Expand/Collapse all
1. Introduction to Material Models
1.1. Material Models for Displacement Applications
1.2. Material Models for Temperature Applications
1.3. Material Models for Electromagnetic Applications
1.4. Material Models for Coupled Applications
1.5. Material Parameters
1.6. How Material Properties Are Evaluated
2. Material Model Support for Elements
3. Linear Material Properties
3.1. Defining Linear Material Properties
3.1.1. Defining Linear Material Properties Using Tabular Input
3.2. Stress-Strain Relationships
3.3. Anisotropic Elasticity
3.4. Damping
3.5. Thermal Expansion
3.6. Emissivity
3.7. Specific Heat
3.8. Film Coefficients
3.9. Temperature Dependency
4. Nonlinear Material Properties
4.1. Understanding Material Data Tables
4.2. Experimental Data
4.3. Porous Elasticity
4.3.1. Defining the Porous Elasticity Model
4.4. Rate-Independent Plasticity
4.4.1. Understanding the Plasticity Models
4.4.2. Anisotropy
4.4.3. Isotropic Hardening
4.4.4. Kinematic Hardening
4.4.5. Drucker-Prager
4.4.6. Gurson
4.4.7. Cast Iron
4.4.8. Crushable Foam
4.4.9. Sintering
4.5. Rate-Dependent Plasticity (Viscoplasticity)
4.5.1. Perzyna and Peirce Options
4.5.2. Exponential Visco-Hardening (EVH) Option
4.5.3. Direct Tabular Entry of Rate-Dependent Isotropic Hardening Option
4.5.4. Anand Option
4.5.5. Creep Option
4.5.6. Drucker-Prager Creep Option
4.6. Hyperelasticity
4.6.1. Arruda-Boyce Hyperelasticity (TB,HYPER,,,,BOYCE)
4.6.2. Blatz-Ko Foam Hyperelasticity (TB,HYPER,,,,BLATZ)
4.6.3. Extended Tube Hyperelasticity (TB,HYPER,,,,ETUBE)
4.6.4. Gent Hyperelasticity (TB,HYPER,,,,GENT)
4.6.5. Hencky Hyperelasticity (TB,HYPER,,,,HENCKY)
4.6.6. Mooney-Rivlin Hyperelasticity (TB,HYPER,,,,MOONEY)
4.6.7. Neo-Hookean Hyperelasticity (TB,HYPER,,,,NEO)
4.6.8. Ogden Hyperelasticity (TB,HYPER,,,,OGDEN)
4.6.9. Ogden Hyperfoam (Compressible Foam Hyperelasticity) (TB,HYPER,,,,FOAM)
4.6.10. Polynomial Form Hyperelasticity (TB,HYPER,,,,POLY)
4.6.11. Response Function Hyperelasticity (TB,HYPER,,,,RESPONSE)
4.6.12. Yeoh Hyperelasticity (TB,HYPER,,,,YEOH)
4.6.13. Special Hyperelasticity
4.6.14. Thermal Deformation in Finite-Strain Material Models
4.7. Finite-Strain Plasticity
4.7.1. Finite-Strain Plasticity Theory
4.7.2. Defining a Finite-Strain Plasticity Model
4.7.3. Finite-Strain Plasticity Output
4.7.4. Finite-Strain Plasticity References
4.8. Viscoelasticity
4.8.1. Viscoelastic Formulation
4.8.2. Time-Temperature Superposition
4.8.3. Harmonic Viscoelasticity
4.9. Crystal Plasticity
4.9.1. Crystal Plasticity Model Theory
4.9.2. Defining a Crystal Plasticity Model
4.9.3. Crystal Plasticity Model Output
4.9.4. Crystal Plasticity Model References
4.10. Microplane
4.10.1. Microplane Modeling
4.10.2. Microplane Material Models
4.10.3. References
4.11. Geomechanics
4.11.1. Understanding the Material Models for Geomechanics
4.11.2. Cam-clay
4.11.3. Mohr-Coulomb
4.11.4. Jointed Rock
4.11.5. Drucker-Prager Concrete
4.11.6. Menetrey-Willam
4.12. Porous Media
4.12.1. Fluid Flow and Permeability
4.12.2. Porous Media Mechanics
4.12.3. Porous Media Material Properties
4.12.4. Heat-Transfer Properties
4.12.5. Thermal-Expansion Material Properties
4.12.6. Transient vs. Static Analysis
4.12.7. Partially Saturated Porous Media Flow and Coupled-Pore-Pressure-Thermal (CPT) Damping
4.13. Gasket
4.14. Swelling
4.15. Shape Memory Alloy (SMA)
4.15.1. SMA Material Model Options
4.15.2. Result Output of Solution Variables
4.15.3. References
4.16. Multilinear Elasticity
4.17. Ramberg-Osgood Model
4.17.1. Ramberg-Osgood Theory
4.17.2. Defining the Ramberg-Osgood Model
4.18. MPC184 Joint
4.18.1. Linear Elastic Stiffness and Damping Behavior
4.18.2. Nonlinear Elastic Stiffness and Damping Behavior
4.18.3. Frictional Behavior
4.19. Contact Friction
4.19.1. Isotropic Friction
4.19.2. Orthotropic Friction
4.19.3. Redefining Friction Between Load Steps
4.19.4. User-Defined Friction
4.20. Contact Interaction
4.20.1. Interaction Options for General Contact Definitions
4.20.2. User-Defined Interaction
4.21. Cohesive Material Law
4.21.1. Exponential Cohesive Zone Material for Interface Elements and Contact Elements
4.21.2. Bilinear Cohesive Zone Material for Interface Elements and Contact Elements
4.21.3. Exponential Cohesive Zone Material for Preventing Surface Penetration
4.21.4. Rigid Exponential Cohesive Zone Material for Interface Elements
4.21.5. Friction in Cohesive Zone Material for Interface Elements
4.21.6. Linear Cohesive Zone Material for Preventing Surface Penetration
4.21.7. Viscous Regularization of Cohesive Zone Material for Interface Elements and Contact Elements
4.21.8. Cohesive Zone Material for Contact Elements
4.21.9. Post-Debonding Behavior at the Contact Interface
4.22. Contact Surface Wear
4.22.1. Archard Wear Model
4.22.2. User-Defined Wear Model
4.22.3. Scaling of Wear Increment
4.23. Customizing Material Behavior
4.23.1. Element Support for Material Subroutines
4.23.2. Combining Material Subroutines
4.23.3. Using State Variables with Material Subroutines
4.24. Material Strength Limits
4.25. Material Damage
4.25.1. Understanding Material Damage
4.25.2. Strain-Localization and -Regularization Methods
4.25.3. Fiber-Reinforced Material Damage
4.25.4. Regularized Generalized Damage for Fatigue and Thermomechanical Fatigue
4.25.5. Regularized Anisotropic Damage
4.25.6. Ductile Damage
4.25.7. References
4.26. Material Damping
4.26.1. Material-Dependent Alpha and Beta Damping (Rayleigh Damping)
4.26.2. Material-Dependent Structural Damping
4.26.3. Viscoelastic Material Damping (Harmonic Viscoelasticity)
5. Multiphysics Material Properties
5.1. Acoustics
5.1.1. Perforated Media
5.1.2. Acoustic Frequency-Dependent Materials
5.1.3. Low Reduced Frequency (LRF) Model of Acoustic Viscous-Thermal Media
5.1.4. Diffusion Properties for Room Acoustics
5.2. Fluids
5.3. Electricity and Magnetism
5.3.1. Piezoelectricity
5.3.2. Piezoresistivity
5.3.3. Magnetism
5.3.4. Anisotropic Electric Permittivity
5.3.5. Anisotropic Viscosity
5.3.6. Anisotropic Elastic Loss Tangent
5.3.7. Anisotropic Dielectric Loss Tangent
5.4. Migration Model
5.4.1. Diffusion Flux and Chemical Potential
5.4.2. Atomic Flux Option (TBOPT = 0)
5.4.3. Vacancy Flux Option (TBOPT = 1)
5.5. Thermal Properties
5.5.1. Thermal Conductivity (TBOPT = COND)
5.5.2. Enthalpy (TBOPT = ENTH)
5.5.3. Specific Heat (TBOPT = SPHT)
5.5.4. Fluid Specific Heat (TBOPT = FLSPHT)
6. Using AML Python Module
6.1. Getting Started
6.2. Defining a Material Model Using AML Python Module
6.3. AML Python Module Classes and Methods
6.4. Example Workflows
6.4.1. Using the aml.material Class
6.4.2. Using the aml.fit Class
6.5. Supported Material State Variables, Models, and Limitations
7. Material Curve-Fitting
7.1. Step 1. Prepare the Experimental Data
7.2. Step 2. Input the Experimental Data
7.2.1. Syntax and Arguments
7.3. Step 3. Select a Material Model
7.3.1. Hyperelastic Material Models
7.3.2. Plastic Material Models
7.3.3. Creep Material Models
7.3.4. Viscoelastic Material Models
7.3.5. Geomechanical Material Models
7.3.6. User-Defined (UserMat) Material Models
7.4. Step 4. Initialize the Coefficients
7.4.1. Chaboche and Rate-Dependent Plasticity Models
7.4.2. Prony Series for Time and Frequency Domain
7.4.3. Geomechanical Material Models
7.4.4. Creep Material Models
7.4.5. Hints and Recommendations for Coefficient Initialization
7.4.6. Syntax and Arguments for Coefficient Initialization
7.5. Step 5. Specify Solution-Control Parameters and Solve
7.5.1. Syntax and Arguments for Specifying Solution-Control Parameters
7.5.2. Multistep Custom Solution for Plasticity
7.6. Step 6. Plot Your Experimental Data and Analyze
7.7. Step 7. Write the Curve-Fitting Data to the Database
7.8. Example Curve-Fitting Problems
7.8.1. Example Hyperelastic Curve-Fitting Problems
7.8.2. Example Viscoelastic Curve-Fitting Problems
7.8.3. Example Plasticity Curve-Fitting Problems
7.8.4. Example Geomechanical Curve-Fitting Problems
7.8.5. Example Creep Curve-Fitting Problems
8. Combining Material Models
8.1. Valid Material Model Combinations
8.2. Material Model Combination Examples
8.2.1. RATE and CHABOCHE and PLASTIC (BISO) Example
8.2.2. RATE and CHABOCHE and PLASTIC (MISO) and PLASTIC (KSR) Example
8.2.3. RATE and CHABOCHE and PLASTIC (MISO) Example
8.2.4. RATE and CHABOCHE and NLISO Example
8.2.5. PLASTIC (BISO) and CHABOCHE Example
8.2.6. PLASTIC (MISO) and CHABOCHE Example
8.2.7. NLISO and CHABOCHE Example
8.2.8. PLASTIC (MISO) and EDP Example
8.2.9. GURSON and PLASTIC (BISO) Example
8.2.10. GURSON and PLASTIC (MISO) Example
8.2.11. NLISO and GURSON Example
8.2.12. GURSON and CHABOCHE Example
8.2.13. GURSON and CHABOCHE and PLASTIC (BISO) Example
8.2.14. RATE and PLASTIC (BISO) Example
8.2.15. RATE and PLASTIC (MISO) Example
8.2.16. RATE and NLISO Example
8.2.17. PLASTIC (BISO) and CREEP Example
8.2.18. PLASTIC (MISO) and CREEP Example
8.2.19. PLASTIC (KINH) and CREEP Example
8.2.20. NLISO and CREEP Example
8.2.21. PLASTIC (BKIN) and CREEP Example
8.2.22. CHABOCHE and PLASTIC (KSR2) and CREEP Example
8.2.23. HILL and PLASTIC (BISO) Example
8.2.24. HILL and PLASTIC (MISO) Example
8.2.25. HILL and NLISO Example
8.2.26. HILL and PLASTIC (BKIN) Example
8.2.27. HILL and CHABOCHE Example
8.2.28. HILL and PLASTIC (BISO) and CHABOCHE Example
8.2.29. HILL and PLASTIC (MISO) and CHABOCHE Example
8.2.30. HILL and NLISO and CHABOCHE Example
8.2.31. HILL and RATE and PLASTIC (BISO) Example
8.2.32. HILL and RATE and NLISO Example
8.2.33. HILL and CREEP Example
8.2.34. ANISO and CREEP Example
8.2.35. HILL and CREEP and PLASTIC (BISO) Example
8.2.36. HILL and CREEP and PLASTIC (MISO) Example
8.2.37. HILL and CREEP and NLISO Example
8.2.38. HILL and CREEP and PLASTIC (BKIN) Example
8.2.39. HYPER and PRONY Example
8.2.40. AHYPER and PRONY Example
8.2.41. HYPER and PRONY and CDM Example
8.2.42. HYPER and CDM Example
8.2.43. HYPER with Embedded Fibers Example
8.2.44. HYPER and CDM with Embedded Fibers Example
8.2.45. HYPER, CDM, and PRONY with Embedded Fibers Example
8.2.46. EDP and CREEP and PLASTIC (MISO) Example
8.2.47. CAP and CREEP and PLASTIC (MISO) Example
8.2.48. CHABOCHE and CREEP Example
8.2.49. CHABOCHE and CREEP and NLISO Example
8.2.50. CHABOCHE and CREEP and HILL Example
8.2.51. CHABOCHE and CREEP and HILL
8.2.52. CREEP and RATE and CHABOCHE and PLASTIC (MISO)
8.2.53. CREEP and RATE and CHABOCHE and PLASTIC (MISO) and PLASTIC (KSR2) Example
8.2.54. CAST and CHABOCHE Example
8.2.55. EDP and PELAS and PLASTIC (MISO) Example
8.2.56. HYPER and PLASTIC (BISO) Example
8.2.57. PLASTIC (KINH) and CDM (GDMG) Example
8.2.58. CREEP and CDM (GDMG) Example
8.2.59. PLASTIC (MISO) and CREEP and CDM (GDMG) Example
8.2.60. CHABOCHE and RATE (EVH) and CDM (GDMG) Example
8.2.61. EDP and CDM (GDMG) Example
8.2.62. CAST and CDM (GDMG) Example
8.2.63. PLASTIC (BISO) and CDM (DUCTILE and EXPDMG) Example
9. Understanding Field Variables
9.1. Predefined Field Variables
9.1.1. Defining Friction
9.1.2. Defining Young’s Modulus as a Function of Global X,Y
9.2. User-Defined Field Variables
9.2.1. Subroutine for Editing Field Variables
9.3. Data Processing
9.4. Logarithmic Interpolation and Scaling
9.5. Interpolation Algorithms
9.5.1. Simple Linear Interpolation
9.5.2. Multidimensional Interpolation
9.5.3. Evaluating Interpolation Algorithm Results
9.5.4. Material Model Support for Interpolation
9.5.5. References
10. GUI-Inaccessible Material Properties