Expand/Collapse all
Using This Manual
1. What’s In This Manual
2. How To Use This Manual
2.1. For the Beginner
2.2. For the Experienced User
3. Typographical Conventions Used In This Manual
1. Fluid Flow in an Exhaust Manifold
1.1. Introduction
1.2. Prerequisites
1.3. Problem Description
1.4. Setup and Solution
1.4.1. Preparation
1.4.2. Launching Ansys Fluent
1.4.3. Meshing Workflow
1.4.4. General Settings
1.4.5. Solver Settings
1.4.6. Models
1.4.7. Materials
1.4.8. Cell Zone Conditions
1.4.9. Boundary Conditions
1.4.10. Solution
1.5. Postprocessing
1.6. Summary
2. Fluent Postprocessing : Exhaust Manifold
2.1. Introduction
2.2. Prerequisites
2.3. Problem Description
2.4. Setup and Solution
2.4.1. Preparation
2.4.2. Reading the Solution
2.4.3. Manipulating the Mesh in the Viewer
2.4.4. Adding Lights
2.4.5. Creating Isosurfaces
2.4.6. Generating Contours
2.4.7. Generating Velocity Vectors
2.4.8. Creating an Animation
2.4.9. Creating a Scene With Multiple Graphics Features
2.4.10. Creating Exploded Views
2.4.11. Animating the Display of Results in Successive Streamwise Planes
2.4.12. Generating XY Plots
2.4.13. Saving Picture Files
2.4.14. Generating Volume Integral Reports
2.5. Summary
3. Modeling Flow Through Porous Media
3.1. Introduction
3.2. Prerequisites
3.3. Problem Description
3.4. Setup and Solution
3.4.1. Preparation
3.4.2. Meshing Workflow
3.4.3. General Settings
3.4.4. Solver Settings
3.4.5. Models
3.4.6. Materials
3.4.7. Cell Zone Conditions
3.4.8. Boundary Conditions
3.4.9. Solution
3.4.10. Postprocessing
3.5. Summary
4. Modeling External Compressible Flow
4.1. Introduction
4.2. Prerequisites
4.3. Problem Description
4.4. Setup and Solution
4.4.1. Preparation
4.4.2. Meshing Workflow
4.4.3. Mesh
4.4.4. Solver
4.4.5. Models
4.4.6. Materials
4.4.7. Boundary Conditions
4.4.8. Operating Conditions
4.4.9. Reference Values
4.4.10. Solution
4.4.11. Postprocessing
4.5. Summary
5. Fluid Flow and Heat Transfer in a Mixing Elbow
5.1. Introduction
5.2. Prerequisites
5.3. Problem Description
5.4. Setup and Solution
5.4.1. Preparation
5.4.2. Meshing Workflow
5.4.3. Setting Up Domain
5.4.4. Setting Up Physics
5.4.5. Solving
5.4.6. Displaying the Preliminary Solution
5.4.7. Adapting the Mesh
5.5. Summary
6. Exhaust System: Fault-tolerant Meshing
6.1. Introduction
6.2. Prerequisites
6.3. Problem Description
6.4. Setup and Solution
6.4.1. Preparation
6.4.2. Geometry and Mesh
6.4.3. General Settings
6.4.4. Solver Settings
6.4.5. Models
6.4.6. Materials
6.4.7. Cell Zone Conditions
6.4.8. Boundary Conditions
6.4.9. Solution
6.4.10. Postprocessing
6.5. Summary
7. Modeling Hypersonic Flow
7.1. Introduction
7.2. Prerequisites
7.3. Problem Description
7.4. Setup and Solution
7.4.1. Preparation
7.4.2. Meshing Workflow
7.4.3. Mesh
7.4.4. Solver
7.4.5. Models
7.4.6. Materials
7.4.7. Operating Conditions
7.4.8. Boundary Conditions
7.4.9. Solution
7.4.10. Postprocessing
7.4.11. Enable the Species Model
7.5. Summary
8. Modeling Transient Compressible Flow
8.1. Introduction
8.2. Prerequisites
8.3. Problem Description
8.4. Setup and Solution
8.4.1. Preparation
8.4.2. Meshing Workflow
8.4.3. Set Units
8.4.4. Solution
8.4.5. Models
8.4.6. Materials
8.4.7. Operating Conditions
8.4.8. Boundary Conditions
8.4.9. Solution: Steady Flow
8.4.10. Enabling Time Dependence and Setting Transient Conditions
8.4.11. Specifying Solution Parameters for Transient Flow and Solving
8.5. Summary
9. Performing Parametric Analyses in Ansys Fluent
9.1. Introduction
9.2. Prerequisites
9.3. Problem Description
9.4. Setup and Solution
9.4.1. Preparation
9.4.2. Mesh
9.4.3. Initialize the Parametric Study
9.4.4. Add Design Points
9.4.5. Set Up Design Point and Parametric Reports
9.4.6. Update Design Point Solutions
9.4.7. Generate Design Point and Parametric Simulation Reports
9.4.8. Compare Design Point Results
9.5. Summary
10. Optimizing Parametric Analyses in Ansys Fluent
10.1. Introduction
10.2. Prerequisites
10.3. Problem Description
10.4. Setup and Solution
10.4.1. Preparation
10.4.2. Mesh
10.4.3. Applying Mesh Morphing
10.4.4. Initialize the Parametric Study
10.4.5. Set Up Design Point and Parametric Reports
10.4.6. Create Design Points and Run an Optimization Study
10.4.7. Generate Design Point and Parametric Simulation Reports
10.4.8. Compare Design Point Results
10.5. Summary
11. Using the Frozen Rotor Method
11.1. Introduction
11.2. Prerequisites
11.3. Problem Description
11.4. Setup and Solution
11.4.1. Preparation
11.4.2. Mesh
11.4.3. Models
11.4.4. Materials
11.4.5. Cell Zone Conditions
11.4.6. Boundary Conditions
11.4.7. Turbomachinery Models
11.4.8. Solution
11.4.9. Postprocessing
11.5. Summary
11.6. Further Improvements
12. Turbomachinery Setup and Analysis Using the Turbo Workflow
12.1. Introduction
12.2. Prerequisites
12.3. Problem Description
12.4. Setup and Solution
12.4.1. Preparation
12.4.2. Turbo Workflow
12.4.3. Review Setup
12.4.3.1. Models and Materials
12.4.3.2. Cell Zone and Boundary Conditions
12.4.3.3. Mesh Interfaces
12.4.3.4. Named Expressions
12.4.4. Review Solution
12.4.4.1. Report Definitions
12.4.4.2. Solution Controls
12.4.4.3. Residual Monitors
12.4.4.4. Monitors
12.4.4.5. Solution
12.5. Postprocessing
12.6. Summary
13. Modeling Blade Row Interaction using Steady-State and Transient Simulations
13.1. Introduction
13.2. Prerequisites
13.3. Problem Description
13.4. Setup and Solution
13.4.1. Preparation
13.4.2. Mesh
13.4.3. Solver Settings for the Steady-State Mixing Plane Model
13.4.4. Models
13.4.5. Materials
13.4.6. Cell Zone Conditions for the Steady-State Mixing Plane Model
13.4.7. Operating Conditions
13.4.8. Boundary Conditions for the Steady-State Mixing Plane Model
13.4.9. Solution of the Steady-State Mixing Plane Model
13.4.10. Postprocessing of the Steady-State Mixing Plane Model
13.4.11. Solver Settings for the Transient Pitch Scale Model
13.4.12. Reference Values
13.4.13. Interface Conditions for the Transient Pitch Scale Model
13.4.14. Cell Zone Conditions for the Transient Pitch Scale Model
13.4.15. Boundary Conditions for the Transient Pitch Scale Model
13.4.16. Solution Settings for the Transient Pitch Scale Model
13.4.17. Postprocessing for the Transient Pitch Scale Model
13.5. Summary
14. Using Sliding Meshes
14.1. Introduction
14.2. Prerequisites
14.3. Problem Description
14.4. Setup and Solution
14.4.1. Preparation
14.4.2. Mesh
14.4.3. General Settings
14.4.4. Models
14.4.5. Materials
14.4.6. Cell Zone Conditions
14.4.7. Boundary Conditions
14.4.8. Operating Conditions
14.4.9. Mesh Interfaces
14.4.10. Solution
14.4.11. Postprocessing
14.5. Summary
15. Using Overset and Dynamic Meshes
15.1. Prerequisites
15.2. Problem Description
15.3. Preparation
15.4. Mesh
15.5. Overset Interface Creation
15.6. Steady-State Case Setup
15.6.1. General Settings
15.6.2. Models
15.6.3. Materials
15.6.4. Operating Conditions
15.6.5. Boundary Conditions
15.6.6. Reference Values
15.6.7. Solution
15.7. Unsteady Setup
15.7.1. General Settings
15.7.2. Compile the UDF
15.7.3. Dynamic Mesh Settings
15.7.4. Report Generation for Unsteady Case
15.7.5. Run Calculations for Unsteady Case
15.7.6. Overset Solution Checking
15.7.7. Postprocessing
15.7.8. Diagnosing an Overset Case
15.8. Summary
16. Modeling Species Transport and Gaseous Combustion
16.1. Introduction
16.2. Prerequisites
16.3. Problem Description
16.4. Background
16.5. Setup and Solution
16.5.1. Preparation
16.5.2. Mesh
16.5.3. General Settings
16.5.4. Models
16.5.5. Materials
16.5.6. Boundary Conditions
16.5.7. Initial Reaction Solution
16.5.8. Postprocessing
16.5.9. NOx Prediction
16.6. Summary
16.7. Further Improvements
17. Using the Monte Carlo Radiation Model
17.1. Introduction
17.2. Prerequisites
17.3. Problem Description
17.4. Setup and Solution
17.4.1. Preparation
17.4.2. Meshing Workflow
17.4.3. Mesh
17.4.4. Models
17.4.5. Materials
17.4.6. Cell Zone Conditions
17.4.7. Boundary Conditions
17.4.8. Solution
17.4.9. Postprocessing
17.5. Summary
17.6. Further Improvements
18. Using the Eddy Dissipation and Steady Diffusion Flamelet Combustion Models
18.1. Introduction
18.2. Prerequisites
18.3. Problem Description
18.4. Setup and Solution
18.4.1. Preparation
18.4.2. Meshing Workflow
18.4.3. Solver Settings
18.4.4. Models
18.4.5. Boundary Conditions
18.4.6. Solution
18.4.7. Postprocessing for the Eddy-Dissipation Solution
18.5. Steady Diffusion Flamelet Model Setup and Solution
18.5.1. Models
18.5.2. Boundary Conditions
18.5.3. Solution
18.5.4. Postprocessing for the Steady Diffusion Flamelet Solution
18.6. Summary
19. Effusion Cooling simulation in a 3D model Combustor
19.1. Introduction
19.2. Prerequisites
19.3. Problem Description
19.4. Background
19.5. Setup and Solution
19.5.1. Preparation
19.5.2. Meshing Workflow
19.5.3. Mesh
19.5.4. Setting Up Physics
19.5.5. Models
19.5.6. Materials
19.5.7. Operating Conditions
19.5.8. Boundary Conditions
19.5.8.1. Perforated Walls
19.5.9. Cold Flow Solution
19.5.10. Combustion Solution
19.5.11. Postprocessing
19.6. Summary
20. Selective Catalytic Reduction Simulation
20.1. Introduction
20.2. Prerequisites
20.3. Problem Description
20.4. Setup and Solution
20.4.1. Preparation
20.4.2. Reading and Checking the Mesh
20.4.3. General Settings
20.4.4. Solver Settings
20.4.5. Specifying the Models
20.4.6. Materials
20.4.7. Cell Zone Conditions
20.4.8. Specifying Boundary Conditions
20.4.9. Modify the Particle Properties
20.4.10. Flow Simulation
20.4.11. Postprocessing the Solution Results
20.5. SCR Specific Post Processing
20.6. Summary
21. Modeling Evaporating Liquid Spray
21.1. Introduction
21.2. Prerequisites
21.3. Problem Description
21.4. Setup and Solution
21.4.1. Preparation
21.4.2. Mesh
21.4.3. Solver
21.4.4. Models
21.4.5. Materials
21.4.6. Boundary Conditions
21.4.7. Initial Solution Without Droplets
21.4.8. Creating a Spray Injection
21.4.9. Solution
21.4.10. Postprocessing
21.5. Summary
22. Using the VOF Model
22.1. Introduction
22.2. Prerequisites
22.3. Problem Description
22.4. Setup and Solution
22.4.1. Preparation
22.4.2. Reading and Manipulating the Mesh
22.4.3. General Settings
22.4.4. Models
22.4.5. Materials
22.4.6. Phases
22.4.7. Operating Conditions
22.4.8. Boundary Conditions
22.4.9. Solution
22.4.10. Postprocessing
22.5. Summary
23. Modeling Cavitation
23.1. Introduction
23.2. Prerequisites
23.3. Problem Description
23.4. Setup and Solution
23.4.1. Preparation
23.4.2. Reading and Checking the Mesh
23.4.3. Solver Settings
23.4.4. Models
23.4.5. Materials
23.4.6. Phases
23.4.7. Boundary Conditions
23.4.8. Operating Conditions
23.4.9. Solution
23.4.10. Postprocessing
23.5. Summary
24. Using the Eulerian Multiphase Model
24.1. Introduction
24.2. Prerequisites
24.3. Problem Description
24.4. Setup and Solution
24.4.1. Preparation
24.4.2. Mesh
24.4.3. Solver Settings
24.4.4. Models
24.4.5. Materials
24.4.6. Phases
24.4.7. Cell Zone Conditions
24.4.8. Boundary Conditions
24.4.9. Solution
24.4.10. Postprocessing
24.5. Summary
25. Modeling Solidification
25.1. Introduction
25.2. Prerequisites
25.3. Problem Description
25.4. Setup and Solution
25.4.1. Preparation
25.4.2. Reading and Checking the Mesh
25.4.3. Specifying Solver and Analysis Type
25.4.4. Specifying the Models
25.4.5. Defining Materials
25.4.6. Setting the Cell Zone Conditions
25.4.7. Setting the Boundary Conditions
25.4.8. Solution: Steady Conduction
25.4.9. Solution: Transient Flow and Heat Transfer
25.5. Summary
26. Using the Eulerian Granular Multiphase Model with Heat Transfer
26.1. Introduction
26.2. Prerequisites
26.3. Problem Description
26.4. Setup and Solution
26.4.1. Preparation
26.4.2. Mesh
26.4.3. Solver Settings
26.4.4. Models
26.4.5. UDF
26.4.6. Materials
26.4.7. Phases
26.4.8. Boundary Conditions
26.4.9. Solution
26.4.10. Postprocessing
26.5. Summary
26.6. References
27. Modeling Ablation
27.1. Introduction
27.2. Prerequisites
27.3. Problem Description
27.4. Setup and Solution
27.4.1. Preparation
27.4.2. Mesh
27.4.3. Solver
27.4.4. Models
27.4.5. Materials
27.4.6. Boundary Conditions
27.4.7. Dynamic Mesh
27.4.8. Solution
27.4.9. Postprocessing
27.5. Summary
28. Modeling One-Way Fluid-Structure Interaction (FSI) Within Fluent
28.1. Introduction
28.2. Prerequisites
28.3. Problem Description
28.4. Setup and Solution
28.4.1. Preparation
28.4.2. Structural Model
28.4.3. Materials
28.4.4. Cell Zone Conditions
28.4.5. Boundary Conditions
28.4.6. Solution
28.4.7. Postprocessing
28.5. Summary
29. Modeling Two-Way Fluid-Structure Interaction (FSI) Within Fluent
29.1. Introduction
29.2. Prerequisites
29.3. Problem Description
29.4. Setup and Solution
29.4.1. Preparation
29.4.2. Solver and Analysis Type
29.4.3. Structural Model
29.4.4. Materials
29.4.5. Cell Zone Conditions
29.4.6. Boundary Conditions
29.4.7. Dynamic Mesh Zones
29.4.8. Solution Animations
29.4.9. Solution
29.4.10. Postprocessing
29.5. Summary
30. Using the Adjoint Solver – 2D Laminar Flow Past a Cylinder
30.1. Introduction
30.2. Problem Description
30.3. Setup and Solution
30.3.1. Step 1: Preparation
30.3.2. Step 2: Define Observables
30.3.3. Step 3: Compute the Drag Sensitivity
30.3.4. Step 4: Postprocess and Export Drag Sensitivity
30.3.4.1. Drag Force Sensitivity Orientation for Plotting
30.3.4.2. Boundary Condition Sensitivity
30.3.4.3. Momentum Source Sensitivity
30.3.4.4. Shape Sensitivity
30.3.4.5. Exporting Drag Sensitivity Data
30.3.5. Step 5: Compute Lift Sensitivity
30.3.6. Step 6: Modify the Shape
30.4. Summary
31. Simulating a Single Battery Cell Using the MSMD Battery Model
31.1. Introduction
31.2. Prerequisites
31.3. Problem Description
31.4. Setup and Solution
31.4.1. Preparation
31.4.2. Reading and Scaling the Mesh
31.4.3. NTGK Battery Model Setup
31.4.3.1. Specifying Solver and Models
31.4.3.2. Defining New Materials for Cell and Tabs
31.4.3.3. Defining Cell Zone Conditions
31.4.3.4. Defining Boundary Conditions
31.4.3.5. Specifying Solution Settings
31.4.3.6. Obtaining Solution
31.4.4. Postprocessing
31.4.5. Simulating the Battery Pulse Discharge Using the ECM Model
31.4.6. Using the Reduced Order Method (ROM)
31.4.7. External and Internal Short-Circuit Treatment
31.4.7.1. Setting up and Solving a Short-Circuit Problem
31.4.7.2. Postprocessing
31.5. Summary
31.6. Appendix
31.7. References
32. Simulating a 1P3S Battery Pack Using the Battery Model
32.1. Introduction
32.2. Prerequisites
32.3. Problem Description
32.4. Setup and Solution
32.4.1. Preparation
32.4.2. Reading and Scaling the Mesh
32.4.3. Battery Model Setup
32.4.3.1. Specifying Solver and Models
32.4.3.2. Defining New Materials
32.4.3.3. Defining Cell Zone Conditions
32.4.3.4. Defining Boundary Conditions
32.4.3.5. Specifying Solution Settings
32.4.3.6. Obtaining Solution
32.4.4. Postprocessing
32.5. Summary
33. Electrolysis Modeling of Proton Exchange Membrane Electrolyzers
33.1. Introduction
33.2. Prerequisites
33.3. Problem Description
33.3.1. Background
33.4. Setup and Solution
33.4.1. Preparation
33.4.2. Mesh
33.4.3. Model Setup
33.4.3.1. Setting Up Physics
33.4.3.2. Models
33.4.3.3. Materials
33.4.3.4. Boundary Conditions
33.4.3.5. Solution
33.4.3.6. Obtaining Solution
33.4.4. Postprocessing
33.5. Summary
Bibliography
34. Fluent’s Virtual Blade Model Tutorials
34.1. Fluent’s Virtual Blade Model Helicopter Tutorial
34.1.1. Introduction
34.1.2. Problem Description
34.1.3. Setup
34.1.3.1. Preparation
34.1.3.2. Mesh
34.1.3.3. Enabling the Virtual Blade Model
34.1.3.4. Setup Units
34.1.3.5. Operating Conditions
34.1.3.6. Physical Modeling
34.1.3.7. Materials
34.1.3.8. Boundary Conditions
34.1.3.9. Reference Values
34.1.3.10. Discretization and Solution Controls
34.1.3.11. Solution Initialization
34.1.3.12. VBM Rotor Inputs
34.1.3.13. Convergence Monitoring
34.1.3.14. Post-processing Setup
34.1.3.14.1. Cutting Planes for the Pressure Distributions
34.1.3.14.2. Cutting Planes for the VBM Results
34.1.3.14.3. Curves for the Pressure Coefficient
34.1.3.14.4. Custom Field Function
34.1.3.15. Saving Settings and Re-Launching
34.1.4. Solution
34.1.4.1. Rotor Simulation with Fixed-Pitch Using EDM
34.1.4.2. Rotor Simulation with Collective Trimming
34.1.4.3. Rotor Simulation with Collective and Cyclic Trimming
34.1.4.4. Rotor Simulation With Fixed Pitch Using FDM
34.1.4.5. Rotor Simulation Restarting From a VBM Case/Data File
34.1.4.6. Comparison with Experimental Results
34.1.4.6.1. Rotor Simulation with Fixed Pitch
34.1.4.6.2. Rotor Simulation with Collective and Cyclic Trimming
34.1.5. Summary
34.1.6. References
34.2. Fluent’s Virtual Blade Model Propeller Tutorial
34.2.1. Introduction
34.2.2. Problem Description
34.2.3. Setup
34.2.3.1. Preparation
34.2.3.2. Mesh
34.2.3.3. Enabling the Virtual Blade Model
34.2.3.4. Setup Units
34.2.3.5. Operating Conditions
34.2.3.6. Physical Modeling
34.2.3.7. Materials
34.2.3.8. Boundary Conditions
34.2.3.9. Reference Values
34.2.3.10. Discretization and Solution Controls
34.2.3.11. Solution Initialization
34.2.3.12. Rotor Inputs
34.2.3.13. Convergence Monitoring
34.2.3.14. Post-processing Setup
34.2.3.14.1. Cutting Plane for the Velocity Distributions
34.2.3.14.2. Cutting Plane Through Disk Zone for the VBM Data Distributions
34.2.4. Solution
34.2.4.1. Propeller Simulation with Fixed-Pitch
34.2.4.2. Rotor Simulation with Pitch Trimming (Collective Trimming)
34.2.5. Summary
34.2.6. References
35. Using the Fluent Native GPU Solver
35.1. Introduction
35.2. Prerequisites
35.3. Problem Description
35.4. Setup and Solution
35.4.1. Preparation
35.4.2. Reading the Fluent Case File Into the GPU Solver
35.4.3. Models
35.4.4. Solution