13.3. Hydrodynamic Data File Format

13.3.1. Comment (Optional)

The comment section contains descriptive text for the model.

* text

where

*keyword to signify that this is a comment line
textdescription of the model

13.3.2. General Model Data

This section defines some general data for the model.

GENE
depth density gravity symxy

where

GENEkeyword to denote the start of the general model data
depthwater depth
densitywater density
gravityacceleration of gravity
symxy

symmetry integer

0: no symmetry

1: symmetry about x axis

2: symmetry about y axis

3:symmetry about both x and y axes

Example 13.1: General Model Data

GENE
2.500000E+02  1.025000E+03  9.800000E+00         3

13.3.3. Hydrodynamic Surface Geometry

The hydrodynamic surface geometry provides information related to the panel definition of the model. Allowance can be made for symmetric models; that is, only one half of the model must be defined for one plane of symmetry, and only a quarter of the model must be defined for double symmetry.

HYDR
npan
x1(1) y1(1) z1(1) x2(1) y2(1) z2(1) x3(1) y3(1) z3(1) x4(1) y4(1) z4(1) 
.
.
x1(npan) y1(npan) z1(npan) x2(1)  …  x4(npan) y4(npan) z4(npan)

where

HYDRkeyword to denote start of hydrodynamic panel description
npannumber of panels to be defined
xk(j)X coordinate for panel j, node k
yk(j)Y coordinate for panel j, node k
zk(j)Z coordinate for panel j, node k

The nodes must be arranged in counterclockwise order when viewing the panel from the wetted side. To define a triangular panel, specify the same coordinates for nodes 3 and 4.

Example 13.2: Hydrodynamic Surface Geometry

HYDR
12
 15.0   -15.0    0.0   7.5   -15.0    0.0   7.5   -15.0   -7.5   15.0   -15.0   -7.5
 15.0   -15.0   -7.5   7.5   -15.0   -7.5   7.5   -15.0   -15.0  15.0   -15.0   -15.0
 15.0   -15.0   -15.0  7.5   -15.0   -15.0  7.5    -7.5   -15.0  15.0    -7.5   -15.0
 15.0   -7.5    -15.0  7.5    -7.5   -15.0  7.5     0.0   -15.0  15.0     0.0   -15.0
  7.5   -15.0    0.0   0.0   -15.0    0.0   0.0   -15.0   -7.5    7.5   -15.0   -7.5
  7.5   -15.0   -7.5   0.0   -15.0   -7.5   0.0   -15.0   -15.0   7.5   -15.0   -15.0
  7.5   -15.0   -15.0  0.0   -15.0   -15.0  0.0    -7.5   -15.0   7.5    -7.5   -15.0
  7.5   -7.5    -15.0  0.0    -7.5   -15.0  0.0     0.0   -15.0   7.5     0.0   -15.0
 15.0   -15.0    0.0  15.0   -15.0   -7.5   15.0   -7.5   -7.5   15.0    -7.5    0.0
 15.0   -15.0   -7.5  15.0   -15.0   -15.0  15.0   -7.5   -15.0  15.0    -7.5   -7.5
 15.0   -7.5     0.0  15.0    -7.5   -7.5   15.0    0.0   -7.5   15.0     0.0    0.0
 15.0   -7.5    -7.5  15.0    -7.5   -15.0  15.0    0.0   -15.0  15.0     0.0   -7.5

13.3.4. Wave Periods

This section defines the wave periods where hydrodynamic pressures have been computed.

PERD
nperd
period(1) period(2) ... period(i)
period(i+1) period(i+2) ... period(nperd)

where

PERDkeyword to denote start of wave period data
nperdnumber of wave periods
period(i)the ith wave period (s)

The data may be specified in one or more lines until all the periods are entered.

Example 13.3: Wave Periods

perd
1
18.0

13.3.5. Wave Directions

This section defines the wave directions where hydrodynamic pressures have been computed.

DIRN
ndirn
heading(1) heading(2) ... heading(i)
heading(i+1) heading(i+2) ... heading(ndirn)

where

DIRNkeyword to denote start of wave direction data
ndirnnumber of wave directions
heading(i)the ith wave direction (in degrees, between -180 and +180)

The data may be specified in one or more lines until all the directions are entered.

Example 13.4: Wave Directions

dirn
2
0.0  90.0

13.3.6. Panel Pressures

This section defines the wave directions where hydrodynamic pressures have been computed.

PRES
iperiod iheading	region panel magnitude phase

where

PRESkeyword to denote the start of hydrodynamic pressure values
iperiod period number (position in the period list)
iheading wave direction number (position in the direction list)
region
  • If two planes of symmetry (symxy set to 3)

    region 1 corresponds to modelled elements

    region 2 corresponds to reflection in x-z plane

    region 3 corresponds to reflection in y-z plane

    region 4 corresponds to reflection in x-z and y-z plans

  • If one plane of symmetry (symxy set to 1 or 2)

    region 1 corresponds to modelled elements

    region 2 corresponds to reflected elements

panel panel number (must be between 1 and npan)
magnitude pressure amplitude
phase associated phase angle in degrees (with respect to the wave at the center of gravity of the vessel)

The associated phase angle (phase) determines the horizontal location of the loading. The magnitude and phase together define the shape of the harmonic loading curve.

Pressure is positive when acting from the wetted surface towards the inner surface.

If no input pressure is given to a panel at a particular period and direction, the pressure on the panel is assumed to be zero. If more than one set of pressures are defined, their effects are accumulative; that is, the real and imaginary parts of each set are summed together.

Example 13.5: Panel Pressures

PRES
1   1   1   1    25.0    0.0
1   1   1   2    75.0    0.0
1   1   1   3   100.0    0.0
1   1   1   4   100.0    0.0
1   1   1   5    25.0    0.0
1   1   1   6    75.0    0.0

13.3.7. Morison Element Hydrodynamic Definition

The data in this section describes the line elements used to provide slender body loading.

MORI
nmori
x1(1) y1(1) z1(1) x2(1) y2(1) z2(1)
.
.
x1(nmori) y1(nmori) z1(nmori) x2(nmori) y2(nmori) z2(nmori)

where

MORIkeyword to denote start of Morison hydrodynamic element description
Nmorinumber of Morison elements defined
xk(j)X coordinate for line element j, node k
yk(j)Y coordinate for line element j, node k
zk(j)Z coordinate for line element j, node k

Example 13.6: Morison Element Hydrodynamic Definition

MORI
1
10 0 0 20 0 0

13.3.8. Morison Element Wave Kinematics Definition

The data in this section defines the wave kinematics at the nodes of the Morison elements defined above.

WKIN
iperiod iheading node element pmag pphs zsmag zsphs
vxmag vxphs vymag vyphs vzmag vzphs
axmag axphs aymag ayphs azmag azphs

where

WKINkeyword to denote start of Morison element wave kinematics definition
iperiodwave period number (position in period list)
iheadingwave direction number (position in direction list)
nodelocal node number on Morison element (1 or 2)
elementelement number referencing the Morison element list
pmaghydrodynamic pressure amplitude
pphsassociated phase angle (degrees)
zsmagsurface elevation amplitude
zsphsassociated phase angle (degrees)
vxmagx velocity amplitude
vxphsassociated phase angle (degrees)
vymagy velocity amplitude
vyphsassociated phase angle (degrees)
vzmagz velocity amplitude
vzphsassociated phase angle (degrees)
axmagx acceleration amplitude
axphsassociated phase angle (degrees)
aymagy acceleration amplitude
ayphsassociated phase angle (degrees)
azmagz acceleration amplitude
azphsassociated phase angle (degrees)

Note that the data is defined for X, Y and Z in the global directions.

If no input is given to a Morison element at a particular period and direction, the kinematics data on this element are assumed to be zero.

Example 13.7: Morison Element Wave Kinematics Definition

WKIN
1 1 1 134 0.1 15 1.2 15
2.2 15 2.2 15 2.3 15
0.2 15 1.5 15 4.3 15

13.3.9. RAO Definition

This section data defines the RAO data. The first line defines the RAO reference position, followed by blocks of data defining RAOs in various periods and directions.

RAOS
xr yr zr
iperiod iheading xmag xphs ymag yphs zmag zphs
rxmag rxphs rymag ryphs rzmag rzphs

where

RAOSkeyword to denote start of RAO definition
xr yr zrX, Y and Z coordinate of the RAO reference position
iperiodwave period number (position in period list)
iheadingwave direction number (position in direction list)
xmagx RAO amplitude
xphsassociated phase angle (degrees)
ymagy RAO amplitude
yphsassociated phase angle (degrees)
zmagz RAO amplitude
zphsassociated phase angle (degrees)
rxmagrx RAO amplitudee (degrees)
rxphsassociated phase angle (degrees)
rymagry RAO amplitude (degrees)
ryphsassociated phase angle (degrees)
rzmagrz RAO amplitude (degrees)
rzphsassociated phase angle (degrees)

Example 13.8: RAO Definition

RAOS
0.000000E+00  0.000000E+00 -5.000000E+00
1  1 8.972334E-01  8.999010E+01  6.241512E-08 -1.799247E+02  1.042555E+00  4.346394E-02
     7.862426E-09  0.000000E+00  7.524462E-01 -9.000951E+01  2.027182E-07  0.000000E+00
1  2 6.357081E-01  8.999005E+01  6.357080E-01  8.999005E+01  1.042556E+00  4.340762E-02
     5.293267E-01  8.999037E+01  5.293267E-01 -9.000961E+01  1.605987E-07  0.000000E+00

13.3.10. Mass Properties

This section defines the mass properties of the hydrodynamic model but is currently unused.

MASS
xcg ycg zcg
Mass(1,1) mass(1,2) .. mass(1,6)
.
.
Mass(6,1) mass(6,2) .. mass(6,6)

where

MASSkeyword to denote start of mass information
xcg ycg zcgX, Y and Z coordinate of CoG
mass(j,k)mass matrix term

Example 13.9: Mass Properties

MASS
0.000000E+00  0.000000E+00 -5.000000E+00
1.383750E+07  0.000000E+00  0.000000E+00  0.000000E+00  0.000000E+00  0.000000E+00
0.000000E+00  1.383750E+07  0.000000E+00  0.000000E+00  0.000000E+00  0.000000E+00
0.000000E+00  0.000000E+00  1.383750E+07  0.000000E+00  0.000000E+00  0.000000E+00
0.000000E+00  0.000000E+00  0.000000E+00  7.780000E+08  0.000000E+00  0.000000E+00
0.000000E+00  0.000000E+00  0.000000E+00  0.000000E+00  7.780000E+08  0.000000E+00
0.000000E+00  0.000000E+00  0.000000E+00  0.000000E+00  0.000000E+00  7.780000E+08