Collapse all
/- 1. Basic Solver Capability Theory
- 1.1. Documentation Conventions
- 1.1.1. Dimensions
- 1.1.2. List of Symbols
- 1.1.3. Variable Definitions
- 1.1.3.1. Isothermal Compressibility
- 1.1.3.2. Isentropic Compressibility
- 1.1.3.3. Reference Pressure
- 1.1.3.4. Static Pressure
- 1.1.3.5. Modified Pressure
- 1.1.3.6. Static Enthalpy
- 1.1.3.7. Total Enthalpy
- 1.1.3.8. Domain Temperature
- 1.1.3.9. Static Temperature
- 1.1.3.10. Total Temperature
- 1.1.3.11. Entropy
- 1.1.3.12. Total Pressure
- 1.1.3.13. Shear Strain Rate
- 1.1.3.14. Rotating Frame Quantities
- 1.1.3.15. Courant Number
- 1.1.4. Mathematical Notation
- 1.2. Governing Equations
- 1.2.1. Transport Equations
- 1.2.2. Equations of State
- 1.2.2.1. Incompressible Equation of State
- 1.2.2.2. Ideal Gas Equation of State
- 1.2.2.3. Real Gas and Liquid Equations of State
- 1.2.2.3.1. Real Gas Properties
- 1.2.2.3.2. Real Gas Saturated Vapor Properties
- 1.2.2.3.3. Real Gas Liquid Properties
- 1.2.2.3.4. IAPWS Equation of State
- 1.2.2.3.5. Metastable Superheated Liquid/Supercooled Vapor States
- 1.2.2.3.6. Numerical Testing to Delineate Metastable Regions
- 1.2.2.3.7. The Acentric Factor
- 1.2.2.4. General Equation of State
- 1.2.3. Conjugate Heat Transfer
- 1.3. Buoyancy
- 1.4. Immersed Solids
- 1.5. Multicomponent Flow
- 1.6. Additional Variables
- 1.7. Rotational Forces
- 1.8. Sources
- 1.9. Boundary Conditions
- 1.9.1. Inlet (Subsonic)
- 1.9.2. Inlet (Supersonic)
- 1.9.3. Outlet (Subsonic)
- 1.9.3.1. Mass and Momentum
- 1.9.3.1.1. Static Pressure (Uniform)
- 1.9.3.1.2. Normal Speed
- 1.9.3.1.3. Cartesian Velocity Components
- 1.9.3.1.4. Cylindrical Velocity Components
- 1.9.3.1.5. Average Static Pressure: Over Whole Outlet
- 1.9.3.1.6. Average Static Pressure: Above or Below Specified Radius
- 1.9.3.1.7. Average Static Pressure: Circumferential
- 1.9.3.1.8. Mass Flow Rate: Scale Mass Flows
- 1.9.3.1.9. Mass Flow Rate: Shift Pressure with or without Pressure Profile
- 1.9.3.1.10. Mass Flow Rate: Shift Pressure with Circumferential Pressure Averaging
- 1.9.3.1.11. Exit Corrected Mass Flow Rate
- 1.9.3.1.12. Radial Equilibrium
- 1.9.3.2. Turbulence, Heat Transfer, Convected Additional Variables, and Other Scalars
- 1.9.4. Outlet (Supersonic)
- 1.9.5. Opening
- 1.9.6. Wall
- 1.9.7. Symmetry Plane
- 1.10. Automatic Time Scale Calculation
- 1.11. Mesh Adaption
- 1.12. Flow in Porous Media
- 1.13. Wall and Boundary Distance Formulation
- 1.14. Wall Condensation Theory
- 2. Turbulence and Wall Function Theory
- 2.1. Turbulence Models
- 2.2. Eddy Viscosity Turbulence Models
- 2.2.1. The Zero Equation Model in Ansys CFX
- 2.2.2. Two Equation Turbulence Models
- 2.2.2.1. The k-epsilon Model in Ansys CFX
- 2.2.2.2. Buoyancy Turbulence
- 2.2.2.3. The RNG k-epsilon Model in Ansys CFX
- 2.2.2.4. The k-omega Models in Ansys CFX
- 2.2.2.5. Production Limiters
- 2.2.2.6. Curvature Correction for Two-Equation Models
- 2.2.3. The Eddy Viscosity Transport Model
- 2.3. Reynolds Stress Turbulence Models
- 2.4. Ansys CFX Laminar-Turbulent Transition Models
- 2.5. Large Eddy Simulation Theory
- 2.6. Detached Eddy Simulation Theory
- 2.7. Scale-Adaptive Simulation Theory
- 2.8. Modeling Flow Near the Wall
- 2.8.1. Mathematical Formulation
- 2.8.1.1. Scalable Wall Functions
- 2.8.1.2. Solver Yplus and Yplus
- 2.8.1.3. Automatic Near-Wall Treatment for Omega-Based Models
- 2.8.1.4. Treatment of Rough Walls
- 2.8.1.4.1. Rough Wall Treatment for Turbulence Models Based on the Dissipation Equation
- 2.8.1.4.2. Automatic Rough Wall Treatment for Turbulence Models Based on the Omega Equation
- 2.8.1.4.3. Transition and Rough Walls
- 2.8.1.4.4. Wall Function Approach for Omega-Based Turbulence Models
- 2.8.1.4.5. Treatment of the SST Model for Icing Simulations
- 2.8.1.5. Heat Flux in the Near-Wall Region
- 2.8.1.6. Additional Variables in the Near Wall Region
- 3. GGI and MFR Theory
- 4. Transient Blade Row Modeling Theory
- 5. Multiphase Flow Theory
- 5.1. Multiphase Notation
- 5.2. The Homogeneous and Inhomogeneous Models
- 5.3. Hydrodynamic Equations
- 5.4. Multicomponent Multiphase Flow
- 5.5. Interphase Momentum Transfer Models
- 5.5.1. Interphase Drag
- 5.5.2. Interphase Drag for the Particle Model
- 5.5.2.1. Sparsely Distributed Solid Particles
- 5.5.2.2. Densely Distributed Solid Particles
- 5.5.2.3. Sparsely Distributed Fluid Particles (Drops and Bubbles)
- 5.5.2.4. Densely Distributed Fluid Particles
- 5.5.2.4.1. Densely Distributed Fluid Particles: Ishii-Zuber Drag Model
- 5.5.2.4.2. Densely Distributed Fluid Particles: Dense Spherical Particle Regime (Ishii Zuber)
- 5.5.2.4.3. Densely Distributed Fluid Particles: Dense Distorted Particle Regime (Ishii Zuber)
- 5.5.2.4.4. Densely Distributed Fluid Particles: Dense Spherical Cap Regime (Ishii Zuber)
- 5.5.2.4.5. Densely Distributed Fluid Particles: Automatic Regime Selection (Ishii Zuber)
- 5.5.2.4.6. Densely Distributed Fluid Particles: Grace Drag Model
- 5.5.3. Interphase Drag for the Mixture Model
- 5.5.4. Interphase Drag for the Free Surface Model
- 5.5.5. Lift Force
- 5.5.6. Virtual Mass Force
- 5.5.7. Wall Lubrication Force
- 5.5.8. Interphase Turbulent Dispersion Force
- 5.6. Solid Particle Collision Models
- 5.7. Interphase Heat Transfer
- 5.8. Multiple Size Group (MUSIG) Model
- 5.9. The Algebraic Slip Model
- 5.10. Turbulence Modeling in Multiphase Flow
- 5.11. Additional Variables in Multiphase Flow
- 5.12. Sources in Multiphase Flow
- 5.13. Interphase Mass Transfer
- 5.13.1. Secondary Fluxes
- 5.13.2. User Defined Interphase Mass Transfer
- 5.13.3. General Species Mass Transfer
- 5.13.4. The Thermal Phase Change Model
- 5.13.5. Cavitation Model
- 5.13.6. The Droplet Condensation Model
- 5.14. Free Surface Flow
- 6. Particle Transport Theory
- 6.1. Lagrangian Tracking Implementation
- 6.2. Momentum Transfer
- 6.3. Heat and Mass Transfer
- 6.4. Basic Erosion Models
- 6.5. Spray Breakup Models
- 6.5.1. Primary Breakup/Atomization Models
- 6.5.2. Secondary Breakup Models
- 6.5.3. Dynamic Drag Models
- 6.6. Particle Collision Model
- 6.6.1. Introduction to the Particle Collision Model
- 6.6.2. Implementation of a Stochastic Particle-Particle Collision Model in Ansys CFX
- 6.6.3. Range of Applicability of Particle-Particle Collision Model
- 6.6.4. Limitations of Particle-Particle Collision Model in Ansys CFX
- 6.7. Particle-Wall Interaction
- 6.8. Quasi Static Wall Film Model
- 6.8.1. Assumptions
- 6.8.2. Determination of Flooded Regime
- 6.8.3. Energy Transfer to and from the Wall Film
- 6.8.4. Mass Transfer to and from the Wall Film
- 6.8.5. Wall Film Thickness
- 6.8.6. Wall Film in Moving Mesh Applications
- 6.8.7. User Control for Heat and Mass Transfer Terms of Wall Particles
- 7. Combustion Theory
- 7.1. Transport Equations
- 7.2. Chemical Reaction Rate
- 7.3. Fluid Time Scale for Extinction Model
- 7.4. The Eddy Dissipation Model
- 7.5. The Finite Rate Chemistry Model
- 7.6. The Combined Eddy Dissipation/Finite Rate Chemistry Model
- 7.7. Combustion Source Term Linearization
- 7.8. The Flamelet Model
- 7.9. Burning Velocity Model (Premixed or Partially Premixed)
- 7.10. Burning Velocity Model (BVM)
- 7.11. Laminar Burning Velocity
- 7.12. Turbulent Burning Velocity
- 7.13. Extended Coherent Flame Model (ECFM)
- 7.14. Residual Material Model
- 7.15. Spark Ignition Model
- 7.16. Autoignition Model
- 7.17. Phasic Combustion
- 7.18. NO Formation Model
- 7.19. Chemistry Postprocessing
- 7.20. Soot Model
- 8. Radiation Theory
- 9. Electromagnetic Hydrodynamic Theory
- 10. Rigid Body Theory
- 11. Discretization and Solution Theory
- 11.1. Numerical Discretization
- 11.1.1. Discretization of the Governing Equations
- 11.1.2. The Coupled System of Equations
- 11.2. Solution Strategy - The Coupled Solver
- 11.3. Discretization Errors