Expand/Collapse all
1. Getting Started
1.1. Overview
1.1.1. Introduction
1.1.2. Principle
1.1.3. Supported Platforms
1.1.4. Known Limitations
1.1.5. First Steps
1.2. Graphical User Interface
1.2.1. Ribbon Bar
1.2.2. Outline
1.2.3. Options Panel
1.2.4. Results Table
1.2.5. Material Designer Options
1.2.6. Unit Systems
1.3. Workbench Workflow Examples
1.3.1. Basic Workflow
1.3.2. Using Computed Materials in Downstream Analyses
1.3.3. Variable Material
1.3.4. Parameter Fitting
1.3.5. Workflow for Woven Composites
1.3.6. Workflow for Short Fiber Composites
1.3.7. Transfer to Mechanical
1.4. Tutorials
1.4.1. UD Composite Tutorial
1.4.2. Woven Composite Tutorial
1.4.2.1. Initialize the Analysis
1.4.2.2. Design the Woven Composite
1.4.2.3. Study the Effect of Shear
1.4.3. User Defined RVE Tutorial
1.4.3.1. Initialization
1.4.3.2. Define Input Materials
1.4.3.3. Prepare the User Defined RVE in Material Designer
1.4.3.4. Standard Steps in Material Designer
2. Material Designer Features
2.1. Model Type
2.1.1. Lattice
2.1.1.1. User Defined Lattices
2.1.2. UD Composite
2.1.3. Random UD Composite
2.1.4. Short Fiber Composite
2.1.4.1. Orientation Tensor
2.1.5. Woven Composite
2.1.5.1. Fabric Fiber Angle
2.1.5.1.1. Motivation
2.1.5.1.2. Definition
2.1.5.1.3. Consequences
2.1.6. Particle
2.1.7. Random Particle
2.1.8. Honeycomb
2.1.9. Triply Periodic Minimal Surface RVEs
2.1.10. User Defined RVE
2.1.10.1. Hints for Importing Geometry for User Defined RVEs
2.2. Assign Materials
2.3. Mesh
2.4. Analysis Settings
2.5. Experimental Data (for Short Fiber Models)
2.6. Solve
2.6.1. Constituents Calibration for Short Fiber Analytical Models
2.6.1.1. Set Up the Constituents Calibration
2.6.1.2. Review the Results
2.6.2. Solve Constant Material
2.6.3. Solve Variable Material
2.6.3.1. Short Fiber Wizard
2.6.3.1.1. Theory Background
2.6.3.1.2. How to use the Wizard
2.6.3.2. Generated Material
2.6.4. Curve Fitting for Short Fiber Models
2.6.4.1. Setting Up the Curve Fitting Analysis
2.6.4.2. Review the Results
2.7. Display
2.7.1. Display Element Orientation
2.8. Charts
2.8.1. Chart Examples
2.9. Data Management
2.9.1. Update
2.9.2. Refresh
2.9.3. Clear Generated Data
2.9.4. Export to CSV
2.9.5. Export to h5
3. Theory Documentation
3.1. Analytical Homogenization
3.1.1. Modeling Assumptions
3.1.2. Computation of Material Properties
3.1.2.1. Linear-Elastic Material Properties
3.1.2.1.1. Homogenization of Unidirectional Composites
3.1.2.1.2. Orientations Averaging
3.1.2.2. Coefficients of Thermal Expansion
3.1.2.2.1. Homogenization of Unidirectional Composites
3.1.2.2.2. Orientations Averaging
3.1.2.3. Thermal Conductivity
3.1.2.3.1. Homogenization of Unidirectional Composites
3.1.2.3.2. Orientations Averaging
3.2. Finite Element Based Homogenization
3.2.1. Modeling Assumptions
3.2.1.1. Lattice Structures
3.2.1.2. Unidirectional (UD) Composites
3.2.1.3. Random (Misaligned) UD Composites
3.2.1.4. Short Fiber Composites
3.2.1.5. Woven Composites
3.2.1.6. Particle Reinforced Composites
3.2.1.7. Random Particle Reinforced Composites
3.2.1.8. Honeycomb Structures
3.2.1.9. Triply Periodic Minimal Surface RVEs
3.2.1.10. User Defined RVE
3.2.2. Computation of Material Properties
3.2.2.1. Orthotropic Linear-Elastic Material Properties
3.2.2.1.1. Periodic Boundary Conditions
3.2.2.1.2. Non-Periodic Boundary Conditions
3.2.2.2. Fully Anisotropic Linear-Elastic Material Properties
3.2.2.3. Orthotropic Secant Coefficients of Thermal Expansion
3.2.2.3.1. Periodic Boundary Conditions
3.2.2.3.2. Non-Periodic Boundary Conditions
3.2.2.4. Orthotropic Thermal Conductivity
3.2.2.4.1. Periodic Boundary Conditions
3.2.2.4.2. Non-Periodic Boundary Conditions
3.3. Hill Plasticity Curve Fitting for Short Fiber Reinforced Composites
3.3.1. Material Modeling
3.3.1.1. Plasticity Model
3.3.1.2. Hill Yield Criterion
3.3.1.3. Parametrization of the Hill Yield Criterion
3.3.1.3.1. Phenomenological Parametrization
3.3.1.3.2. Parametrization Based on Orientation Averaging
3.3.1.4. Isotropic Hardening
3.3.2. Fitting the Material Properties from Experimental Data
3.3.2.1. Equivalent Stress and Plastic Strain for Uniaxial Tensile Loading
3.3.2.2. Hill Yield Criterion
3.3.2.3. Isotropic Hardening
4. Best Practices
4.1. Lattice structures
4.2. Woven composites
4.3. Short Fiber Composites
4.4. Misaligned UD Composites
4.5. Random Particle Reinforced Composites
4.6. Triply Periodic Minimal Surface RVEs
5. References