetFace
- 2.3.6.5. cfxImportFindFace
- 2.3.7. Primitive Region Routines
- 2.3.7.1. cfxImportBegReg
- 2.3.7.2. cfxImportAddReg
- 2.3.7.3. cfxImportEndReg
- 2.3.7.4. cfxImportRegion
- 2.3.7.5. cfxImportRegionList
- 2.3.7.6. cfxImportGetRegion
- 2.3.8. Composite Regions Routines
- 2.3.8.1. cfxImportBegCompRegion
- 2.3.8.2. cfxImportAddCompRegComponents
- 2.3.8.3. cfxImportEndCompReg
- 2.3.8.4. cfxImportCompositeRegion
- 2.3.9. Explicit Node Pairing
- 2.3.9.1. cfxImportMap
- 2.3.10. Fortran Interface
- 2.3.10.1. cfxinit
- 2.3.10.2. cfxtest
- 2.3.10.3. cfxunit
- 2.3.10.4. cfxwarn
- 2.3.10.5. cfxfatl
- 2.3.10.6. cfxdone
- 2.3.10.7. cfxnode
- 2.3.10.8. cfxnodg
- 2.3.10.9. cfxnods
- 2.3.10.10. cfxelem
- 2.3.10.11. cfxeleg
- 2.3.10.12. cfxeles
- 2.3.10.13. cfxfacd
- 2.3.10.14. cfxface
- 2.3.10.15. cfxffac
- 2.3.10.16. cfxregn
- 2.3.10.17. cfxregb
- 2.3.10.18. cfxrega
- 2.3.10.19. cfxrege
- 2.3.10.20. cfxregs
- 2.3.10.21. cfxregg
- 2.3.10.22. cfxcmpb
- 2.3.10.23. cfxcmpa
- 2.3.10.24. cfxcmpe
- 2.3.11. Unsupported Routines Previously Available in the API
- 2.4. An Example of a Customized C Program for Importing Meshes into CFX-Pre
- 2.5. Import Programs
- 2.5.1. Ansys
- 2.5.2. CFX Def/Res
- 2.5.3. CFX-4
- 2.5.4. CFX-5.1
- 2.5.5. CFX-TfC
- 2.5.6. CGNS
- 2.5.7. Fluent
- 2.5.8. GridPro/az3000
- 2.5.9. I-DEAS
- 2.5.10. ICEM CFX
- 2.5.11. PATRAN
- 2.5.12. NASTRAN
- 2.5.13. CFX-TASCflow
- 3. Mesh and Results Export API
- 3.1. Creating a Customized Export Program
- 3.1.1. An Example of an Export Program
- 3.1.1.1. File Header
- 3.1.1.2. Allowed Arguments
- 3.1.1.3. Main Program Initialization
- 3.1.1.4. Checking File Names
- 3.1.1.5. Opening the CFX Results File
- 3.1.1.6. Timestep Setup
- 3.1.1.7. Geometry File Output
- 3.1.1.8. Template Results File
- 3.1.1.9. Creating Files with Results for Each Variable
- 3.1.2. Example of Output Produced
- 3.1.2.1. example.geom
- 3.1.2.2. example.res
- 3.1.2.3. example.s01
- 3.1.3. Source Code for getargs.c
- 3.2. Compiling Code with the Mesh and Results Export API
- 3.3. Linking Code with the Mesh and Results Export API
- 3.3.1. Linking a Customized Mesh and Results Export Executable on
a Windows Platform
- 3.3.1.1. Linking a Customized C Mesh and Results Export Executable on
a Windows Platform
- 3.3.1.2. Linking a Customized Fortran Mesh and Results Export Executable on
a Windows Platform
- 3.3.2. Linking a Customized Mesh and Results Export Executable on
a Linux Platform
- 3.3.2.1. Linking a Customized C Mesh and Results Export Executable on
a Linux Platform
- 3.3.2.2. Linking a Customized Fortran Mesh and Results Export Executable on
a Linux Platform
- 3.4. Details of the Mesh Export API
- 3.4.1. Defined Constants and Structures
- 3.4.1.1. Element Types
- 3.4.1.2. Volume List Types
- 3.4.1.3. Region List Types
- 3.4.1.4. Count Entries
- 3.4.1.5. Node Data Structure
- 3.4.1.6. Element Data Structure
- 3.4.2. Initialization and Error Routines
- 3.4.2.1. cfxExportInit
- 3.4.2.2. cfxExportDone
- 3.4.2.3. cfxExportError
- 3.4.2.4. cfxExportFatal
- 3.4.3. Zone Routines
- 3.4.3.1. cfxExportZoneCount
- 3.4.3.2. cfxExportZoneSet
- 3.4.3.3. cfxExportZoneGet
- 3.4.3.4. cfxExportZoneFree
- 3.4.3.5. cfxExportZoneIsRotating
- 3.4.3.6. cfxExportZoneMotionAction
- 3.4.4. Node Routines
- 3.4.4.1. cfxExportNodeCount
- 3.4.4.2. cfxExportNodeList
- 3.4.4.3. cfxExportNodeGet
- 3.4.4.4. cfxExportNodeFree
- 3.4.4.5. cfxExportNodeUnits
- 3.4.5. Element Routines
- 3.4.5.1. cfxExportElementCount
- 3.4.5.2. cfxExportElementList
- 3.4.5.3. cfxExportElementGet
- 3.4.5.4. cfxExportElementFree
- 3.4.6. Region Routines
- 3.4.6.1. cfxExportRegionCount
- 3.4.6.2. cfxExportRegionSize
- 3.4.6.3. cfxExportRegionName
- 3.4.6.4. cfxExportRegionList
- 3.4.6.5. cfxExportRegionGet
- 3.4.6.6. cfxExportRegionFree
- 3.4.7. Face Routines
- 3.4.7.1. cfxExportFaceNodes
- 3.4.8. Volume Routines
- 3.4.8.1. cfxExportVolumeCount
- 3.4.8.2. cfxExportVolumeSize
- 3.4.8.3. cfxExportVolumeName
- 3.4.8.4. cfxExportVolumeList
- 3.4.8.5. cfxExportVolumeGet
- 3.4.8.6. cfxExportVolumeFree
- 3.4.9. Boundary Condition Routines
- 3.4.9.1. cfxExportBoundaryCount
- 3.4.9.2. cfxExportBoundaryName
- 3.4.9.3. cfxExportBoundaryType
- 3.4.9.4. cfxExportBoundarySize
- 3.4.9.5. cfxExportBoundaryList
- 3.4.9.6. cfxExportBoundaryGet
- 3.4.9.7. cfxExportBoundaryFree
- 3.4.10. Variable Routines
- 3.4.10.1. cfxExportVariableCount
- 3.4.10.2. cfxExportVariableSize
- 3.4.10.3. cfxExportVariableName
- 3.4.10.4. cfxExportVariableList
- 3.4.10.5. cfxExportVariableGet
- 3.4.10.6. cfxExportVariableFree
- 3.4.10.7. cfxExportVariableQuantityDimensions
- 3.4.10.8. cfxExportVariableUnitsString
- 3.4.11. Timestep Routines
- 3.4.11.1. cfxExportTimestepCount
- 3.4.11.2. cfxExportTimestepTimeGet
- 3.4.11.3. cfxExportTimestepNumGet
- 3.4.11.4. cfxExportTimestepSet
- 4. Remeshing Guide
- 4.1. User Defined Remeshing
- 4.1.1. Remeshing with Key-Frame Meshes
- 4.1.2. Remeshing with Automatic Geometry Extraction
- 4.2. ICEM CFD Replay Remeshing
- 4.2.1. Steps to Set Up a Simulation Using ICEM CFD Replay Remeshing
- 4.3. Directory Structure and Files Used During Remeshing
- 4.4. Additional Considerations
- 4.4.1. Mesh Re-Initialization During Remeshing
- 4.4.2. Software License Handling
- 4.4.3. Results File Option
- 5. Reference Guide for Mesh Deformation and Fluid-Structure Interaction
- 5.1. Mesh Deformation
- 5.1.1. Mesh Folding: Negative Sector and Element Volumes
- 5.1.2. Applying Large Displacements Gradually
- 5.1.3. Consistency of Mesh Motion Specifications
- 5.1.4. Solving the Mesh Displacement Equations and Updating Mesh Coordinates
- 5.1.5. Mesh Displacement Diffusion Scheme
- 5.1.6. Mesh Displacement vs. Total Mesh Displacement
- 5.1.7. Simulation Restart Behavior
- 5.2. Fluid Structure Interaction
- 5.2.1. Unidirectional (One-Way) FSI
- 5.2.1.1. Using CFX Only
- 5.2.1.2. Using CFX and the Mechanical Application
- 5.2.1.2.1. Importing Data from the Mechanical Application Solver
- 5.2.1.2.2. Mechanical Import/Export Example: One-Way FSI Data Transfer
- 5.2.1.3. Using CFX and Other CAE Software
- 5.2.2. Bidirectional (Two-Way) FSI
- 5.2.2.1. Using CFX Only
- 5.2.2.2. Using CFX and Other CAE Software
- 6. CFX Best Practices Guide for Numerical Accuracy
- 6.1. An Approach to Error Identification, Estimation and Validation
- 6.2. Definition of Errors in CFD Simulations
- 6.2.1. Numerical Errors
- 6.2.1.1. Solution Errors
- 6.2.1.2. Spatial Discretization Errors
- 6.2.1.3. Time Discretization Errors
- 6.2.1.4. Iteration Errors
- 6.2.1.5. Round-off Error
- 6.2.1.6. Solution Error Estimation
- 6.2.2. Modeling Errors
- 6.2.3. User Errors
- 6.2.4. Application Uncertainties
- 6.2.5. Software Errors
- 6.3. General Best Practice Guidelines
- 6.3.1. Avoiding User Errors
- 6.3.2. Geometry Generation
- 6.3.3. Grid Generation
- 6.3.4. Model Selection and Application
- 6.3.4.1. Turbulence Models
- 6.3.4.1.1. One-equation Models
- 6.3.4.1.2. Two-equation Models
- 6.3.4.1.3. Second Moment Closure (SMC) Models
- 6.3.4.1.4. Large Eddy Simulation Models
- 6.3.4.1.5. Wall Boundary Conditions
- 6.3.4.1.5.1. Wall Function Boundary Conditions
- 6.3.4.1.5.2. Integration to the wall (low-Reynolds number formulation)
- 6.3.4.1.5.3. Mixed formulation (automatic near-wall treatment)
- 6.3.4.1.5.4. Recommendations for Model Selection
- 6.3.4.2. Heat Transfer Models
- 6.3.4.3. Multi-Phase Models
- 6.3.5. Reduction of Application Uncertainties
- 6.3.6. CFD Simulation
- 6.3.6.1. Target Variables
- 6.3.6.2. Minimizing Iteration Errors
- 6.3.6.3. Minimizing Spatial Discretization Errors
- 6.3.6.4. Minimizing Time Discretization Errors
- 6.3.6.5. Avoiding Round-Off Errors
- 6.3.7. Handling Software Errors
- 6.4. Selection and Evaluation of Experimental Data
- 6.4.1. Verification Experiments
- 6.4.1.1. Description
- 6.4.1.2. Requirements
- 6.4.2. Validation Experiments
- 6.4.2.1. Description
- 6.4.2.2. Requirements
- 6.4.3. Demonstration Experiments
- 6.4.3.1. Description
- 6.4.3.2. Requirements
- 7. CFX Best Practices Guide for Cavitation
- 7.1. Approaches to Modeling Cavitation
- 7.2. Liquid Pumps
- 7.2.1. Pump Performance without Cavitation
- 7.2.2. Pump Performance with Cavitation
- 7.2.3. Procedure for Plotting Performance Curve
- 7.2.4. Setup
- 7.2.5. Convergence Tips
- 7.2.6. Postprocessing
- 8. CFX Best Practices Guide for Combustion
- 8.1. Gas Turbine Combustors
- 8.1.1. Setup
- 8.1.1.1. Steady-state vs. Transient
- 8.1.1.2. Turbulence Model
- 8.1.1.3. Reference Pressure
- 8.1.1.4. Combustion Model
- 8.1.2. Reactions
- 8.1.3. Convergence Tips
- 8.1.4. Postprocessing
- 8.2. Combustion Modeling in HVAC Cases
- 8.2.1. Set Up
- 8.2.2. Convergence Tips
- 8.2.3. Postprocessing
- 9. CFX Best Practices Guide for HVAC
- 9.1. HVAC Simulations
- 9.1.1. Setting Up HVAC Simulations
- 9.1.1.1. Buoyancy
- 9.1.1.2. Thermal Radiation
- 9.1.1.2.1. Thermal Radiation Model
- 9.1.1.2.2. Spectral Model
- 9.1.1.2.3. Scattering Model
- 9.1.1.3. CHT (Conjugate Heat Transfer) Domains
- 9.1.1.4. Mesh Quality
- 9.1.1.5. Fans
- 9.1.1.6. Thermostats
- 9.1.1.7. Collections of Objects
- 9.2. Convergence Tips
- 10. CFX Best Practices Guide for Multiphase
- 10.1. Bubble Columns
- 10.1.1. Setup
- 10.1.2. Convergence Tips
- 10.1.3. Postprocessing
- 10.2. Mixing Vessels
- 10.2.1. Setup
- 10.3. Free Surface Applications
- 10.3.1. Setup
- 10.3.2. Convergence Tips
- 10.4. Multiphase Flow with Turbulence Dispersion Force
- 11. CFX Best Practices Guide for Turbomachinery
- 11.1. Gas Compressors and Turbines
- 11.1.1. Setup for Simulations of Gas Compressors and Turbines
- 11.1.2. Convergence Tips
- 11.1.3. Computing Speedlines for a Machine
- 11.1.4. Postprocessing
- 11.2. Liquid Pumps and Turbines
- 11.2.1. Setup for Simulations of Liquid Pumps and Turbines
- 11.2.2. Convergence Tips
- 11.2.3. Postprocessing
- 11.3. Fans and Blowers
- 11.3.1. Setup for Simulations of Fans and Blowers
- 11.3.2. Convergence Tips
- 11.3.3. Postprocessing
- 11.4. Frame Change Models
- 11.4.1. Frozen Rotor
- 11.4.2. Stage (Mixing-Plane)
- 11.4.3. Transient Rotor-Stator
- 11.5. Domain Interface Setup
- 11.5.1. General Considerations
- 11.5.2. Case 1: Impeller/Volute
- 11.5.3. Case 2: Step Change Between Rotor and Stator
- 11.5.4. Case 3: Blade Passage at or Close to the Edge of a Domain
- 11.5.5. Case 4: Impeller Leakage
- 11.5.6. Case 5: Domain Interface Near Zone of Reversed Flow
- 11.6. Transient Blade Row
- 11.6.1. Steady versus Transient Blade Row Analysis
- 11.6.2. Full Model Simulation versus Reduced Geometry Simulation (Pitch
Change Models)
- 11.6.3. Selecting an Appropriate Transient Blade Row Model with Pitch
Change
- 11.6.3.1. Profile Transformation
- 11.6.3.2. Time Transformation
- 11.6.3.3. Fourier Transformation
- 11.6.4. Convergence and Solution Monitoring of Transient Blade Row
Flow Problems
- 11.6.5. Boundary Conditions in Blade Row Simulation
- 11.6.5.1. Steady-state Analysis
- 11.6.5.2. Transient Analysis
- 11.6.6. Transient versus Harmonic Solution Method
- 12. CFX Best Practices Guide for Turbulence
- 12.1. Scale-Resolving Simulations in Ansys CFD
- 12.1.1. Scale-Resolving Simulation (SRS) Models – Basic Formulations
- 12.1.1.1. Scale-Adaptive Simulation (SAS)
- 12.1.1.2. Detached Eddy Simulation (DES)
- 12.1.1.3. Shielded Detached Eddy Simulation (SDES)
- 12.1.1.4. Stress-Blended Eddy Simulation (SBES)
- 12.1.1.5. Large Eddy Simulation (LES)
- 12.1.1.5.1. Limitations of Large Eddy Simulation (LES)
- 12.1.1.6. Wall Modeled Large Eddy Simulation (WMLES)
- 12.1.1.7. Embedded/Zonal LES (ELES, ZLES)
- 12.1.1.8. Unsteady Inlet/Interface Turbulence
- 12.1.2. Generic Flow Types and Basic Model Selection
- 12.1.2.1. Globally Unstable Flows
- 12.1.2.1.1. Flow Physics
- 12.1.2.1.2. Modeling
- 12.1.2.1.3. Meshing Requirements
- 12.1.2.1.4. Numerical Settings
- 12.1.2.1.5. Examples
- 12.1.2.1.5.1. Flow around a Fighter Aircraft
- 12.1.2.1.5.2. Flow around a Triangular Cylinder
- 12.1.2.1.5.3. ITS Combustion Chamber
- 12.1.2.2. Locally Unstable Flows
- 12.1.2.2.1. Flow Physics
- 12.1.2.2.2. Modeling
- 12.1.2.2.3. Meshing Requirements
- 12.1.2.2.4. Numerical Settings
- 12.1.2.2.5. Examples
- 12.1.2.2.5.1. Mixing Layer
- 12.1.2.2.5.2. Backward-Facing Step I
- 12.1.2.3. Stable Flows and Wall Boundary Layers
- 12.1.2.3.1. Flow Physics
- 12.1.2.3.2. Modeling
- 12.1.2.3.3. Meshing Requirements
- 12.1.2.3.4. Numerical Settings
- 12.1.2.3.5. Examples
- 12.1.2.3.5.1. Periodic Channel
- 12.1.2.3.5.2. Wall Boundary Layer
- 12.1.2.3.5.3. NASA Hump Flow
- 12.1.2.3.5.4. T-Junction with Thermal Mixing
- 12.1.3. Numerical Settings for SRS
- 12.1.3.1. Spatial Discretization
- 12.1.3.1.1. Momentum
- 12.1.3.1.2. Turbulence Equations
- 12.1.3.1.3. Gradients (Ansys Fluent)
- 12.1.3.1.4. Pressure (Ansys Fluent)
- 12.1.3.2. Time Discretization
- 12.1.3.2.1. Time Integration
- 12.1.3.2.2. Time Advancement and Under-Relaxation (Ansys Fluent)
- 12.1.4. Initial and Boundary Conditions
- 12.1.4.1. Initialization of SRS
- 12.1.4.2. Boundary Conditions for SRS
- 12.1.4.2.1. Inlet Conditions
- 12.1.4.2.2. Outlet Conditions
- 12.1.4.2.3. Wall Conditions
- 12.1.4.3. Symmetry vs. Periodicity
- 12.1.5. Postprocessing and Averaging
- 12.1.5.1. Visual Inspection
- 12.1.5.2. Averaging
- 12.1.6. Summary
- 12.1.6.1. Acknowledgment
- 12.1.6.2. Appendix 1: Summary of Numerics Settings with Ansys Fluent
- 12.1.6.3. Appendix 2: Summary of Numerics Settings With Ansys CFX
- 12.1.6.4. Appendix 3: Models
- 12.1.6.5. Appendix 4: Generic Flow Types and Modeling
- 12.1.7. References for Scale-Resolving Simulations
- 12.2. RANS Turbulence Modeling in Ansys CFD
- 12.2.1. General Considerations
- 12.2.2. Best Practice RANS
- 12.2.2.1. Managing Uncertainty
- 12.2.2.2. Steady vs Unsteady vs Convergence
- 12.2.2.3. Turbulence Model Selection
- 12.2.2.3.1. Spalart-Allmaras (SA) One Equation Model
- 12.2.2.3.2. Two-Equation Models
- 12.2.2.3.3. Wallin-Johansson Explicit Algebraic Reynolds Stress Models (WJ-EARSM)
- 12.2.2.3.4. Reynolds Stress Models (RSM)
- 12.2.2.3.5. Limiters
- 12.2.2.4. Additional Physics
- 12.2.2.4.1. Laminar-turbulent transition
- 12.2.2.4.2. Curvature Correction
- 12.2.2.4.3. Corner Correction
- 12.2.2.4.4. Buoyancy Correction
- 12.2.2.4.5. Wall Roughness Correction
- 12.2.3. Model Evaluation
- 12.2.3.1. Flat Plate Flow
- 12.2.3.2. Adverse Pressure Gradients and Flow Separation
- 12.2.3.2.1. NASA CS0 Diffuser
- 12.2.3.2.2. Airfoil Flows
- 12.2.3.2.3. Transonic Bump Flow
- 12.2.3.3. Corner Flows
- 12.2.3.3.1. Developed Flow in Square Duct
- 12.2.3.3.2. Flow in Rectangular Diffusers
- 12.2.3.3.3. Flow around DLR F6 aircraft
- 12.2.3.3.4. Conclusions
- 12.2.3.4. Swirl Flows
- 12.2.3.4.1. NACA-0012 Wing Tip Vortex
- 12.2.3.4.2. Flow in Hydro-Cyclone
- 12.2.3.5. Reattachment Flows
- 12.2.3.6. Impinging Flows
- 12.2.3.7. Buoyancy Flows
- 12.2.3.7.1. Stratified Mixing Layer
- 12.2.3.8. Effect of Limiters
- 12.2.3.9. Mesh Resolution Requirements
- 12.2.3.9.1. Inviscid Flow
- 12.2.3.9.2. Free Shear Flows
- 12.2.3.9.3. Fully Turbulent Boundary Layers
- 12.2.3.9.4. Transitional Boundary Layers
- 12.2.3.9.5. Corner Flows
- 12.2.4. Numerical Settings
- 12.2.4.1. Example: High-Lift Aircraft
- 12.2.5. Summary
- 12.2.6. Acknowledgment
- 12.2.7. References
- 12.2.8. Appendix A: Theory
- 12.2.8.1. The Closure Problem
- 12.2.8.1.1. Averaging
- 12.2.8.1.2. The Eddy-Viscosity Assumption
- 12.2.8.1.3. Reynolds Stress Modeling (RSM)
- 12.2.8.1.4. Explicit Algebraic Reynolds Stress Modeling (EARSM)
- 12.2.8.1.5. The Equation for the Turbulent Kinetic Energy
- 12.2.8.1.6. The Turbulent Scale-Equation
- 12.2.8.2. Two-Equation Models
- 12.2.8.2.1. The Models
- 12.2.8.2.2. The Models
- 12.2.8.2.3. Limiters
- 12.2.8.3. Near-Wall Treatment
- 12.2.8.3.1. Standard Wall Functions
- 12.2.8.3.2. Scalable Wall Functions
- 12.2.8.3.3. Viscous Sublayer Model (VSM)
- 12.2.8.3.4. Y+-Insensitive Wall Treatments
- 12.2.8.4. Appendix A: Boundary Layer Parameters
- 12.2.8.4.1. Laminar Flow:
- 12.2.8.4.2. Turbulent Flow:
- 12.3. Generalized k-omega Two-Equation Turbulence Model (GEKO) in Ansys CFD
- 12.3.1. The Generalized k-omega (GEKO) Model Formulation
- 12.3.1.1. Basic Formulation
- 12.3.1.2. Limiters and Realizability
- 12.3.1.3. Near Wall Treatment
- 12.3.1.4. Terminology
- 12.3.2. The Influence of the Free GEKO Parameter
- 12.3.2.1. The 'Separation' Parameter CSEP
- 12.3.2.2. 3.2 The 'Near Wall' Parameter CNW
- 12.3.2.3. The 'Mixing' Parameter CMIX
- 12.3.2.4. The 'Jet' Parameter CJET
- 12.3.2.5. The 'Corner' Parameter CCORNER
- 12.3.2.6. The 'Curvature' Parameter CCURV
- 12.3.2.7. The Blending Function
- 12.3.2.8. Other Special Coefficients
- 12.3.3. Strategies for Model Optimization
- 12.3.3.1. GEKO Defaults
- 12.3.3.2. Optimizing Coefficients
- 12.3.4. Summary
- 12.3.5. Example UDFs
- 12.3.6. 7 References
- 13. CFX Command Language (CCL)
- 13.1. CFX Command Language (CCL) Syntax
- 13.1.1. Basic Terminology
- 13.1.2. The Data Hierarchy
- 13.1.3. Simple Syntax Details
- 13.1.3.1. Case Sensitivity
- 13.1.3.2. CCL Names Definition
- 13.1.3.3. Indentation
- 13.1.3.4. End of Line Comment Character
- 13.1.3.5. Continuation Character
- 13.1.3.6. Named Objects
- 13.1.3.7. Singleton Objects
- 13.1.3.8. Parameters
- 13.1.3.9. Lists
- 13.1.3.10. Parameter Values
- 13.1.3.10.1. String
- 13.1.3.10.2. String List
- 13.1.3.10.3. Integer
- 13.1.3.10.4. Integer List
- 13.1.3.10.5. Real
- 13.1.3.10.6. Real List
- 13.1.3.10.7. Logical
- 13.1.3.10.8. Logical List
- 13.1.3.11. Escape Character
- 14. CFX Expression Language (CEL)
- 14.1. CEL Fundamentals
- 14.1.1. Values and Expressions
- 14.1.1.1. Using Locators in Expressions
- 14.1.2. CFX Expression Language Statements
- 14.1.2.1. Use of Constants
- 14.1.2.2. Expression Syntax
- 14.1.2.3. Multiple-Line Expressions
- 14.2. CEL Operators, Constants, and Expressions
- 14.2.1. CEL Operators
- 14.2.2. Conditional if Statement
- 14.2.3. CEL Constants
- 14.2.4. Using Expressions
- 14.2.4.1. Use of Offset Temperature
- 14.3. CEL Examples
- 14.3.1. Example: Reynolds Number Dependent Viscosity
- 14.3.2. Example: Feedback to Control Inlet Temperature
- 14.3.3. Examples: Using Expressions in CFD-Post
- 14.4. CEL Technical Details
- 15. Functions in Ansys CFX
- 15.1. CEL Mathematical Functions
- 15.2. Quantitative CEL Functions in Ansys CFX
- 15.3. Functions Involving Coordinates
- 15.4. CEL Functions with Multiphase Flow
- 15.5. Quantitative Function List
- 15.5.1. area
- 15.5.1.1. Tools > Command Editor Example
- 15.5.1.2. Tools > Function Calculator Example
- 15.5.2. areaAve
- 15.5.2.1. Tools > Command Editor Example
- 15.5.2.2. Tools > Function Calculator Examples
- 15.5.3. areaInt
- 15.5.3.1. Tools > Command Editor Example
- 15.5.3.2. Tools > Function Calculator Examples
- 15.5.4. ave
- 15.5.4.1. Tools > Command Editor Example
- 15.5.4.2. Tools > Function Calculator Example
- 15.5.5. count
- 15.5.5.1. Tools > Command Editor Example
- 15.5.5.2. Tools > Function Calculator Example
- 15.5.6. countTrue
- 15.5.6.1. Tools > Command Editor Examples
- 15.5.6.2. Tools > Function Calculator Example
- 15.5.7. force
- 15.5.7.1. Tools > Command Editor Example
- 15.5.7.2. Tools > Function Calculator Examples
- 15.5.8. forceNorm
- 15.5.8.1. Tools > Command Editor Example
- 15.5.8.2. Tools > Function Calculator Example
- 15.5.9. inside
- 15.5.9.1. Tools > Command Editor Example
- 15.5.10. length
- 15.5.10.1. Tools > Command Editor Example
- 15.5.10.2. Tools > Function Calculator Example
- 15.5.11. lengthAve
- 15.5.11.1. Tools > Command Editor Example
- 15.5.11.2. Tools > Function Calculator Example
- 15.5.12. lengthInt
- 15.5.12.1. Tools > Command Editor Example
- 15.5.13. lineCloudAve
- 15.5.13.1. Tools > Command Editor Example
- 15.5.13.2. Tools > Function Calculator Example
- 15.5.14. mass
- 15.5.15. massAve
- 15.5.16. massFlow
- 15.5.16.1. Mass Flow Sign Convention
- 15.5.16.2. Tools > Command Editor Example
- 15.5.16.3. Tools > Function Calculator Example
- 15.5.17. massFlowAve
- 15.5.18. massFlowAveAbs
- 15.5.19. Details on Mass Flow Related Functions
- 15.5.20. massFlowInt
- 15.5.20.1. Tools > Command Editor Example
- 15.5.20.2. Tools > Function Calculator Example
- 15.5.21. massInt
- 15.5.22. maxVal
- 15.5.22.1. Tools > Command Editor Example
- 15.5.22.2. Tools > Function Calculator Example
- 15.5.23. minVal
- 15.5.23.1. Tools > Command Editor Example
- 15.5.23.2. Tools > Function Calculator Example
- 15.5.24. probe
- 15.5.24.1. Tools > Command Editor Example
- 15.5.24.2. Tools > Function Calculator Example
- 15.5.25. rbstate
- 15.5.25.1. Expressions Details View Example
- 15.5.26. rmsAve
- 15.5.27. sum
- 15.5.27.1. Tools > Command Editor Example
- 15.5.27.2. Tools > Function Calculator Example
- 15.5.28. torque
- 15.5.28.1. Tools > Command Editor Example
- 15.5.28.2. Tools > Function Calculator Example
- 15.5.29. volume
- 15.5.29.1. Tools > Command Editor Example
- 15.5.29.2. Tools > Function Calculator Example
- 15.5.30. volumeAve
- 15.5.30.1. Tools > Command Editor Example
- 15.5.30.2. Tools > Function Calculator Example
- 15.5.31. volumeInt
- 15.5.31.1. Tools > Command Editor Example
- 15.5.31.2. Tools > Function Calculator Example
- 16. Variables in Ansys CFX
- 16.1. Hybrid and Conservative Variable Values
- 16.1.1. Solid-Fluid Interface Variable Values
- 16.1.1.1. Conservative Values at 1:1 Interface
- 16.1.1.2. Hybrid Values at 1:1 Interface
- 16.1.1.3. Conservative Values on a GGI Interface
- 16.1.1.4. Hybrid Values on a GGI Interface
- 16.2. List of Field Variables
- 16.2.1. Common Variables Relevant for Most CFD Calculations
- 16.2.2. Variables Relevant for Turbulent Flows
- 16.2.3. Variables Relevant for Buoyant Flow
- 16.2.4. Variables Relevant for Compressible Flow
- 16.2.5. Variables Relevant for Particle Tracking
- 16.2.6. Variables Relevant for Calculations with a Rotating Frame of
Reference
- 16.2.7. Variables Relevant for Parallel Calculations
- 16.2.8. Variables Relevant for Multicomponent Calculations
- 16.2.9. Variables Relevant for Multiphase Calculations
- 16.2.10. Variables Relevant for Radiation Calculations
- 16.2.11. Variables for Total Enthalpies, Temperatures, and Pressures
- 16.2.12. Variables and Predefined Expressions Available in CEL Expressions
- 16.2.12.1. System Variable Prefixes
- 16.2.12.2. CEL Variables r and theta
- 16.2.12.3. CEL Variable rNoDim
- 16.2.12.4. CEL Variable "subdomain" and CEL Function "inside"
- 16.2.12.5. Timestep, Timestep Interval, and Iteration Number Variables
- 16.2.12.5.1. Steady-State Runs
- 16.2.12.5.2. Transient Runs
- 16.2.12.5.3. Timestep Variables in CFD-Post
- 16.2.12.6. Expression Names
- 16.2.12.7. Scalar Expressions
- 16.2.12.8. Expression Properties
- 16.2.12.9. Available and Unavailable Variables
- 16.3. Particle Variables Generated by the Solver
- 16.3.1. Particle Track Variables
- 16.3.2. Particle Field Variables
- 16.3.2.1. Particle Sources into the Coupled Fluid Phase
- 16.3.2.2. Particle Radiation Variables
- 16.3.2.3. Particle Vertex Variables
- 16.3.2.3.1. Variable Calculations
- 16.3.2.4. Particle Boundary Vertex Variables
- 16.3.2.5. Particle RMS Variables
- 16.3.2.5.1. Variable Calculations
- 16.4. Miscellaneous Variables
- 17. Power Syntax in Ansys CFX
- 17.1. Examples of Power Syntax
- 17.1.1. Example 1: Print the Value of the Pressure Drop Through a Pipe
- 17.1.2. Example 2: Using a for Loop
- 17.1.3. Example 3: Creating a Simple Subroutine
- 17.1.4. Example 4: Creating a Complex Quantitative Subroutine
- 17.2. Predefined Power Syntax Subroutines
- 17.2.1. Power Syntax Subroutine Descriptions
- 17.2.2. Power Syntax Usage
- 17.2.3. Power Syntax Subroutines
- 17.2.3.1. area(Location, Axis)
- 17.2.3.2. areaAve(Variable, Location, Axis)
- 17.2.3.3. areaInt(Variable, Location, Axis)
- 17.2.3.4. ave(Variable, Location)
- 17.2.3.5. calcTurboVariables()
- 17.2.3.6. calculate(function,...)
- 17.2.3.7. calculateUnits(function,...)
- 17.2.3.8. collectTurboInfo()
- 17.2.3.9. comfortFactors()
- 17.2.3.10. compressorPerform(Location, Location, Location, Var, Args)
- 17.2.3.11. compressorPerformTurbo()
- 17.2.3.12. copyFile(FromPath, ToPath)
- 17.2.3.13. count(Location)
- 17.2.3.14. countTrue(Expression, Location)
- 17.2.3.15. cpPolar(Location, Var, Arg, Var, Location, Arg)
- 17.2.3.16. evaluate(Expression)
- 17.2.3.17. evaluateInPreferred(Expression)
- 17.2.3.18. exprExists(Expression)
- 17.2.3.19. fanNoiseDefault()
- 17.2.3.20. fanNoise()
- 17.2.3.21. force(Location, Axis)
- 17.2.3.22. forceNorm(Location, Axis)
- 17.2.3.23. getBladeForceExpr()
- 17.2.3.24. getBladeTorqueExpr()
- 17.2.3.25. getCCLState()
- 17.2.3.26. getChildrenByCategory(Object Path, Category)
- 17.2.3.27. getChildren(Object Path, Child Type)
- 17.2.3.28. getExprOnLocators()
- 17.2.3.29. getExprString(Expression)
- 17.2.3.30. getExprVal(Expression)
- 17.2.3.31. getObjectName(Object Path)
- 17.2.3.32. getParameterInfo(Object Path, Parameter Name, Info Type)
- 17.2.3.33. getParameters(Object Path)
- 17.2.3.34. getTempDirectory()
- 17.2.3.35. getType(Object Path)
- 17.2.3.36. getValue(Object Path, Parameter Name)
- 17.2.3.36.1. Example
- 17.2.3.37. getViewArea()
- 17.2.3.38. isCategory(Object Path, Category)
- 17.2.3.39. Length(Location)
- 17.2.3.40. lengthAve(Variable, Location)
- 17.2.3.41. lengthInt(Variable, Location)
- 17.2.3.42. liquidTurbPerformTurbo()
- 17.2.3.43. liquidTurbPerform()
- 17.2.3.44. massFlow(Location)
- 17.2.3.45. massFlowAve(Variable, Location)
- 17.2.3.46. massFlowAveAbs(Variable, Location)
- 17.2.3.47. massFlowInt(Variable, Location)
- 17.2.3.48. maxVal(Variable, Location)
- 17.2.3.49. minVal(Variable, Location)
- 17.2.3.50. objectExists(Object Path)
- 17.2.3.51. probe(Variable, Location)
- 17.2.3.52. pumpPerform()
- 17.2.3.53. pumpPerformTurbo()
- 17.2.3.54. range(Variable, Location)
- 17.2.3.55. reportError(String)
- 17.2.3.56. reportWarning(String)
- 17.2.3.57. showPkgs()
- 17.2.3.58. showSubs(packageName)
- 17.2.3.59. showVars(packageName)
- 17.2.3.60. spawnAsyncProcess(command, arguments)
- 17.2.3.61. sum(Variable, Location)
- 17.2.3.62. torque(Location, Axis)
- 17.2.3.63. turbinePerform()
- 17.2.3.64. turbinePerformTurbo()
- 17.2.3.65. verboseOn()
- 17.2.3.66. volume(Location)
- 17.2.3.67. volumeAve(Variable, Location)
- 17.2.3.68. volumeInt(Variable, Location)
- 18. Bibliography
- 18.1. References 1-20
- 18.2. References 21-40
- 18.3. References 41-60
- 18.4. References 61-80
- 18.5. References 81-100
- 18.6. References 101-120
- 18.7. References 121-140
- 18.8. References 141-160
- 18.9. References 161-180
- 18.10. References 181-200
- 18.11. References 201-220
- 18.12. References 221-
- Glossary