Collapse all
/- Acknowledgments
- 1. Introduction
- 2. Thermodynamic Expressions
- 2.1. State Variables
- 2.2. Gas Equation of State and Conversion Formulas
- 2.3. Standard-state Thermodynamic Properties
- 2.3.1. Specific Heat Capacity at Constant Pressure
- 2.3.2. Species Molar Enthalpy
- 2.3.3. Species Molar Entropy
- 2.3.4. Standard Form of Polynomial Fits
- 2.3.5. Other Species Molar Properties
- 2.3.6. Specific (Mass-based) Species Properties
- 2.3.7. Molar and Specific Properties of Gas Mixtures
- 2.3.8. Properties of Surface or Bulk Mixtures
- 2.4. Real Gas Model
- 2.5. Liquid Species
- 3. Gas-phase Chemical Rate Expressions
- 3.1. Basic Rate Expressions
- 3.2. Non-integer Stoichiometric Coefficients
- 3.3. Reactions with Arbitrary Reaction Order
- 3.4. Three-body Reactions
- 3.5. Collision Frequency Efficiency Expression
- 3.6. Pressure-dependent Reactions
- 3.7. Landau-Teller Formulation of the Rate Expressions
- 3.8. Other Allowable Rate Constant Fitting Options
- 3.9. Rates of Creation and Destruction of Species
- 3.10. Separating Temperature from Composition Dependence
- 4. Surface Chemical Rate Expressions
- 4.1. Atomic vs. Open Site Reaction Formalism
- 4.2. Basic Surface Reaction Rate Expressions
- 4.3. Equilibrium Constants for Reactions Involving Surface Species
- 4.4. Non-integer Stoichiometric Coefficients and Arbitrary Reaction Orders
- 4.5. Surface-coverage Modification of Rate Expression
- 4.6. Sticking Coefficients
- 4.7. Langmuir-Hinshelwood and Eley-Rideal Reactions
- 4.8. Plasma-surface Interactions
- 4.9. Manipulation of Chemical Rate Sensitivity Coefficients
- 4.10. Flux-matching Conditions at a Gas-surface Interface
- 4.11. Surface Site Non-conservation
- 4.12. Given K-Product for Ion Dissociation Reactions in the Liquid Phase
- 5. Gas-phase Species Transport Properties
- 5.1. Pure Species Viscosity and Binary Diffusion Coefficients
- 5.2. Pure Species Thermal Conductivities
- 5.3. The Pure Species Fitting Procedure
- 5.4. The Mass, Momentum, and Energy Fluxes
- 5.5. The Mixture-averaged Properties
- 5.6. Thermal Diffusion Ratios
- 5.7. The Multicomponent Properties
- 5.8. Species Conservation
- 6. Determining Chemical Equilibria
- 7. Normal Shock Equations
- 8. Homogeneous 0-D Reactor Models
- 8.1. Reactor Clusters—Special Case of Reactor Networks
- 8.2. Assumptions and Limitations
- 8.3. General Equations
- 8.3.1. Mass Conservation and Gas-phase Species Equations
- 8.3.2. Surface Species Equations
- 8.3.3. Bulk Species Equations During Deposition
- 8.3.4. Bulk Species Equations During Etch
- 8.3.5. Non-constant Surface Phase Site Densities
- 8.3.6. Gas Energy Equation
- 8.3.7. Heat Exchange Between Reactors in Reactor Clusters
- 8.3.8. Optional Wall Energy Balance and Heat Capacity Effects
- 8.3.9. Treatment of Activities for Bulk Species
- 8.4. Internal Combustion Engine Model
- 8.4.1. Piston Offsets
- 8.4.2. Special Piston Motions
- 8.4.3. Empirical Heat-transfer Options for the IC Engine Models
- 8.4.4. Multi-zone HCCI Model
- 8.4.5. SI Engine Zonal Simulator
- 8.4.6. Direct-Injection Diesel Engine Simulator
- 8.5. Plasma Systems
- 9. Multiphase Reactor Model
- 10. Partially Stirred Reactor (PaSR) Model
- 11. Plug-flow Assumptions and Equations
- 12. Boundary-layer Channel Flow
- 13. 1-D Premixed Laminar Flames
- 13.1. 1-D Flame Equations
- 13.2. Mixture-averaged Transport Properties
- 13.3. Multicomponent Transport Properties
- 13.4. Gas and Particulate Thermal Radiation Model for Flames
- 13.5. Boundary Conditions
- 13.6. Finite Difference Approximations
- 13.7. Transient Forms of the Equations
- 13.8. Options for Generating Flame Speed Tables for Autoigniting and Failed Cases
- 14. Opposed-flow and Stagnation Flames
- 15. Stagnation-Flow and Rotating-Disk CVD
- 16. Numerical Solution Methods
- 17. Sensitivity Analysis
- 18. Rate-of-production Analysis
- 19. Particle Size-Distribution Tracking
- 19.1. Description and Properties of a Particle Population
- 19.2. Sectional Model for Tracking Particle-Size Distribution
- 19.3. Particle Inception
- 19.4. Particle Coagulation
- 19.5. Chemical Processes on Particle Surfaces
- 19.6. Particle Depletion
- 19.7. Particle Transport Equations
- 19.8. Particle Aggregation Model
- 19.9. Solution Technique
- 19.10. Summary of Particle Tracking Capabilities
- 20. Uncertainty Analysis
- 20.1. Reducing the Dimensionality of the System through Polynomial Chaos Expansion
- 20.2. Solving for the Coefficients of the Expansions
- 20.2.1. Polynomial Chaos Expansion for Uncertain (Variant) Input Parameters
- 20.2.2. Polynomial Chaos Expansion for the Model Outputs
- 20.2.3. Selecting the Points for Model Evaluation
- 20.2.4. Solving for the Expansion Coefficients for the Model Outputs
- 20.2.5. Determining the Error of the Approximation
- 20.2.6. Variance Analysis
- 21. Tear-stream Algorithm
- 22. Nomenclature
- Bibliography