Expand/Collapse all
1. Remote Visualization and Accessing Fluent Remotely
1.1. Starting Remote Visualization
1.1.1. Steps for Starting the Server
1.1.1.1. Port Management
1.1.2. Steps For Starting the Remote Visualization Client
1.2. Using a Job Scheduler with Remote Visualization
1.3. Operating in the Fluent Remote Visualization Environment
1.3.1. Adding New Remote Client Connections
1.3.2. Using the Help System
1.3.3. Setting Preferences
1.3.4. Initializing, Starting, Pausing, and Interrupting the Calculation
1.3.5. Modifying Solution Settings
1.3.6. Graphics Window Interactions and Context Menus
1.3.7. Surfaces
1.3.7.1. Point Surfaces
1.3.7.2. Line Surfaces
1.3.7.3. Rake Surfaces
1.3.7.4. Plane Surfaces
1.3.7.5. Iso-Surfaces
1.3.8. Graphics Objects
1.3.8.1. Creating and Displaying Graphics objects
1.3.8.2. Creating and Displaying Plot objects
1.3.8.3. Creating and Displaying Scenes
1.3.8.4. Saving Pictures of the Graphics Window
1.3.8.5. Modifying the Views
1.3.8.6. Synchronizing with the Server
1.3.9. Messaging and Text Commands
1.3.10. Saving Case and Data Files
1.3.11. Disconnecting the Server and Client
1.3.11.1. Disconnecting from Within the Remote Client Session
1.3.11.2. Disconnecting from Within the Remote Server Session
1.3.12. Modifying Preferences
1.4. Python, Scripting and Transcripts in the Remote Client
1.4.1. Python Scripting
1.4.2. Starting and Stopping a Transcript
1.5. Remote Visualization Best Practices
1.6. Remote Visualization Client Environment Variables
1.7. Limitations
2. Fluent Icing
2.1. Overview of Fluent Icing
2.2. Known Limitations in Fluent Icing 2024 R2
2.3. Quick Start
2.4. Starting Fluent Icing
2.5. Fluent Icing Graphical User Interface Layout
2.5.1. Using the Help System
2.6. Creating or Opening a Fluent Icing Project
2.6.1. Creating a Fluent Icing Project
2.6.2. Opening a Fluent Icing Project
2.6.3. Project Library
2.6.4. Project Close
2.7. Creating or Loading a Fluent Icing Simulation
2.7.1. Case File Requirements
2.7.2. Fluent Solver and License Requirements
2.7.3. Creating a New Simulation by Importing/Loading a Case File
2.7.4. Loading a Simulation
2.7.5. Use Custom Solver Launch Settings to Load in Solver
2.7.6. Disconnecting from a Simulation
2.7.7. Duplicating a Simulation
2.7.8. Loading Multiple Simulations
2.8. Setting-up a Fluent Icing Simulation
2.8.1. Setup
2.8.1.1. Airflow
2.8.1.2. Particles
2.8.1.3. Ice
2.8.2. Boundary Conditions
2.8.2.1. Inlets
2.8.2.2. Walls
2.8.2.3. Outlets
2.8.3. Solution
2.8.3.1. Airflow
2.8.3.2. Particles
2.8.3.3. Ice
2.8.3.4. Multi-Shot
2.8.3.5. CHT
2.8.4. Results
2.8.4.1. Quick-View
2.9. Using the Project View to Interact with Fluent Icing Simulations
2.9.1. Simulation Folder Commands
2.9.2. Run Folder Commands
2.9.3. Case File Commands
2.9.4. Solution File Commands
2.9.5. The Use of Bold Text in Project View
2.9.6. Project View Organization Options
2.10. Post-Analysis (Beta) in Fluent Icing
2.10.1. Loading a Dataset Into Post-Analysis
2.10.2. Managing Datasets
2.10.3. Graphics Window Commands
2.10.4. Graphical Objects
2.10.5. Case Comparison
2.10.6. Solution Sequences
2.11. Post Processing with Viewmerical and CFD-Post from Fluent Icing
2.11.1. Viewmerical
2.11.1.1. Accessing Viewmerical from Quick-View
2.11.1.2. Accessing Viewmerical from Project View
2.11.1.3. Comparing Multiple Solutions with Viewmerical
2.11.2. CFD-Post
2.11.2.1. Accessing CFD-Post from Quick-View
2.11.2.2. Accessing CFD-Post from Project View
2.11.3. EnSight
2.12. Preferences
2.13. File Types
2.14. Appendix
2.14.1. Python Console
2.14.2. Batch Launching
2.14.3. Data Structures
2.14.4. Project API
2.14.5. Post-Analysis API (Beta)
2.14.6. Fluent Journal Commands
2.14.7. Run Sequence
2.14.8. Field Name Mapping
2.15. Launch and Run a Fluent Icing Simulation Using Job Scheduler on a Cluster
3. Fluent Aero
3.1. Overview of Fluent Aero
3.2. Known Issues and Limitations in Fluent Aero 2024 R2
3.3. Quick Start
3.4. Starting Fluent Aero
3.4.1. Solver and License Requirements
3.5. Fluent Aero Graphical User Interface
3.5.1. Using the Help System
3.5.2. Layout Menu
3.5.3. File Menu
3.5.4. Ribbon Commands
3.6. Creating or Opening a Fluent Aero Project
3.6.1. Creating a Fluent Aero Project
3.6.2. Opening a Fluent Aero Project
3.6.3. Project Library
3.6.4. Project Close
3.7. Creating or Loading a Fluent Aero Simulation
3.7.1. General Case File or Mesh File Requirements
3.7.2. Freestream or WindTunnel Domain Type Requirements
3.7.2.1. Freestream
3.7.2.2. WindTunnel
3.7.3. Creating a New Simulation by Using New Aero Workflow
3.7.4. Loading a Simulation
3.7.5. Closing a Simulation
3.7.6. Duplicating a Simulation
3.7.7. Fluent Aero Workspace, the Solver Session, and the Fluent Solution Workspace
3.7.7.1. Preferences Related to the Solver Session and the Solution Workspace
3.8. Setting up a Fluent Aero Simulation
3.8.1. Geometric Properties
3.8.2. Airflow Physics
3.8.3. Simulation Conditions
3.8.4. Component Groups
3.8.4.1. Organizing Component Groups and Boundaries
3.8.4.2. Applying Component Zone Specific Boundary Conditions
3.8.4.3. Boundary Zone Types Supported by Fluent Aero
3.8.4.4. Boundary Zone Types Not Directly Supported by Fluent Aero
3.8.4.5. Managing Component Outputs and Monitors
3.8.5. Files
3.8.6. Solve
3.8.7. Modifying Settings After Results Have Been Calculated
3.9. Viewing the Results of a Fluent Aero Simulation
3.9.1. Convergence Plots in the Graphics Window
3.9.2. Results Menu
3.9.2.1. Simulation
3.9.2.1.1. Tables
3.9.2.1.2. Graphs
3.9.2.2. Design Point
3.9.2.2.1. Surfaces
3.9.2.2.2. Graphics Objects
3.9.2.2.3. Plots
3.9.2.2.4. Scene
3.9.3. Animation from Files
3.9.4. Results Folder
3.10. Using the Project View to Interact with Fluent Aero Simulations
3.10.1. Simulation Folder Commands
3.10.2. Case File Commands
3.10.3. Results Folder Commands and Metadata
3.10.4. Design Point Folder Commands and Metadata
3.10.5. Solution File Commands
3.10.6. Convergence File Commands
3.10.7. The Use of Bold in Project View
3.10.8. Project View Organization Options
3.10.9. Using Columns in Project View
3.10.10. Hidden Items in Project View
3.11. AET: Aerodynamic Extraction Tool
3.11.1. AET Workflow File Menu and Ribbon Commands
3.11.2. AET Workflow Popup Dialog Menus
3.11.3. AET Workflow Project View Structure
3.11.4. Viewing Results of the AET Workflow
3.11.5. Recalculating Airflow Simulation Design Points and Updating the Output Folder
3.11.6. Additional Commands for the AET Workflow
3.11.7. AET Workflow – Preparing the Input Geometry File
3.11.8. AET Workflow Python Scripting
3.12. Post-Analysis in Fluent Aero (Beta)
3.12.1. Loading a Dataset Into Post-Analysis
3.12.2. Managing Datasets
3.12.3. Graphics Window Commands
3.12.4. Graphical Objects
3.12.5. Case Comparison
3.12.6. Dataset Sequences
3.13. Post-processing With CFD-Post and EnSight From Fluent Aero
3.13.1. CFD-Post From Fluent Aero
3.13.2. EnSight From Fluent Aero
3.13.2.1. View with EnSight From Project View
3.14. Preferences
3.15. Launching Fluent Aero in Batch or on a Cluster using Job Scheduler
3.15.1. Batch Launching
3.15.2. Launch Using Job Scheduler on a Cluster
3.16. Python API and Console
3.16.1. Python Console
3.16.2. Data Structure Hierarchy
3.16.3. Global Functions API
3.16.4. Project API
3.16.5. Post Analysis API (Beta)
3.17. Appendix
3.17.1. Settings Files: run.settings and projectname.flprj
3.17.2. Project Archiving and Disk Space Management
3.17.3. Release Version Compatibility
3.17.4. Default Properties of Supported Mixtures and Constituent Species in Fluent Aero
3.17.5. Results Properties
3.17.5.1. Surfaces
3.17.5.1.1. Point Properties
3.17.5.1.2. Line Properties
3.17.5.1.3. Rake Properties
3.17.5.1.4. Plane Properties
3.17.5.1.5. Iso-Surface Properties
3.17.5.2. Graphics
3.17.5.2.1. Mesh Properties
3.17.5.2.2. Contour Properties
3.17.5.2.3. Vector Properties
3.17.5.2.4. Pathlines Properties
3.17.5.3. Plots Properties
3.17.5.3.1. XY Plot Properties
3.17.5.3.2. Plot From File
3.17.5.4. Scene Properties
4. Fluent Materials Processing Workspace
4.1. Introduction
4.1.1. General Overview of the Workspace
4.1.2. Program Capabilities
4.1.3. Installation and Licensing Requirements
4.1.3.1. License-Specific Capabilities
4.1.4. Known Limitations
4.1.5. Graphical User Interface (GUI)
4.1.5.1. Using the Ribbon
4.1.5.2. Using the Outline View
4.1.5.3. Using the Properties Window
4.1.5.4. Using the Graphics Window
4.1.5.5. Using the Console Window
4.1.5.6. Setting Preferences for Fluent Materials Processing
4.1.5.7. Using the Toolbars
4.1.5.7.1. Pointer Tools
4.1.5.7.2. View Tools
4.1.5.7.3. Viewport Tools
4.1.5.7.4. Visibility Tool
4.1.5.7.5. The Standard Toolbar
4.1.5.8. Tips for Using the Workspace
4.1.5.8.1. Adding and Removing Objects in Your Simulation
4.1.5.8.2. Using Expressions in the Workspace
4.1.5.8.2.1. Expressions for Transient Simulations
4.1.5.8.2.2. Expressions for Generalized Simulations
4.1.5.8.2.2.1. Modeling Compressible Flow Using Generalized Expressions
4.1.5.8.2.2.2. Limitations for Using Generalized Expressions
4.1.5.8.2.3. Examples of Common Expressions
4.1.5.9. Using the Help System
4.2. Getting Started
4.3. Starting and Exiting the Workspace
4.3.1. Starting the Workspace Using the Fluent Launcher
4.3.2. Starting the Workspace Using the Command Line
4.3.3. Exiting the Workspace
4.4. Reading and Writing Files
4.5. Choosing Your Simulation Type
4.5.1. Modeling Internal Flows
4.5.2. Modeling the Prediction of Extrudate Shape (Direct Extrusion)
4.5.2.1. Understanding Guiding Devices
4.5.2.2. Free Jet Stabilization
4.5.2.2.1. Constraint on Global Displacement
4.5.2.2.2. Finite-Element Formulation
4.5.2.2.3. Limitations
4.5.2.2.4. Compatibility with Specific Geometries and Boundary Conditions
4.5.3. Modeling the Determination of Die Lip Shape (Inverse Extrusion)
4.5.4. Modeling Blow Molding and Thermoforming
4.5.5. Modeling Pressing
4.5.6. Modeling Compounding and Mixing
4.5.7. Modeling Film Casting
4.5.8. Modeling Filling
4.5.8.1. Theory of Filling
4.5.8.1.1. Volume Conservation
4.5.8.1.2. Time Step Management
4.5.9. Modeling Foaming
4.5.9.1. Foaming Theory
4.5.9.2. References
4.5.10. Modeling Coextrusion
4.5.11. Modeling Fiber Spinning
4.5.12. Radiation model
4.5.12.1. P-1 Radiation Model Theory
4.5.12.2. P-1 Radiation Problem Setup
4.5.12.2.1. Material Properties for Radiation
4.5.12.2.2. Activate Radiation
4.5.12.2.3. Assigning a Boundary Condition for the Radiation
4.5.12.2.4. Activate the Convergence Strategy for Radiation
4.6. Choosing a Simulation Template
4.6.1. Using the Internal Flow Template
4.6.2. Using the Extrusion Template
4.6.3. Using the Blow Molding & Thermoforming Template
4.6.4. Using the Pressing Template
4.6.5. Using the Compounding & Mixing Template
4.6.6. Using the Film Casting Template
4.6.7. Using the Filling Template
4.7. Using the Simulation Wizard
4.7.1. Using the Simple Internal Flow Wizard
4.7.1.1. Expected Topology for the Simple Internal Flow Wizard
4.7.2. Using the Simple Direct Extrusion Wizard
4.7.2.1. Expected Topology for the Simple Direct Extrusion Wizard
4.7.3. Using the Simple Inverse Extrusion Wizard
4.7.3.1. Expected Topologies for the Simple Inverse Extrusion Wizard
4.7.3.1.1. Fixed/Adaptive/Constant Sections
4.7.3.1.2. Fixed/Adaptive Sections
4.7.3.1.3. Adaptive/Constant Sections
4.7.3.1.4. Adaptive Sections
4.7.3.1.5. Constant Sections
4.7.4. Using the Blow Molding / Thermoforming Wizards
4.7.4.1. Expected Topologies for the Blow Molding / Thermoforming Wizards
4.8. Setting Up Your Simulation
4.8.1. General Simulation Settings
4.8.2. Materials
4.8.2.1. Simplified Viscoelastic Properties
4.8.2.2. Differential Viscoelastic Properties
4.8.2.3. Integral Viscoelastic Properties
4.8.2.4. Reinforcement Properties
4.8.2.5. Foaming Properties
4.8.2.6. Viscosity Laws in Porous Media
4.8.3. Species
4.8.4. Cell Zones
4.8.4.1. Fluid Cell Zones
4.8.4.2. Solid Cell Zones
4.8.4.3. Porous Region Cell Zones
4.8.4.4. Fixed Mold Cell Zones
4.8.4.5. Moving Mold Cell Zones
4.8.4.6. Restrictor Part Cell Zones
4.8.4.7. Moving Part Cell Zones
4.8.5. Boundary Conditions
4.8.5.1. Fluid Boundary Conditions
4.8.5.1.1. Inflow Fluid Boundary
4.8.5.1.2. Outflow Fluid Boundary
4.8.5.1.3. Wall Fluid Boundary
4.8.5.1.4. Symmetry Fluid Boundary
4.8.5.1.5. Free Surface Fluid Boundary
4.8.5.1.6. Extrudate Exit Fluid Boundary
4.8.5.1.7. Vent Fluid Boundary
4.8.5.1.8. Zero Velocity Fluid Boundary
4.8.5.1.9. Zero Force Fluid Boundary
4.8.5.1.10. Porous Wall Fluid Boundary
4.8.5.1.11. Force Fluid Boundary
4.8.5.1.12. Thermal Conditions for Fluid Boundaries
4.8.5.1.13. Species Conditions for Fluid Boundaries
4.8.5.2. Solid Boundary Conditions
4.8.5.3. Porous Media Boundary Conditions
4.8.5.4. Contact Boundary Conditions
4.8.5.5. Mold Boundary Conditions
4.8.5.6. Part Boundary Conditions
4.8.5.7. Interface Boundary Conditions
4.8.5.7.1. Fluid-Fluid Interface Boundary Conditions
4.8.5.7.2. Fluid-Solid Interface Boundary Conditions
4.8.5.8. Guiding Device Boundary Conditions
4.8.6. Assignments
4.8.6.1. Pressure Assignment
4.8.6.2. Displacement Assignment
4.8.7. Mesh Deformations
4.8.8. Adaptive Meshing
4.8.8.1. Adaptive Meshing for Blow Molding and Thermoforming Simulations Using the Shell Model
4.8.8.1.1. General Properties of Adaptive Meshing for Blow Molding and Thermoforming Simulations Using the Shell Model
4.8.8.1.2. Conditions for Adaptive Meshing for Blow Molding and Thermoforming Simulations Using the Shell Model
4.8.8.1.3. Contact Conditions Based on Angle and Curvature
4.8.8.1.4. Contact Conditions Based on Curvature
4.8.8.1.5. Contact Conditions Based on Distance
4.8.8.2. Adaptive Meshing for 2D and 3D Pressing Cases
4.8.8.2.1. General Properties of Adaptive Meshing for 2D and 3D Pressing Cases
4.8.8.2.2. Conditions for Adaptive Meshing for 2D and 3D Pressing Cases
4.8.8.2.2.1. Pressing-Related Adaptive Meshing Conditions Based on Mesh Quality
4.8.8.2.2.2. Pressing-Related Adaptive Meshing Contact Conditions Based on Curvature
4.8.8.2.2.3. Pressing-Related Adaptive Meshing Contact Conditions Based on Distance
4.8.8.2.3. Refinement Zones for Adaptive Meshing for 2D and 3D Pressing Cases
4.8.8.2.3.1. Defining Box-Based Adaptive Meshing Refinement Zones
4.8.8.2.3.2. Defining Sphere-Based Adaptive Meshing Refinement Zones
4.8.8.2.3.3. Defining Boundary-Based Adaptive Meshing Refinement Zones
4.8.8.2.3.3.1. Setting Boundary Adaptive Meshing Refinement Zones Based on Curvature
4.8.8.2.3.3.2. Setting Boundary Adaptive Meshing Refinement Zones Based on Distance
4.8.8.3. Adaptive Meshing for 2D and 3D Restrictors and Moving Parts
4.8.8.3.1. General Properties for Adaptive Meshing for 2D and 3D Restrictors and Moving Parts
4.8.8.3.2. Overlapping Conditions for Adaptive Meshing for 2D and 3D Restrictors and Moving Parts
4.9. Setting Solution Options
4.9.1. Temperature Initialization
4.9.2. Species Initialization
4.9.3. Creating Solution Probes
4.9.4. Generating Derived Quantities From Your Solution
4.9.4.1. Shear Rate
4.9.4.2. Viscosity
4.9.4.3. Viscous Heating
4.9.4.4. Stress
4.9.4.5. Volume of Liquid
4.9.4.6. Tracking of Material Points
4.9.4.6.1. Calculation for Tracking Material Points
4.9.4.7. Mixing Index
4.9.4.8. Vorticity
4.9.4.9. Rate of Deformation Tensor
4.9.4.10. Force
4.9.4.11. Flow Rate
4.9.4.12. Heat Flux
4.9.4.13. Flow Balance
4.9.4.14. Convective Heat
4.9.4.15. Residence Time
4.9.4.15.1. Residence Time Condition
4.9.4.15.2. Calculation of Residence Time
4.9.4.16. Tracking of a Material Property
4.9.4.17. Extension
4.9.4.17.1. Reference Point P
4.9.4.17.2. Reference Direction D
4.9.4.18. Self Contact
4.9.4.19. Estimated Thickness
4.9.4.20. Analysing Mesh Quality
4.9.4.20.1. Element Distortion Check
4.9.4.21. Accessing Solution Methods
4.9.4.22. Accessing Calculation Activities
4.9.4.22.1. AMF Direct Solver
4.9.4.22.2. AMF Direct Solver + Secant
4.9.4.22.3. MUMPS Solver
4.9.4.22.3.1. Recommendations for the MUMPS Solver
4.9.4.22.4. MUMPS Solver + Secant
4.9.5. Accessing Solution Outputs
4.9.6. Accessing Solution Monitors
4.9.7. Running the Calculation
4.10. Postprocessing Results
4.10.1. Surfaces
4.10.1.1. Point Surfaces
4.10.1.2. Line Surfaces
4.10.1.3. Rake Surfaces
4.10.1.4. Plane Surfaces
4.10.1.5. Iso-Surfaces
4.10.1.6. Iso-Clip Surfaces
4.10.1.7. Creating Multiple Planes
4.10.1.8. Creating Multiple Iso-Surfaces
4.10.2. Reports
4.10.2.1. Printing Reports
4.10.2.2. Saving Reports
4.10.2.3. Plotting Reports
4.10.3. Graphics Objects
4.10.3.1. LIC Settings
4.10.3.2. Mesh Plots
4.10.3.3. Contour Plots
4.10.3.4. Vector Plots
4.10.3.5. Pathline Plots
4.10.3.6. Display Settings
4.10.3.7. Scenes
4.10.3.7.1. Saving Animations
4.10.3.8. Mirror Planes
4.10.4. Material Assignment
4.10.5. Using Plots
4.10.5.1. XY Plots
4.10.5.2. Transient Plots
4.11. Rheometry
4.11.1. Material Data Parameters
4.11.1.1. Overview of Fluid Properties and Flow Characteristics
4.11.1.2. Generalized Newtonian Model
4.11.1.2.1. Introduction
4.11.1.2.1.1. Equations
4.11.1.2.1.2. Inputs
4.11.1.2.2. Shear Rate Dependence of Viscosity
4.11.1.2.2.1. Constant
4.11.1.2.2.2. Bird-Carreau Law
4.11.1.2.2.3. Power Law
4.11.1.2.2.4. Bingham Law
4.11.1.2.2.5. Modified Bingham Law
4.11.1.2.2.6. Herschel-Bulkley Law
4.11.1.2.2.7. Modified Herschel-Bulkley Law
4.11.1.2.2.8. Cross Law
4.11.1.2.2.9. Modified Cross Law
4.11.1.2.2.10. Carreau-Yasuda Law
4.11.1.2.3. Temperature Dependence of Viscosity
4.11.1.2.3.1. Arrhenius Law
4.11.1.2.3.2. Approximate Arrhenius Law
4.11.1.2.3.3. Fulcher Law
4.11.1.2.3.4. WLF Law
4.11.1.3. Differential Viscoelastic Model
4.11.1.3.1. Introduction
4.11.1.3.1.1. Equations
4.11.1.3.1.2. Inputs
4.11.1.3.2. Differential Viscoelastic Models
4.11.1.3.2.1. Maxwell Model
4.11.1.3.2.1.1. Equations
4.11.1.3.2.1.2. Inputs
4.11.1.3.2.1.3. Behavior Analysis
4.11.1.3.2.2. Oldroyd-B Model
4.11.1.3.2.2.1. Equations
4.11.1.3.2.2.2. Inputs
4.11.1.3.2.2.3. Behavior Analysis
4.11.1.3.2.3. Phan-Thien-Tanner Model
4.11.1.3.2.3.1. Equations
4.11.1.3.2.3.2. Inputs
4.11.1.3.2.3.3. Behavior Analysis
4.11.1.3.2.4. Giesekus Model
4.11.1.3.2.4.1. Equations
4.11.1.3.2.4.2. Inputs
4.11.1.3.2.4.3. Behavior Analysis
4.11.1.3.2.5. FENE-P Model
4.11.1.3.2.5.1. Equations
4.11.1.3.2.5.2. Inputs
4.11.1.3.2.5.3. Behavior Analysis
4.11.1.3.2.6. POMPOM Model [DCPP]
4.11.1.3.2.6.1. Inputs
4.11.1.3.2.6.2. Behavior Analysis
4.11.1.3.2.7. Leonov Model
4.11.1.3.2.7.1. Inputs
4.11.1.3.2.7.2. Identification of Model Parameters and Functions
4.11.1.3.2.7.3. Behavior Analysis
4.11.1.3.3. Temperature Dependence of Viscosity and Relaxation Time
4.11.1.3.4. Multiple Relaxation Times for Differential Viscoelastic Models
4.11.1.4. Integral Viscoelastic Model
4.11.1.4.1. Introduction
4.11.1.4.1.1. Equations
4.11.1.4.1.2. Inputs
4.11.1.4.2. Integral Viscoelastic Models
4.11.1.4.3. Temperature Dependence of Viscosity
4.11.1.5. Simplified Viscoelastic Model
4.11.1.5.1. Equations
4.11.1.5.2. Identification of Model Parameters and Functions
4.11.1.5.3. Inputs
4.11.1.5.4. Behavior Analysis
4.11.2. Rheological Properties
4.11.2.1. Steady Simple Shear Flow
4.11.2.2. Steady Extensional Flow
4.11.2.3. Oscillatory Shear Flow
4.11.2.4. Transient Shear Flow
4.11.2.5. Transient Extensional Flow
4.11.3. Fitting Material Parameters
4.11.3.1. Introduction
4.11.3.2. Reading and Writing Files
4.11.3.2.1. Files Written or Read by Fluent Materials Processing
4.11.3.2.2. Reading Experimental Data
4.11.3.2.2.1. Reading Experimental Data Curves for the Non-Automatic Fitting Method
4.11.3.2.2.2. Reading Experimental Data Curves for the Automatic Fitting Method
4.11.3.2.3. Saving Calculated Rheometric Curves
4.11.3.2.4. Reading and Writing Material Data
4.11.3.3. Non-Automatic Fitting
4.11.3.3.1. Steps for Non-Automatic Fitting
4.11.3.3.2. Specifying the Curves to be Calculated
4.11.3.3.3. Defining Curves Parameters
4.11.3.3.4. Selecting the Type of Fluid Model
4.11.3.3.5. Specifying the Chart Parameters
4.11.3.3.6. Performing the Fitting Analysis
4.11.3.3.7. Exporting the Results of the Fitting
4.11.3.4. Automatic Fitting
4.11.3.4.1. Steps for Automatic Fitting
4.11.3.4.2. Selecting the Type of Fluid Model
4.11.3.4.3. Fixing Values for Selected Material Parameters
4.11.3.4.4. Reading Experimental Curves
4.11.3.4.5. Defining Numerical Parameters
4.11.3.4.6. Drawing the Experimental Curves
4.11.3.4.7. Performing the Automatic Fitting Analysis
4.11.3.4.7.1. Evaluating the Automatic Fitting
4.11.3.4.7.1.1. Evaluating the Distance Between Two Successive Solutions
4.11.3.4.7.1.2. Evaluating the Distance Between Solution and Experimental Points
4.11.3.4.8. Exporting the Results of the Fitting
4.11.4. Defining and Plotting Curves
4.11.4.1. Overview
4.11.4.1.1. Definitions of Terms
4.11.4.2. Working with Curves
4.11.4.2.1. Format of Experimental Data Curves
4.11.4.2.2. Reading Curve Files
4.11.4.2.3. Deleting a Curve
4.11.4.2.4. Saving a Curve
4.11.4.2.5. Modifying Curve Display Attributes
4.11.4.3. Cleaning and Modifying Chart
4.11.4.3.1. Cleaning a Chart
4.11.4.3.2. Modifying the Title and Legend
4.11.4.3.3. Modifying the Axis Attributes
4.11.5. Guidelines for Viscoelastic Models
4.11.5.1. Introduction
4.11.5.2. The Weissenberg Number
4.11.5.3. Viscometric and Rheometric Measurements
4.11.5.3.1. Oscillatory Properties
4.11.5.3.2. Steady-State Shear Viscosity
4.11.5.3.3. First Normal-Stress Difference
4.11.5.3.4. Transient Uniaxial Elongational Viscosity
4.11.5.4. General Strategy for Fitting
4.11.5.4.1. Weighting Measured Data
4.11.5.4.2. Assigning a Value to a Parameter
4.11.5.4.3. Using Identical or Independent Nonlinear Parameters
4.11.5.4.4. Relaxation Time vs. Relaxation Spectrum in Extrusion, Fiber Spinning, and Film Casting
4.11.5.4.5. Relaxation Time vs. Relaxation Spectrum in Blow Molding and Thermoforming
4.11.5.4.6. Relaxation Time vs. Relaxation Spectrum in Pressing
4.11.5.5. Guidelines for Extrusion
4.11.5.5.1. Important Effects
4.11.5.5.1.1. 2D Extrusion
4.11.5.5.1.2. 3D Extrusion
4.11.5.5.2. Recommended Experimental Data
4.11.5.5.3. Recommended Models and Parameters
4.11.5.6. Guidelines for Fiber Spinning
4.11.5.6.1. Important Effects
4.11.5.6.1.1. 2D Fiber Spinning
4.11.5.6.1.2. 3D Fiber Spinning
4.11.5.6.2. Recommended Experimental Data
4.11.5.6.3. Recommended Models and Parameters
4.11.5.7. Guidelines for Film Casting
4.11.5.7.1. Important Effects
4.11.5.7.2. Recommended Experimental Data
4.11.5.7.3. Recommended Models and Parameters
4.11.5.8. Guidelines for Blow Molding and Thermoforming
4.11.5.8.1. Important Effects
4.11.5.8.2. Recommended Experimental Data
4.11.5.8.3. Recommended Models and Parameters
4.11.5.8.3.1. 2D and 3D Blow Molding and Thermoforming
4.11.5.8.3.2. Blow Molding and Thermoforming with Shell Models
4.11.5.9. Guidelines for Pressing
4.11.5.9.1. Important Effects
4.11.5.9.2. Recommended Experimental Data
4.11.5.9.3. Recommended Models and Parameters
4.11.5.10. Empirical Rules and Principles
4.11.5.10.1. Cox-Merz Rule
4.11.5.10.2. Gleissle Mirror Relationships
4.11.5.10.3. First Normal Stress Difference Relationships
4.11.5.10.4. Time-Temperature Equivalence
4.12. Fluent Materials Processing Workspace Reference Guide
4.12.1. Simulation Setup
4.12.1.1. General Properties
4.12.1.1.1. Physics Options
4.12.1.2. Material Properties
4.12.1.2.1. Density Law
4.12.1.2.2. Thermal Properties
4.12.1.2.3. Elastic Properties
4.12.1.2.4. Viscosity Law
4.12.1.2.4.1. Constant
4.12.1.2.4.2. Power Law
4.12.1.2.4.3. Bird-Carreau Law
4.12.1.2.4.4. Carreau-Yasuda Law
4.12.1.2.4.5. Bingham Law
4.12.1.2.4.6. Modified Bingham Law
4.12.1.2.4.7. Herschel-Bulkley Law
4.12.1.2.4.8. Modified Herschel-Bulkley Law
4.12.1.2.4.9. Cross Law
4.12.1.2.4.10. Modified Cross Law
4.12.1.2.4.11. Arrhenius Law
4.12.1.2.4.12. Arrhenius Approximate Law
4.12.1.2.4.13. Fulcher
4.12.1.2.4.14. WLF
4.12.1.2.5. Simplified Viscoelastic Law Properties
4.12.1.2.5.1. Viscosity Law
4.12.1.2.5.1.1. Constant
4.12.1.2.5.1.2. Power Law (Shear)
4.12.1.2.5.1.3. Bird-Carreau (Shear)
4.12.1.2.5.1.4. Carreau-Yasuda (Shear)
4.12.1.2.5.1.5. Cross Law (Shear)
4.12.1.2.5.1.6. Modified Cross Law (Shear)
4.12.1.2.5.2. First Normal Viscosity Law
4.12.1.2.5.2.1. Constant (FNS)
4.12.1.2.5.2.2. Power Law (FNS)
4.12.1.2.5.2.3. Bird-Carreau (FNS)
4.12.1.2.5.2.4. Carreau-Yasuda (FNS)
4.12.1.2.5.2.5. Cross Law (FNS)
4.12.1.2.5.2.6. Modified Cross Law (FNS)
4.12.1.2.5.3. Relaxation Time Law
4.12.1.2.5.3.1. Constant (Relaxation Time)
4.12.1.2.5.3.2. Power Law (Relaxation Time)
4.12.1.2.5.3.3. Bird-Carreau (Relaxation Time)
4.12.1.2.5.4. Thermal Dependency
4.12.1.2.5.4.1. Arrhenius Law
4.12.1.2.5.4.2. Arrhenius Approximate Law
4.12.1.2.5.4.3. WLF
4.12.1.2.6. Differential Viscoelastic Law Properties
4.12.1.2.6.1. Mode n
4.12.1.2.6.2. Thermal Dependency
4.12.1.2.7. Integral Viscoelastic Law Properties
4.12.1.2.7.1. Mode n
4.12.1.2.7.2. Thermal Dependency
4.12.1.2.8. Reinforcement Properties
4.12.1.2.8.1. Reinforcement 1
4.12.1.2.8.2. Reinforcement 2
4.12.1.2.8.3. Reinforcement 3
4.12.1.2.9. Foaming Properties
4.12.1.2.10. Viscosity Law in Porous Medium Properties
4.12.1.2.10.1. Thermal Dependency
4.12.1.2.10.1.1. Arrhenius Law
4.12.1.2.10.1.2. Arrhenius Approximate Law
4.12.1.3. Species Properties
4.12.1.4. Cell Zone Properties
4.12.1.4.1. Mesh Superposition
4.12.1.4.1.1. Initial Displacement
4.12.1.4.2. Solid Motion
4.12.1.4.2.1. Solid Translation Velocity
4.12.1.4.3. Mold Motion
4.12.1.4.3.1. Mold Translational Velocity
4.12.1.4.3.2. Initial Velocity
4.12.1.4.3.3. Mold Translation Force
4.12.1.4.3.4. General Motion
4.12.1.4.3.4.1. Initial Displacement
4.12.1.4.3.4.2. Initial Rotation
4.12.1.4.3.4.3. Point
4.12.1.4.3.4.4. Orientation
4.12.1.4.3.4.5. Angular Velocity
4.12.1.4.3.4.6. Translation Velocity
4.12.1.4.4. Volume Conservation
4.12.1.4.5. Inflation Pressure
4.12.1.4.6. Normal Flow Rate
4.12.1.4.7. Surface Heat Source
4.12.1.5. Fluid Cell Zone Properties
4.12.1.5.1. Matrix Reinforcement for Fluid Cell Zones
4.12.1.5.2. Foaming Properties for Fluid Cell Zones
4.12.1.6. Solid Cell Zone Properties
4.12.1.6.1. Solid Motion
4.12.1.6.1.1. Transport Velocity
4.12.1.6.2. Solid Deformation
4.12.1.7. Porous Cell Zone Properties
4.12.1.7.1. Porous Media
4.12.1.7.1.1. Tensor Permeability
4.12.1.8. Fixed Mold Cell Zone Properties
4.12.1.9. Moving Mold Zone Properties
4.12.1.9.1. Mold Body Side
4.12.1.9.2. Mold Motion
4.12.1.9.2.1. Translation Velocity
4.12.1.9.2.2. Initial Velocity
4.12.1.9.2.3. Translation Force
4.12.1.9.2.4. General Motion
4.12.1.9.2.4.1. Initial Displacement
4.12.1.9.2.4.2. Initial Rotation
4.12.1.9.2.4.3. Local Rotation Axis Origin
4.12.1.9.2.4.4. Local Rotation Axis Direction
4.12.1.9.2.4.5. Angular Velocity
4.12.1.9.2.4.6. Translation Velocity
4.12.1.10. Moving Part Zone Properties
4.12.1.10.1. Mesh Superposition
4.12.1.10.1.1. Motion
4.12.1.10.1.1.1. Initial Displacement
4.12.1.10.1.1.2. Initial Rotation
4.12.1.10.1.1.3. Rotation Axis Origin
4.12.1.10.1.1.4. Rotation Axis Direction
4.12.1.10.1.1.5. Angular Velocity
4.12.1.10.1.1.6. Translation Velocity
4.12.1.10.1.1.7. Flow Condition
4.12.1.10.1.1.8. Thermal Condition
4.12.1.11. Restrictor Zone Properties
4.12.1.11.1. Mesh Superposition
4.12.1.11.1.1. Initial Displacement
4.12.1.11.1.2. Motion
4.12.1.11.1.2.1. Initial Displacement
4.12.1.11.1.2.2. Initial Rotation
4.12.1.11.1.2.3. Rotation Axis Origin
4.12.1.11.1.2.4. Rotation Axis Direction
4.12.1.12. Fluid Boundary Zone Properties
4.12.1.12.1. Inflow Fluid Boundary Properties
4.12.1.12.1.1. Inflow Properties
4.12.1.12.1.1.1. Foaming Inflow Conditions
4.12.1.12.2. Outflow Fluid Boundary Properties
4.12.1.12.2.1. Outflow Properties
4.12.1.12.3. Wall Fluid Boundary Properties
4.12.1.12.3.1. Wall Properties
4.12.1.12.3.1.1. First Point of Axis
4.12.1.12.3.1.2. Second Point of Axis
4.12.1.12.3.1.3. Angular Velocity
4.12.1.12.3.1.4. Translation Velocity
4.12.1.12.4. Symmetry Fluid Boundary Properties
4.12.1.12.4.1. Symmetry Properties
4.12.1.12.5. Free Surface Fluid Boundary Properties
4.12.1.12.5.1. Free Surface Properties
4.12.1.12.6. Extrudate Exit Fluid Boundary Properties
4.12.1.12.6.1. Extrudate Exit Properties
4.12.1.12.6.1.1. Take Up Velocity
4.12.1.12.6.1.2. Take Up Force
4.12.1.12.7. Vent Fluid Boundary Properties
4.12.1.12.7.1. Vent Properties
4.12.1.12.8. Zero Velocity Fluid Boundary Properties
4.12.1.12.8.1. Zero Velocity Fluid Boundary Properties
4.12.1.12.9. Zero Force Fluid Boundary Properties
4.12.1.12.9.1. Zero Force Fluid Boundary Properties
4.12.1.12.10. Porous Wall Fluid Boundary Properties
4.12.1.12.10.1. Porous Wall Properties
4.12.1.12.11. Force Fluid Boundary Properties
4.12.1.12.11.1. Force Properties
4.12.1.12.12. Thermal Condition Properties
4.12.1.12.13. Species Condition Properties
4.12.1.13. Solid Boundary Zone Properties
4.12.1.13.1. Normal Displacement Condition
4.12.1.13.2. Normal Force Density Condition
4.12.1.13.3. Cartesian Displacement Condition
4.12.1.13.3.1. First Point of Axis
4.12.1.13.3.2. Second Point of Axis
4.12.1.13.3.3. Angular Displacement
4.12.1.13.3.4. Translation Displacement
4.12.1.13.4. Force Condition
4.12.1.13.5. Thermal Condition
4.12.1.14. Porous Boundary Zone Properties
4.12.1.14.1. Pressure Condition
4.12.1.14.2. Normal Velocity Condition
4.12.1.14.3. Thermal Condition
4.12.1.15. Mold Boundary Zone Properties
4.12.1.15.1. Normal Displacement Condition
4.12.1.15.2. Normal Force Density Condition
4.12.1.15.3. Thermal Condition
4.12.1.16. Part Boundary Zone Properties
4.12.1.16.1. Normal Displacement Condition
4.12.1.16.2. Normal Force Density Condition
4.12.1.17. Contact Boundary Zone Properties
4.12.1.17.1. Contact Condition
4.12.1.17.1.1. Heat Transfer Coefficient vs Contact Time
4.12.1.17.1.1.1. Dependency Function
4.12.1.18. Interface Boundary Zone Properties
4.12.1.19. Fluid-Fluid Interface Boundary Zone Properties
4.12.1.20. Fluid-Solid Interface Boundary Zone Properties
4.12.1.21. Guiding Device Boundary Zone Properties
4.12.1.22. Assign Pressure Properties
4.12.1.23. Assign Displacement Properties
4.12.1.23.1. Displacement
4.12.1.23.2. Point
4.12.1.24. Deformation Properties
4.12.1.25. Adaptive Remeshing Properties
4.12.2. Solution Properties
4.12.2.1. Temperature Initialization Properties
4.12.2.2. Species Transport Initialization Properties
4.12.2.3. Probe Properties
4.12.2.4. Derived Quantities Properties
4.12.2.4.1. Flow Balance
4.12.2.4.2. Extension
4.12.2.4.2.1. Reference Point P
4.12.2.4.2.2. Reference Direction D
4.12.2.4.3. Self Contact
4.12.2.4.4. Convected Heat
4.12.2.4.5. Residence Time
4.12.2.4.5.1. Residence Time Condition
4.12.2.4.6. Tracking of a Material Property
4.12.2.4.6.1. Material Property Condition
4.12.2.4.7. Estimated Thickness
4.12.2.5. Methods Properties
4.12.2.5.1. DEVSS
4.12.2.5.2. Interpolation
4.12.2.5.3. FSI Parameters
4.12.2.5.4. Free Jet Parameters
4.12.2.5.5. Contact Penetration
4.12.2.5.6. Distortion Check
4.12.2.6. Calculation Activities Properties
4.12.2.7. Outputs Properties
4.12.2.8. Monitors Properties
4.12.3. Results Properties
4.12.3.1. Surfaces
4.12.3.1.1. Point Properties
4.12.3.1.2. Line Properties
4.12.3.1.3. Rake Properties
4.12.3.1.4. Plane Properties
4.12.3.1.5. Iso-Surface Properties
4.12.3.1.6. Iso-Clip Properties
4.12.3.2. Reports
4.12.3.2.1. Report Properties
4.12.3.2.1.1. Surface Reports
4.12.3.2.1.2. Volume Reports
4.12.3.3. Graphics
4.12.3.3.1. LIC Settings Properties
4.12.3.3.2. Mesh Properties
4.12.3.3.3. Contour Properties
4.12.3.3.4. Vector Properties
4.12.3.3.5. Pathlines Properties
4.12.3.3.6. Display Settings Properties
4.12.3.4. Plots
4.12.3.4.1. XY Plot Properties
4.12.3.4.2. Transient Plot Properties
4.12.3.4.2.1. Exporting Report Files
4.12.3.4.2.2. Managing Report Files
Bibliography