Expand/Collapse all
1. Forte Theory Manual Introduction
2. Basic Governing Equations
2.1. Conservation Equations for Turbulent Reacting Flow
2.1.1. Species Conservation Equation
2.1.2. Fluid Continuity Equation
2.1.3. Momentum Conservation Equation
2.1.4. Energy Conservation Equation
2.1.5. Gas-phase Mixture Equation of State
2.2. Turbulence Models
2.2.1. Reynolds-Averaged-Navier-Stokes (RANS) Approach
2.2.2. Large-Eddy Simulation Approach
2.3. Chemical Kinetics Formulation
2.3.1. Optional Semi-empirical Soot Model
2.4. Turbulence-Kinetics Interaction Model
3. Boundary Conditions
3.1. Wall Boundaries
3.1.1. Wall Conditions for the Gas-phase Species and Fluid Continuity Equations
3.1.2. Wall Conditions for the Momentum Equation
3.1.3. Wall Conditions for the Energy Equation
3.1.3.1. Han-Reitz Model
3.1.3.2. Amsden Model
3.1.3.3. Frictional Heating
3.1.4. Turbulence Model Wall Conditions
3.2. Inflow and Outflow Boundaries
3.2.1. General Treatment
3.2.1.1. Conversion of Total Quantities to Static Quantities for Gas
3.2.1.2. Conversion of Total Quantities to Static Quantities for Two-phase Fluid
3.2.2. Velocity or Mass Flow Rate Inflow Boundaries
3.2.3. Continuative Outflow Boundaries
3.2.4. Pressure Inflow Boundaries
3.2.5. Pressure Outflow Boundaries
3.3. Periodic Boundaries
3.4. Axis-of-Symmetry Boundaries
4. Initial Conditions
4.1. Initialization of the Fluid Properties
4.2. Swirl Profiles
5. Discretization and Solution Methods
5.1. Discretization of the Governing Equations
5.1.1. Temporal Differencing Method
5.1.2. Spatial Differencing Method
5.2. SIMPLE Method
5.2.1. Convective Flux Discretization
5.3. Chemistry Solver Options
5.3.1. Operator Splitting Method and Parallel Implementation
5.3.2. Dynamic Adaptive Chemistry
5.3.3. Dynamic Cell Clustering
6. Spray Models
6.1. Solid-Cone Spray Models
6.1.1. Nozzle Flow Model
6.1.1.1. Discharge coefficient
6.1.1.2. Effective Injection Velocity and Effective Flow Exit Area
6.1.1.3. Spray Angle
6.1.1.4. Empirical Nozzle Discharge Coefficient and Spray Angle
6.1.2. Kelvin-Helmholtz / Rayleigh-Taylor Breakup Model
6.1.2.1. Kelvin-Helmholtz Breakup
6.1.2.2. Rayleigh-Taylor Breakup
6.1.3. Unsteady Gas-Jet Model
6.2. Hollow-Cone Spray Models
6.2.1. Linearized Instability Sheet Atomization (LISA) Model
6.2.1.1. Film Formation
6.2.1.2. Sheet Breakup
6.2.1.3. Atomization
6.2.2. Taylor-Analog-Breakup Model
6.3. Fan Spray Models
6.4. Droplet Collision and Coalescence Model
6.4.1. Radius of Influence (ROI) Collision Model
6.4.2. Collision Mesh Model
6.4.3. Adaptive Collision Mesh Model
6.5. Multi-Component Droplet Vaporization Model
6.5.1. Liquid Phase Balance Equation
6.5.2. Governing Equations for Gas Phase
6.5.3. Vapor-Liquid Equilibrium
6.5.4. Determination of Surface Temperature
6.5.5. Modeling Boiling, Including Flash Boiling
6.6. Wall Impingement Model
6.6.1. Mass Fraction of Secondary Droplets
6.6.2. Size of Secondary Droplets
6.6.3. Velocity of Secondary Droplets
6.7. Wall Film Model
6.7.1. Wall Film Governing Equations
6.7.2. Wall Separation Criterion
7. Turbulent Flame Propagation Model
7.1. Discrete Particle Ignition Kernel Flame Model
7.2. Arc Channel Tracking Model
7.3. Autoignition-Induced Flame Propagation Model
7.4. G-equation Model
7.4.1. General Formulation
7.4.2. Laminar and Turbulent Flame Speed Correlations
7.4.2.1. Laminar Flame Speeds
7.4.2.1.1. Power-law Formulation
7.4.2.1.2. Laminar Flame Speed at Reference State
7.4.2.1.3. Temperature and Pressure Dependencies
7.4.2.1.4. Diluent Effect
7.4.2.1.5. Laminar Flame Speed Through Table Look-up
7.4.2.2. Turbulent Flame Speeds
7.4.2.3. Turbulent Flame Brush Thickness
7.4.3. Flame-front Heat Release Calculation
7.4.4. Post-flame and End Gas Kinetics
7.4.5. Flame Quench Model
7.5. Detailed Chemistry Direct Integration Approach
8. Method of Moments
8.1. Description and Properties of a Particle Population
8.1.1. Moments of Particle-Size Distribution Functions
8.1.2. Total Particle Number of a Particle Population
8.1.3. Total and Average Particle Mass
8.1.4. Total and Average Geometric Properties of a Particle Population
9. Engine Crevice Model
9.1. Diagram and Assumptions
9.1.1. Isentropic
9.1.2. Isothermal
9.2. Input Parameters
10. Radiation Heat Transfer Model
10.1. Assumptions and Details
11. Eulerian Two-Phase Models
11.1. General Considerations
11.2. Mixture Eulerian Two-Phase Model
11.2.1. Modeling Phase Change
11.2.1.1. Zwart-Gerber-Belamri Phase-change Model
11.2.1.2. Phase Equilibrium Model (BETA)
11.2.2. Modeling Gas Cavitation
11.3. Volume-of-Fluid (VOF) Model
11.3.1. Convection Scheme for the Volume Fraction Equation
11.3.2. Modeling of Surface Tension Force (BETA)
Bibliography