The following mathematical functions are available for use with all CEL expressions.
Note: In the Function column
in the table below, [a]
denotes any
dimension of the first operand.
Table 15.1: Standard Mathematical CEL Functions
Function |
Operand’s Values |
Result’s Dimensions |
---|---|---|
abs( [a] ) |
Any |
[a] |
acos( [ ] ) |
|
Radians |
asin( [ ] ) |
|
Radians |
atan( [ ] )[a] |
Any |
Radians |
atan2( [a], [a] )[a] |
Any |
Radians |
besselJ( [ ], [ ] )[b] |
|
Dimensionless |
besselY( [ ], [ ] )[b] |
|
Dimensionless |
cos( [radians] ) |
Any |
Dimensionless |
cosh( [ ] ) |
Any |
Dimensionless |
exp( [ ] ) |
Any |
Dimensionless |
int([ ])[c] |
Dimensionless |
Dimensionless |
loge( [ ] )[d] |
|
Dimensionless |
log10( [ ] )[e] |
|
Dimensionless |
min( [a], [a] ) |
Any |
[a] |
max( [a], [a] ) |
Any |
[a] |
mod( [a], [a] )[f] |
Any |
[a] |
nint([ ])[g] |
Dimensionless |
Dimensionless |
sin( [radians] ) |
Any |
Dimensionless |
sinh( [ ] ) |
Any |
Dimensionless |
sqrt( [a] ) |
|
[a]^0.5 |
step( [ ] ) [h] |
Any |
Dimensionless |
tan( [radians] )[i] |
Any |
Dimensionless |
tanh( [ ] ) |
Any |
Dimensionless |
[a] atan does not determine the quadrant of the result, but atan2 does.
[b] The value of the first dimensionless operand n, also referred to as the order of the Bessel function, must be an integer (n=0, 1, 2, ....). The second argument is a dimensionless real number.
[c] The int() function truncates the dimensionless argument to its integer part.
Examples:
int(1) = 1
int(2.5) = 2
int(-3.1) = -3
int(-4.8) = -4
The int() function requires a dimensionless argument but will not report an error if the argument of the function has a dimension of radians or degrees.
[d] ln(x) is valid as an alias for loge(x)
[e] log(x) is valid as an alias for log10(x)
[f] mod(x, y) returns the remainder on dividing x by y; the function is not defined for y = 0.
[g] The nint function requires a dimensionless argument and is defined as:
int(x + 0.5) if x >= 0
int(x - 0.5) if x < 0
See the implementation of int( ) function in the table above.
Examples:
nint(2.6) = 3
nint(2.5) = 3
nint(2.4) = 2
nint(1) = 1
nint(-1) = -1
nint(-2.4) = -2
nint(-2.5) = -3
nint(-2.6) = -3
Note that the nint() function will not report an error if the argument of the function has a dimension of radians or degrees.
[h] step(x) is 0 for negative x, 1 for positive x and 0.5 for x=0. x must be dimensionless.
[i] tan(x) is undefined for x=n/2, where n=1, 3, 5, ...