Collapse all
/- Using This Manual
- 1. Fluid Flow in an Exhaust Manifold
- 2. Fluent Postprocessing : Exhaust Manifold
- 2.1. Introduction
- 2.2. Prerequisites
- 2.3. Problem Description
- 2.4. Setup and Solution
- 2.4.1. Preparation
- 2.4.2. Reading the Solution
- 2.4.3. Manipulating the Mesh in the Viewer
- 2.4.4. Adding Lights
- 2.4.5. Creating Isosurfaces
- 2.4.6. Generating Contours
- 2.4.7. Generating Velocity Vectors
- 2.4.8. Creating an Animation
- 2.4.9. Creating a Scene With Multiple Graphics Features
- 2.4.10. Creating Exploded Views
- 2.4.11. Animating the Display of Results in Successive Streamwise Planes
- 2.4.12. Generating XY Plots
- 2.4.13. Saving Picture Files
- 2.4.14. Generating Volume Integral Reports
- 2.5. Summary
- 3. Modeling Flow Through Porous Media
- 4. Modeling External Compressible Flow
- 5. Fluid Flow and Heat Transfer in a Mixing Elbow
- 6. Exhaust System: Fault-tolerant Meshing
- 7. Modeling Hypersonic Flow
- 8. Modeling Transient Compressible Flow
- 8.1. Introduction
- 8.2. Prerequisites
- 8.3. Problem Description
- 8.4. Setup and Solution
- 8.4.1. Preparation
- 8.4.2. Meshing Workflow
- 8.4.3. Set Units
- 8.4.4. Solution
- 8.4.5. Models
- 8.4.6. Materials
- 8.4.7. Operating Conditions
- 8.4.8. Boundary Conditions
- 8.4.9. Solution: Steady Flow
- 8.4.10. Enabling Time Dependence and Setting Transient Conditions
- 8.4.11. Specifying Solution Parameters for Transient Flow and Solving
- 8.5. Summary
- 9. Performing Parametric Analyses in Ansys Fluent
- 10. Optimizing Parametric Analyses in Ansys Fluent
- 10.1. Introduction
- 10.2. Prerequisites
- 10.3. Problem Description
- 10.4. Setup and Solution
- 10.4.1. Preparation
- 10.4.2. Mesh
- 10.4.3. Applying Mesh Morphing
- 10.4.4. Initialize the Parametric Study
- 10.4.5. Set Up Design Point and Parametric Reports
- 10.4.6. Create Design Points and Run an Optimization Study
- 10.4.7. Generate Design Point and Parametric Simulation Reports
- 10.4.8. Compare Design Point Results
- 10.5. Summary
- 11. Using the Frozen Rotor Method
- 12. Turbomachinery Setup and Analysis Using the Turbo Workflow
- 13. Modeling Blade Row Interaction using Steady-State and Transient Simulations
- 13.1. Introduction
- 13.2. Prerequisites
- 13.3. Problem Description
- 13.4. Setup and Solution
- 13.4.1. Preparation
- 13.4.2. Mesh
- 13.4.3. Solver Settings for the Steady-State Mixing Plane Model
- 13.4.4. Models
- 13.4.5. Materials
- 13.4.6. Cell Zone Conditions for the Steady-State Mixing Plane Model
- 13.4.7. Operating Conditions
- 13.4.8. Boundary Conditions for the Steady-State Mixing Plane Model
- 13.4.9. Solution of the Steady-State Mixing Plane Model
- 13.4.10. Postprocessing of the Steady-State Mixing Plane Model
- 13.4.11. Solver Settings for the Transient Pitch Scale Model
- 13.4.12. Reference Values
- 13.4.13. Interface Conditions for the Transient Pitch Scale Model
- 13.4.14. Cell Zone Conditions for the Transient Pitch Scale Model
- 13.4.15. Boundary Conditions for the Transient Pitch Scale Model
- 13.4.16. Solution Settings for the Transient Pitch Scale Model
- 13.4.17. Postprocessing for the Transient Pitch Scale Model
- 13.5. Summary
- 14. Using Sliding Meshes
- 15. Using Overset and Dynamic Meshes
- 16. Modeling Species Transport and Gaseous Combustion
- 17. Using the Monte Carlo Radiation Model
- 18. Using the Eddy Dissipation and Steady Diffusion Flamelet Combustion Models
- 19. Effusion Cooling simulation in a 3D model Combustor
- 20. Selective Catalytic Reduction Simulation
- 20.1. Introduction
- 20.2. Prerequisites
- 20.3. Problem Description
- 20.4. Setup and Solution
- 20.4.1. Preparation
- 20.4.2. Reading and Checking the Mesh
- 20.4.3. General Settings
- 20.4.4. Solver Settings
- 20.4.5. Specifying the Models
- 20.4.6. Materials
- 20.4.7. Cell Zone Conditions
- 20.4.8. Specifying Boundary Conditions
- 20.4.9. Modify the Particle Properties
- 20.4.10. Flow Simulation
- 20.4.11. Postprocessing the Solution Results
- 20.5. SCR Specific Post Processing
- 20.6. Summary
- 21. Modeling Evaporating Liquid Spray
- 22. Using the VOF Model
- 23. Modeling Cavitation
- 24. Using the Eulerian Multiphase Model
- 25. Modeling Solidification
- 25.1. Introduction
- 25.2. Prerequisites
- 25.3. Problem Description
- 25.4. Setup and Solution
- 25.4.1. Preparation
- 25.4.2. Reading and Checking the Mesh
- 25.4.3. Specifying Solver and Analysis Type
- 25.4.4. Specifying the Models
- 25.4.5. Defining Materials
- 25.4.6. Setting the Cell Zone Conditions
- 25.4.7. Setting the Boundary Conditions
- 25.4.8. Solution: Steady Conduction
- 25.4.9. Solution: Transient Flow and Heat Transfer
- 25.5. Summary
- 26. Using the Eulerian Granular Multiphase Model with Heat Transfer
- 27. Modeling Ablation
- 28. Modeling One-Way Fluid-Structure Interaction (FSI) Within Fluent
- 29. Modeling Two-Way Fluid-Structure Interaction (FSI) Within Fluent
- 30. Using the Adjoint Solver – 2D Laminar Flow Past a Cylinder
- 30.1. Introduction
- 30.2. Problem Description
- 30.3. Setup and Solution
- 30.4. Summary
- 31. Simulating a Single Battery Cell Using the MSMD Battery Model
- 31.1. Introduction
- 31.2. Prerequisites
- 31.3. Problem Description
- 31.4. Setup and Solution
- 31.5. Summary
- 31.6. Appendix
- 31.7. References
- 32. Simulating a 1P3S Battery Pack Using the Battery Model
- 33. Electrolysis Modeling of Proton Exchange Membrane Electrolyzers
- 34. Fluent’s Virtual Blade Model Tutorials
- 34.1. Fluent’s Virtual Blade Model Helicopter Tutorial
- 34.1.1. Introduction
- 34.1.2. Problem Description
- 34.1.3. Setup
- 34.1.3.1. Preparation
- 34.1.3.2. Mesh
- 34.1.3.3. Enabling the Virtual Blade Model
- 34.1.3.4. Setup Units
- 34.1.3.5. Operating Conditions
- 34.1.3.6. Physical Modeling
- 34.1.3.7. Materials
- 34.1.3.8. Boundary Conditions
- 34.1.3.9. Reference Values
- 34.1.3.10. Discretization and Solution Controls
- 34.1.3.11. Solution Initialization
- 34.1.3.12. VBM Rotor Inputs
- 34.1.3.13. Convergence Monitoring
- 34.1.3.14. Post-processing Setup
- 34.1.3.15. Saving Settings and Re-Launching
- 34.1.4. Solution
- 34.1.4.1. Rotor Simulation with Fixed-Pitch Using EDM
- 34.1.4.2. Rotor Simulation with Collective Trimming
- 34.1.4.3. Rotor Simulation with Collective and Cyclic Trimming
- 34.1.4.4. Rotor Simulation With Fixed Pitch Using FDM
- 34.1.4.5. Rotor Simulation Restarting From a VBM Case/Data File
- 34.1.4.6. Comparison with Experimental Results
- 34.1.5. Summary
- 34.1.6. References
- 34.2. Fluent’s Virtual Blade Model Propeller Tutorial
- 34.2.1. Introduction
- 34.2.2. Problem Description
- 34.2.3. Setup
- 34.2.3.1. Preparation
- 34.2.3.2. Mesh
- 34.2.3.3. Enabling the Virtual Blade Model
- 34.2.3.4. Setup Units
- 34.2.3.5. Operating Conditions
- 34.2.3.6. Physical Modeling
- 34.2.3.7. Materials
- 34.2.3.8. Boundary Conditions
- 34.2.3.9. Reference Values
- 34.2.3.10. Discretization and Solution Controls
- 34.2.3.11. Solution Initialization
- 34.2.3.12. Rotor Inputs
- 34.2.3.13. Convergence Monitoring
- 34.2.3.14. Post-processing Setup
- 34.2.4. Solution
- 34.2.5. Summary
- 34.2.6. References
- 35. Using the Fluent Native GPU Solver