[1] Robert J. Kee, Michael E. Coltrin, and Peter Glarborg, Chemically Reacting Flow: Theory and Practice, John Wiley and Sons, Hoboken, New Jersey (2003)..
[3] Bilger, R. W. The structure of turbulent nonpremixed flames. 22nd Symposium (Int'l) on Combustion, The Combustion Institute, 475–488, 1988..
[4] Anantharaman, B., Green, W. H., and McRae, G. J., Chemical Engineering Department, Massachusetts Institute of Technology, personal communication, March 2005..
[5] Shustorovich, E., "The Bond-Order Conservation Approach to Chemisorption and Heterogeneous Catalysis: Applications and Implications", Advances in Catalysis, 37, 101-163 (1990)..
[6] S. Gordon and B. J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks and Chapman-Jouguet Detonations, NASA Report SP-273, 1971..
[7] Reid, R. C., Prausnitz, J. M., Poling, B. E., Properties of Gases & Liquids 4th Ed. McGraw- Hill Inc. (1987) pp. 14-25..
[8] N. E. Bergan, "High-Pressure Thermodynamics in Combustion Processes", in Mechanical Engineering. University of California, Davis, 1991..
[10] Lemmon, E. W., McLinden, M. O., and Friend, D. G.: "Thermophysical Properties of Fluid Systems" in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899, https://doi.org/10.18434/T4D303, (retrieved November 15, 2020) .
[11] Reid, R. C., Prausnitz, J. M., and Poling, B. E., The Properties of Gases, & Liquids, 4th Ed., McGraw-Hill, New York (1987).
[12] R. H. Aungier, "A Fast, Accurate Real Gas Equation of State for Fluid Dynamic Analysis Applications", Journal of Fluids Engineering, 227-281, 1995..
[13] Reid, R. C., Prausnitz, J. M., and Poling B. E., "The Properties of Gases and Liquids", 4th Edition, McGraw-Hill, New York, 1987..
[14] M. Mitchner and J. Charles H. Kruger, Partially Ionized Gases, John Wiley & Sons, New York, 1973..
[17] R. P. Lindstedt, B. B.O. Waldheim, Proceedings of the Combustion Institute, 34, 2013, 1861-1868..
[22] P. K. Venkatesh, A.Y. Chang, A.M. Dean, M. H. Cohen and R.W. Carr, J. AIChE 43 :1331-1340 (1997)..
[24] Equation 3–41 is the form implemented in CHEMKIN, which is based on the original work at the New Jersey Institute of Technology, and does not reproduce an error from the journal articles cited earlier ( [21], [22])..
[25] R. K. Janev, W. D. Langer, J. K. Evans, and J. D. E. Post, Elementary Processes in Hydrogen-Helium Plasmas, Springer-Verlag, New York, 1987..
[29] M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, John Wiley and Sons, New York (1994)..
[31] J. Warnatz, in Numerical Methods in Flame Propagation, edited by N. Peters and J. Warnatz Friedr. Vieweg and Sohn, Wiesbaden, 1982..
[32] R. J. Kee, J. Warnatz, and J. A. Miller, A Fortran Computer Code Package for the Evaluation of Gas-Phase Viscosities, Conductivities, and Diffusion Coefficients, Sandia National Laboratories Report SAND83-8209, 1983..
[33] R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, John Wiley and Sons, New York, 1960..
[35] J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley and Sons, New York, 1954..
[38] G. Narsimhan, E. Ruckenstein, Journal of Colloid and Interface Science, 104 (2), 1985 344-369..
[39] J. Warnatz, in Numerical Methods in Flame Propagation, edited by N. Peters and J. Warnatz Friedr. Vieweg and Sohn, Wiesbaden, 1982..
[42] R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, John Wiley and Sons, New York, 1960..
[44] M. E. Coltrin, R. J. Kee, and J. A. Miller, Journal of the Electrochemical Society 133:1206 (1986)..
[47] S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases Cambridge University Press, Cambridge, 1970..
[50] Petzold, L. R., "A description of DASSL: a differential/algebraic system solver," Sandia National Laboratories Report SAND82-8637 (1982)..
[51] W. C. Reynolds, The Element Potential Method for Chemical Equilibrium Analysis: Implementation in the Interactive Program STANJAN, Department of Mechanical Engineering, Stanford University (1986)..
[52] L. F. Shampine and H. A. Watts, Zeroin, A Root-Solving Code, Sandia National Laboratories Report SC-TM-70-631, 1970..
[54] J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley and Sons, Inc., New York, 1967..
[55] M. Camac and R. M. Feinberg, in Proceedings of the Eleventh Symposium (International) on Combustion, The Combustion Institute, 1967, p. 137..
[56] W. Fickett and W.C. Davis, Detonation, pages 78, 91, and 130, University of California Press, Berkeley CA, 1979.
[57] C.A. Eckett, J.J. Quirk, and J.E. Shepherd, “The role of unsteadiness in direct initiation of gaseous detonation”, Journal of Fluid Mechanics, 421:147–183, 2000 .
[58] K.P. Chatelain, Y. He, R. Mével, D.A. Lacoste, “Effect of the reactor model on steady detonation modeling”, Shock Waves, 31(4):323-335, 2021.
[59] J. B. Heywood, Internal Combustion Engines Fundamentals, McGraw-Hill Science/Engineering/Math, New York, 1988..
[66] H. Hiroyasu, T. Kadota, and M. Arai, Combustion Modeling in Reciprocating Engines, Plenum Press, 1980..
[69] Z. Han and R. D. Reitz, "A Temperature Wall Function Formulation for Variable-density Turbulence Flows with Application to Engine Convective Heat Transfer Modeling," International Journal of Heat and Mass Transfer,40: 613-625 (1997)..
[70] M. S. Aceves, D. L. Flowers, et al. (2001). A Sequential Fluid-Mechanic Chemical-Kinetic Model of Propane HCCI Combustion. SAE Technical Paper 2001-01-1027..
[72] M. A. Lieberman and R. A. Deutsche, in Physics of Thin Films, edited by M. Frenchman and J. Vision Academic Press, New York, 1993..
[73] C. Lee, D. B. Graves, M. A. Lieberman, and D. W. Less, Journal of the Electrochemical Society 141:1546 (1993)..
[76] E. Meeks, R. S. Larson, S. R. Vision, and J. W. Son, Journal of the Electrochemical Society 144:358 (1997)..
[84] R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, John Wiley and Sons, New York, 1960..
[85] M. E. Coltrin, R. J. Kee, and J. A. Miller, Journal of the Electrochemical Society 131:425 (1984)..
[86] M. E. Coltrin, R. J. Kee, and J. A. Miller, Journal of the Electrochemical Society 133:1206 (1986)..
[87] F. K. Moore, in High Speed Aerodynamics and Jet Propulsion (Princeton University Press, Princeton, NJ, 1964), Vol. IV..
[90] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations North-Holland, New York, (1989)..
[96] W. G. Breiland and P. Ho, in The Electrochemical Society Softbound Proceedings Series, edited by M. Robinson, C. H. J. v. d. Brekel, G. W. Cullen, J. M. Blocher and P. Rai-Choudhury The Electrochemical Society, New York, 1984..
[97] J. A. Miller, R. E. Mitchell, M. D. Smooke, and R. J. Kee, in Proceedings of the Nineteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, Pennsylvania, 1982, p. 181..
[98] J. A. Miller, M. D. Smooke, R. M. Green, and R. J. Kee, Combustion Science and Technology 34:149 (1983)..
[99] J. A. Miller, M. C. Branch, W. J. McLean, D. W. Chandler, M. D. Smooke, and R. J. Kee, in Proceedings of the Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, Pennsylvania, 1985, p. 673..
[101] Frenklach, M. and Wang, H., "Detailed Mechanism and Modeling of Soot Particle Formation", Soot Formation in Combustion: Mechanisms and Models, (H. Bockhorn, Editor), Springer-Verlag, Berlin, 1994, p. 165..
[102] Drolen, B.L. and Tien, C.L., "Absorption and Scattering of Agglomerated Soot Particulate", J. Quant. Spectrosc. Radiat. Transfer 37:433-448 (1987)..
[104] R. J. Kee, J. A. Miller, and G. H. Evans, in Proceedings of the Twenty-Second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, Pennsylvania, 1988, p. 1479..
[108] Takeno, D. and Nishioka, M., "Species Conservation and Emission Indices for Flames Described by Similarity Solutions", Combustion and Flame 92:465-468 (1993)..
[109] Miller, J.A., Rich Methane/Air Flames: Burning Velocities, Extinction Limits, and Flammability Limits, Sandia National Laboratory..
[110] Takeno, T., M. Nishioka, and C.K. Law, A Flame-Controlling Continuation Method for Generating S-curve Responses with Detailed Chemistry. Combustion and Flame, 1996. 104: p. 328-342.
[113] M. L. Hitchman, B. J. Curtis, H. R. Brunner, and V. Eichenberger, in Physicochemical Hydrodynamics, edited by D. B. Spalding Advanced Publications, London, 1977, Vol. 2..
[119] M. L. Hitchman, B. J. Curtis, H. R. Brunner, and V. Eichenberger, in Physicochemical Hydrodynamics, edited by D. B. Spalding Advanced Publications, London, 1977, Vol. 2.
[123] S. Li and L.R. Petzold, "Software and algorithms for sensitivity analysis of large-scale differential algebraic systems." Journal of Computational and Applied Mathematics, 2000, vol. 125, no. 1/2, pp. 131..
[124] L. Petzold, R. Serban, S. Li, S. Raha, and Y. Cao, in Proceedings of the NATO Advanced Research Workshop on Computational Aspects of Nonlinear Structural Systems with Large Rigid Body Motion, 1999..
[125] J. A. Miller, M. C. Branch, W. J. McLean, D. W. Chandler, M. D. Smooke, and R. J. Kee, in Proceedings of the Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, Pennsylvania, 1985, p. 673.
[127] J. A. Miller, M. C. Branch, W. J. McLean, D. W. Chandler, M. D. Smooke, and R. J. Kee, in Proceedings of the Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, Pennsylvania, 1985, p. 673..
[128] Y. Reuven, M. D. Smooke, and H. Rabitz, Sensitivity Analysis of Boundary Value Problems: Application to Nonlinear Reaction-Diffusion Systems, Yale University Mechanical Engineering Department Report ME-104-85, 1985..
[129] R. A. Brown, L. E. Scriven, and W. J. Silliman, in Nonlinear Problems in Dynamics, edited by P. Holmes (SIAM, Philadelphia 1980), Vol. p. 289..
[131] W. E. Stewart and J. P. Sφrensen, in Proceedings of the 4th International / 6th European Symposium on Chemical Reactor Engineering, Dechema, Frankfurt, 1976..
[132] J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart, "LINPACK Users' Guide", Society of Industrial and Applied Mathematics, 1979..
[133] M. Frenklach and H. Wang, in Soot Formation in Combustion: Mechanisms and Models, H. Bockhorn (Ed.), Springer-Verlag, pp. 165-192 (1994)..
[137] Gelbard, F. and J. H. Seinfeld (1980). "Simulation of multicomponent Aerosol Dynamics." Journal of Colloid Interface Science 78(2): 485-501..
[138] Marchal, P., R. David, et al. (1988). "Crystallization and Precipitation Engineering I: An effective Method for Solving the Population Balance for Crystallization with Agglomeration." Chemical Engineering Science 43(1): 59-67..
[139] Landgrebe, J. D. and S. E. Pratsinis (1990). "A Discrete-Sectional Model for Powder Production by Gas-Phase Chemical Reaction and Aerosol Coagulation in the Free-Molecular Regime." Journal of Colloid Interface Science 139(1): 63-86..
[140] Hounslow, M. J., R. L. Ryall, et al. (1988). "A Discretized Population Balance for Nucleation, Growth, and Aggregation." AICHE Journal 34(11): 1821-1832..
[141] Litster, J. D., D. J. Smit, et al. (1995). "Adjustable Discretized Population Balance for Growth and Aggregation." AICHE Journal 41(3): 591-603..
[142] Wynn, E., J. W. (1996). "Improved Accuracy and Convergence of Discretized Population Balance of Litster et al." AICHE Journal 42(7): 2084-2086..
[143] Kumar, S. and D. Ramkrishna (1996). "On the solution of population balance equations by discretization-- III. Nucleation, growth and aggregation of particles." Chem. Eng. Sci. 52(24): 4659-4679..
[146] C.-P. Chou, P. Ho, and E. Meeks, 30th International Symposium on Combustion, July 25-30, 2004, Work-In-Progress Poster Section, 2F1-22.
[147] W. Koch and S. K. Friedlander, "The effect of particle coalescence on the surface area of a coagulating aerosol," Journal of Colloid and Interface Science, 140: 419-427, 1990..
[148] C. Artelt, H.-J. Schmid, and W. Peukert, "On the relevance of accounting for the evolution of the fractal dimension in aerosol process simulations," J. Aerosol Sci., 34: 511-534, 2003..
[149] Kazakov, A.and Frenklach, M., "Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation with the Method of Moments and Application to High-Pressure Laminar.
[151] Koch, W. and Friedlander, S.K., "The Effect of Particle Coalescence on the Surface Area of a Coagulating Aerosol", J. of Colloid and Interface Science, 140(2):419-427 (1990)..
[152] Frenklach M. and Harris, S.J., "Aerosol Dynamics Modeling Using the Method of Moments", J. of Colloid and Interface Science, 118:252-261 (1987)..
[154] Kumar, S. and D. Ramkrishna (1997). "On the solution of population balance equations by discretization-- III. Nucleation, growth and aggregation of particles." Chemical Engineering Science 52(24): 4659-4679..
[155] Kumar, S. and D. Ramkrishna (1997). "On the solution of population balance equations by discretization-- III. Nucleation, growth and aggregation of particles." Chemical Engineering Science 52(24): 4659-4679..
[156] M. Frenklach and H. Wang, in Soot Formation in Combustion: Mechanisms and Models, H. Bockhorn (Ed.), Springer-Verlag, pp. 165-192 (1994)..
[159] Ramkrishna, D., On Problem-specific Polynomials. Chemical Engineering Science, 1973. 28: p. 1362..
[160] Gautschi, W., Algorithm 726: ORTHPOL - A Package of Routines for Generating Orthogonal Polynomials and Gauss-type Quadrature Rules. ACS Transaction on Mathematical Software, 1994. 20(1): p. 21..
[161] Szego, G., Orthogonal Polynomials. 1975, Providence, Rhode Island: American Mathematics Society..