3.1. Defining Linear Material Properties

The linear material properties used by the element type are listed under Material Properties in the input table for each element type.

Tabular input is also available for some material properties.

Table 3.1: Linear Material Properties (Defined via MP,Lab)

Material Property (Lab Value) Units Description
EXForce/AreaElastic modulus, element x direction
EYElastic modulus, element y direction
EZElastic modulus, element z direction
PRXYNoneMajor Poisson's ratio, x-y plane
PRYZMajor Poisson's ratio, y-z plane
PRXZMajor Poisson's ratio, x-z plane
NUXYMinor Poisson's ratio, x-y plane
NUYZMinor Poisson's ratio, y-z plane
NUXZMinor Poisson's ratio, x-z plane
GXYForce/AreaShear modulus, x-y plane
GYZShear modulus, y-z plane
GXZShear modulus, x-z plane
ALPX Strain/Temp Secant coefficient of thermal expansion, element x direction
ALPY Secant coefficient of thermal expansion, element y direction
ALPZ Secant coefficient of thermal expansion, element z direction
CTEX Strain/Temp Instantaneous coefficient of thermal expansion, element x direction
CTEY Instantaneous coefficient of thermal expansion, element y direction
CTEZ Instantaneous coefficient of thermal expansion, element z direction
THSX Strain Thermal strain, element x direction
THSY Thermal strain, element y direction
THSZ Thermal strain, element z direction
REFT Temp Reference temperature (as a property) (see also TREF)
MUNoneCoefficient of friction (or, for FLUID29, boundary admittance)
ALPD None Mass matrix multiplier for damping (also see ALPHAD)
BETD None Stiffness matrix multiplier for damping (also see BETAD)
DMPR None Damping ratio
DMPS None Constant structural damping coefficient
DENSMass/VolMass density
KXXHeat*Length/ (Time*Area*Temp)Thermal conductivity, element x direction
KYYThermal conductivity, element y direction
KZZThermal conductivity, element z direction
CHeat/Mass*TempSpecific heat
ENTHHeat/VolEnthalpy (  DENS*C d(Temp))
HFHeat / (Time*Area*Temp)Convection (or film) coefficient
EMIS None Emissivity
QRATEHeat/TimeHeat generation rate for thermal mass element MASS71
NoneFraction of plastic work converted to heat (Taylor-Quinney coefficient) for coupled-field elements PLANE222, PLANE223, SOLID225, SOLID226, and SOLID227
VISCForce*Time/ Length2 Viscosity
SONCLength/TimeSonic velocity (FLUID29, FLUID30, FLUID129, and FLUID130 elements only)
MURXNoneMagnetic relative permeability, element x direction
MURYMagnetic relative permeability, element y direction
MURZMagnetic relative permeability, element z direction
MGXXCurrent/LengthMagnetic coercive force, element x direction
MGYYMagnetic coercive force, element y direction
MGZZMagnetic coercive force, element z direction
RSVXResistance*Area/LengthElectrical resistivity, element x direction
RSVYElectrical resistivity, element y direction
RSVZElectrical resistivity, element z direction
PERXNoneElectric relative permittivity, element x direction
PERYElectric relative permittivity, element y direction
PERZElectric relative permittivity, element z direction
LSSTNoneDielectric loss tangent
SBKXVoltage/TempSeebeck coefficient, element x direction
SBKYSeebeck coefficient, element y direction
SBKZSeebeck coefficient, element z direction
DXXLength2/TimeDiffusion coefficient, element x direction
DYYDiffusion coefficient, element y direction
DZZDiffusion coefficient, element z direction
CSATMass/Length3 Saturated concentration
CREFMass/Length3 Reference concentration
BETXLength3/MassCoefficient of diffusion expansion, element x direction
BETYCoefficient of diffusion expansion, element y direction
BETZCoefficient of diffusion expansion, element z direction

3.1.1. Defining Linear Material Properties Using Tabular Input

Some element types support material properties defined as a function of primary variables, accomplished by using tabular input when defining the property.

Tabular input for linear material properties is typically defined via the MP family of commands, although the TB family of commands can be used for some linear material properties.

To input a table, dimension the table array parameter (*DIM) and identify the variables. Enclose the table name within % characters:

MP,Lab,,%tabname%

The possible primary variables for material tabular input are:

  • Time (TIME) or frequency (FREQ)

  • X location (X) in local or global coordinates

  • Y location (Y) in local or global coordinates

  • Z location (Z) in local or global coordinates

  • Temperature (TEMP) load or degree of freedom

  • Concentration (CONC) degree of freedom

  • Pressure (PRESSURE) degree of freedom

  • Computed fluid velocity (VELOCITY)

Example 3.1: Using Tabular Input (via MP) with One Primary Variable to Define Resistivity

A temperature-dependent resistivity is specified using a table array (as an alternative to using MPTEMP and MPDATA).

*DIM,RSV_T,TABLE,5,,,TEMP                     !  Define RSV_T with TEMP 
                                              !              primary variable
RSV_T(1,0)=0.,50.,100.,150.,200.              ! Assign temperature values
RSV_T(1,1)=1.e-8,1.4e-8,1.6e-8,1.8e-8,2.e-8   ! Assign resistivity values

MP,RSVX,1,%RSV_T%                             ! Input RSV_T on the MP command

Example 3.2: Using Tabular Input (via MP) with Two Primary Variables to Define the Diffusivity Coefficient

The diffusivity coefficient is dependent on both concentration (CONC) and time (TIME).

*DIM,DXX_CT,TABLE,3,4,,CONC,TIME   ! Define DXX_CT with 
                                   !   CONC and TEMP primary variables
*TAXIS,DXX_CT,1, 0,1,2             ! X-axis is CONC, normalized
*TAXIS,DXX_CT,2, 1,2,3,4           ! Y-axis is TIME, hours
DXX_CT(1,1)= 2.e-6,3.e-6,4.e-6     ! Assign DXX vs CONC at TIME = 1 hr 
DXX_CT(1,2)= 1.6e-6,2.4e-6,3.8e-6  ! Assign DXX vs CONC at TIME = 2 hr 
DXX_CT(1,3)= 1.4e-6,2.2e-6,3.5e-6  ! Assign DXX vs CONC at TIME = 3 hr 
DXX_CT(1,4)= 1.1e-6,2.e-6,3.1e-6   ! Assign DXX vs CONC at TIME = 4 hr 

MP,DXX,1,%DXX_CT%                  ! Input DXX_CT on the MP command

To input a table via the TBDATA command, dimension the table array parameter (*DIM) and identify the variables. Enclose the table name within % signs.

TBDATA,STLOC,%tabname%

where STLOC is the starting location in the table for entering data. (Default = last location filled + 1.)

Example 3.3: Using Tabular Input (via TBDATA) with the TEMP Primary Variable

The temperature-dependent elastic coefficient c66 is defined for anisotropic elasticity (TB,ANEL).

*DIM,c66_T,TABLE,5,,,TEMP

c66_T(1,0)= 20,40,60,80,100                    ! Temperature
c66_T(1,1)= 39.8e9,40.0e9,40.1e9,40.3e9,40.4e9 ! Stiffness coefficient

TB,ANEL,1,,,0              ! Anisotropic elasticity material data table
...
TBDATA,21,%c66_T%          ! Tabular input for elastic constant 21

Table 3.2: Supported Elements, Material Properties, Primary Variables

Material PropertyPrimary Variables
Coupled-Field Solids: PLANE222, PLANE223, SOLID225, SOLID226, SOLID227
Diffusivity coefficients (DXX, DYY, DZZ)TIME, X, Y, Z, TEMP, CONC
Saturated concentration (CSAT)TIME, X, Y, Z
Electrical resistivities (RSVX, RSVY, RSVZ)TIME, X, Y, Z, TEMP, CONC
Coefficients of diffusion expansion (BETX, BETY, BETZ)TIME, X, Y, Z, TEMP, CONC
Reference concentration (CREF)TIME, X, Y, Z, TEMP, CONC
Anisotropic Elasticity (ANEL)TEMP, FREQ[a]
Piezoelectricity (PIEZ)TEMP, FREQ[a]
Anisotropic Electric Permittivity (DPER)TEMP, FREQ[a]
 
Diffusion Solids: PLANE238, SOLID239, SOLID240
Diffusivity coefficients (DXX, DYY, DZZ)TIME, X, Y, Z, TEMP, CONC
Saturated concentration (CSAT)TIME, X, Y, Z
 
Coupled Thermal-Fluid Pipe: FLUID116
Thermal conductivity (KXX)TIME, X, Y, Z, TEMP, PRESSURE, VELOCITY
Specific heat (C)TIME, X, Y, Z, TEMP, PRESSURE, VELOCITY
Mass Density (DENS)TIME, X, Y, Z, TEMP, PRESSURE, VELOCITY
Coefficient of friction (MU)TIME, X, Y, Z, TEMP, PRESSURE, VELOCITY
Viscosity (VISC)TIME, X, Y, Z, TEMP, PRESSURE, VELOCITY
Film coefficient (HF)TIME, X, Y, Z, TEMP, PRESSURE, VELOCITY
 
Hydrodynamic Bearing: FLUID218
Viscosity (VISC)X, Y, Z, TEMP, PRESSURE
Mass density (DENS)X, Y, Z, TEMP, PRESSURE
 
Thermal Mass: MASS71
Heat-generation rate (QRATE)TIME, X, Y, Z, TEMP

[a] TBDATA required.


For more information about using tabular input and additional examples, see:

Information about element-specific usage of tabular input for material properties is available in the description of the element that you are using.