Expand/Collapse all
1. 2D-to-3D Analysis
1.1. Benefits of 2D-to-3D Analysis
1.2. 2D-to-3D Analysis Requirements and Limitations
1.3. Understanding the 2D-to-3D Analysis Process
1.3.1. Understanding the 2D-to-3D Analysis Process Flow
1.3.2. Key Commands Used in a 2D-to-3D Analysis
1.4. Performing a 2D-to-3D Analysis
1.4.1. Step 1: Determine the Substep to Initiate
1.4.2. Step 2: Initiate the 2D-to-3D Analysis
1.4.3. Step 3: Extrude the 2D Mesh to a New 3D Mesh
1.4.4. Step 4: Map Boundary Conditions and Loads to the New 3D Mesh
1.4.5. Step 5: Map Solution Results to the New 3D Mesh and Rebalance
1.4.6. Step 6: Continue Your Analysis on the 3D Model
1.5. Example: 2D-to-3D Analysis of a Simple Threaded Connection
1.5.1. 2D Axisymmetric Modeling
1.5.2. 2D Axisymmetric Analysis Results
1.5.3. Generate the 3D Model from the 2D Model
1.5.4. 2D-to-3D Analysis Results
1.5.5. Performing a 3D Analysis on the Extruded Model
1.5.6. 3D Analysis Results
1.5.7. Input File for This Example
1.6. 2D-to-3D Analysis Restrictions
2. Semi-Implicit Method
2.1. Semi-Implicit Basic Procedure
2.2. Semi-Implicit Solution Controls
2.3. Semi-Implicit Method Recommendations
2.4. Semi-Implicit Method Limitations
3. Automatic Transition Between Static and Transient Solutions
3.1. Solution Transition Procedure
3.2. Solution Transition Method Recommendations
3.3. Solution Transition Method Limitations
4. Initial State
4.1. Specifying and Editing Initial-State Values
4.1.1. Element-Based Initial State
4.1.2. Node-Based Initial State
4.2. Standard Initial-State Application
4.2.1. Applying Initial Stress
4.2.2. Converting Initial Stress to Initial Strain
4.2.3. Applying Initial Strain
4.2.4. Applying Initial Plastic Strain
4.2.5. Applying Initial Creep Strain
4.2.6. Applying Initial State with State Variables
4.2.7. Applying Node-Based Initial Strain
4.2.8. Applying Initial Pore Pressure and Void Ratio
4.2.9. Applying Initial Degree of Saturation and Relative Permeability
4.2.10. Applying Function-Based Initial State
4.2.11. Applying Initial Backstress
4.2.12. Applying Initial Deformation Gradient
4.3. Mesh-Independent Initial-State Application
4.4. Using an Initial-State (.ist) Data File
4.4.1. Standard Method .ist File
4.4.2. Mesh-Independent Method .ist File
4.5. Using Coordinate Systems with Initial State
4.6. Initial-State Limitations
4.7. Example Problems Using Initial State
4.7.1. Example: Initial Stress (Using .ist File)
4.7.2. Example: Convert Initial Stress to Initial Strain (INISTATE Command)
4.7.3. Example: Initial Stress (INISTATE Command)
4.7.4. Example: Initial Strain
4.7.5. Example: Initial Plastic Strain
4.7.6. Example: Initial Creep Strain
4.7.7. Example: Initial Plastic Strain with State Variables
4.7.8. Example: Node-Based Initial Strain
4.7.9. Example: Initial Pore Pressure and Void Ratio
4.7.10. Example: Initial Degree of Saturation and Relative Permeability
4.7.11. Example: Function-Based Initial State
4.7.12. Example: Mesh-Independent Initial State
4.7.13. Example: Initial Backstress
4.7.14. Example: Initial-Deformation Gradient
4.8. Writing Initial-State Values
4.8.1. Example: Output From the INISTATE Command's WRITE Option
5. Rotating Structure Analysis
5.1. Understanding Rotating Structure Dynamics
5.2. Choosing the Appropriate Reference Frame Option
5.3. Using a Rotating Reference Frame
5.3.1. Elements Supported
5.3.2. Spin-Softening Effect
5.3.3. Analysis Types Supported
5.4. Rotating Reference Frame Analysis Examples
5.4.1. Example: Campbell Diagram Analysis of a Jeffcott Rotor
5.4.2. Example: Campbell Diagram Analysis of a Non-Axisymmetric Beam Model
5.4.3. Example: Campbell Diagram Analysis of a 3D Bladed Shaft-Disk Assembly
5.4.4. Example: Unbalance Response of a Jeffcott Rotor
6. Cyclic-Loading Analysis and Cycle-Jump Method
6.1. Cyclic-Loading Analysis
6.1.1. Standard Cyclic-Loading Analysis
6.1.2. Multicycle Cyclic-Loading Analysis
6.1.3. Restarting a Cyclic-Loading Analysis
6.1.4. Cyclic-Loading Analysis Limitations
6.2. Cycle-Jump Analysis
6.2.1. Understanding the Cycle-Jump Method
6.2.2. Performing a Cycle-Jump Analysis
6.2.3. Cycle-Jump Recommendations
6.2.4. Restarting a Cycle-Jump Analysis
6.2.5. Cycle-Jump Limitations
6.2.6. Example: Cycle-Jump Analysis
7. Submodeling
7.1. Understanding Submodeling
7.1.1. Nonlinear Submodeling
7.2. Using Submodeling
7.2.1. Create and Analyze the Coarse Model
7.2.2. Create the Submodel
7.2.3. Perform Cut-Boundary Interpolation
7.2.4. Analyze the Submodel
7.2.5. Verify the Distance Between the Cut Boundaries and the Stress Concentration
7.3. Example Submodeling Analysis Input
7.3.1. Submodeling Analysis Input: No Load-History Dependency
7.3.2. Submodeling Analysis Input: Load-History Dependency
7.4. Shell-to-Solid Submodels
7.5. Where to Find Examples
8. Element Birth and Death
8.1. Elements Supporting Birth and Death
8.2. Understanding Element Birth and Death
8.3. Element Birth and Death Usage Hints
8.3.1. Changing Material Properties
8.4. Using Birth and Death
8.4.1. Build the Model
8.4.2. Apply Loads and Obtain the Solution
8.4.3. Review the Results
8.4.4. Use Analysis Results to Control Birth and Death
8.5. Where to Find Examples
9. User-Programmable Features and Nonstandard Uses
9.1. User-Programmable Features (UPFs)
9.1.1. Understanding UPFs
9.1.2. Types of UPFs Available
9.2. Nonstandard Uses of the Program
9.2.1. What Are Nonstandard Uses?
9.2.2. Hints for Nonstandard Use
10. State-Space Matrices Export
10.1. State-Space Matrices Based on Modal Analysis
10.1.1. Examples of SPMWRITE Command Usage
10.1.2. Example of Reduced Model Generation in Ansys and Usage in Twin Builder
11. Soil-Pile-Structure Analysis
12. Coupling to External Aeroelastic Analysis of Wind Turbines
12.1. Sequential Coupled Wind Turbine Solution in Mechanical APDL
12.1.1. Procedure for a Sequentially Coupled Wind Turbine Analysis
12.1.2. Output from the OUTAERO Command
12.1.3. Example Substructuring Analysis to Write Out Aeroelastic Analysis Input Data
13. Applying Ocean Loading from a Hydrodynamic Analysis
13.1. How Hydrodynamic Analysis Data Is Used
13.2. Hydrodynamic Load Transfer with Forward Speed
13.3. Hydrodynamic Data File Format
13.3.1. Comment (Optional)
13.3.2. General Model Data
13.3.3. Hydrodynamic Surface Geometry
13.3.4. Wave Periods
13.3.5. Wave Directions
13.3.6. Panel Pressures
13.3.7. Morison Element Hydrodynamic Definition
13.3.8. Morison Element Wave Kinematics Definition
13.3.9. RAO Definition
13.3.10. Mass Properties
13.4. Example Analysis Using Results from a Hydrodynamic Diffraction Analysis