5.4. Rotating Reference Frame Analysis Examples

For additional examples of a rotating structure analysis using a rotating reference frame, see the following test cases in the Mechanical APDL Verification Manual:

  • VM197: Rotating Elastic System.

  • VM301: Critical Speed of Rotating Disk. Note that, because of the geometry and modes calculated, CORIOLIS is not needed in this example.

  • VM302: Rotating Circular Ring.

See also:

5.4.1. Example: Campbell Diagram Analysis of a Jeffcott Rotor

The following example presents a Campbell diagram analysis of a Jeffcott rotor, first in a stationary reference frame (SRF) and then in a rotating reference frame (RRF). It demonstrates the relationship between RRF and SRF frequencies.

The model is a massless rigid rotating shaft supported at its ends by identical bearings (COMBI214). A disk is mounted on the shaft and modelled with a point mass element (MASS21) located at 0.2 m from its end. The shaft is modeled using constraint equations (CERIG command). The rotational velocity varies between 0 rpm and 10,000 rpm along the Z axis.

5.4.1.1. Problem Specifications

Inertia properties of the mass:

Mass = 25 kg
Inertia (XX,YY) = 5 kg·m2
Inertia (ZZ) = 10 kg·m2

Shaft length: 1 m

Bearing stiffness: 4e+6 N/m

5.4.1.2. Input for the Analysis

/title, Campbell Diagram Analysis of Jeffcott Rotor

! ** parameters

mass = 25 
iz = 10 
ix = 5 
iy = 5
k = 4e+6
pi = acos(-1) 
ratio = pi/30 
omend = ratio*10000

/prep7

n,1,0,0,0
n,2,0,0,1
n,3,0,0,0.2

et,1,mass21		! fake mass for CERIG 6 DOFs 
r,1
type,1 
real,1  
e,1
e,2 
 
et,2,mass21 
r,2,mass,mass,mass,ix,iy,iz 
type,2 
real,2  
e,3 

cerig,3,all,all

n,100,,,0 
n,110,,,1 

et,3,combi214           ! bearing
r,3,k,k  
type,3 
real,3 
e,100,1 
e,110,2 

d,all,uz,0								 
d,all,rotz,0 
d,100,all,0 
d,110,all,0 
finish 

! *** Multistep modal analysis in SRF

nbp2 = 10
domg2 = omend/nbp2
*dim,omg2,array,nbp2+1
*do,iloop,1,nbp2
 omg2(iloop+1) = omg2(iloop) + domg2
*enddo
omg2(1) = domg2*1e-2

/solu
antype,modal
modopt,damp,8
mxpand,8
coriolis,on,,,on
*do,iloop,1,nbp2+1
   omega,,,omg2(iloop)
   solve
*enddo
finish

! ** Campbell in SRF 

/post1
/show,png,rev
/yrange,0,400
plcamp,,1,rpm
prcamp,,1,rpm
/show,close
*dim,FRQ_SRF,ARRAY,4
*do,iloop,1,4
   *get,FRQ_SRF(iloop),CAMP,iloop,FREQ,nbp2+1
*enddo
finish


! *** Multistep modal analysis in RRF

nbp = 20
domg = omend/nbp
*dim,omg,array,nbp+1
*do,iloop,1,nbp
 omg(iloop+1) = omg(iloop) + domg
*enddo
omg(1) = domg*1e-2

/solu
antype,modal
modopt,damp,8
mxpand,8
coriolis,on
*do,iloop,1,nbp+1
   omega,,,omg(iloop)
   solve
*enddo
finish

! ** Campbell diagram in RRF

/post1
/show,png,rev
/yrange,0,280
/gthk,curve,-1         ! no curve - only markers
/psymb,mark,4          ! marker size
*do,iloop,1,6
 /gmarker,iloop,3      ! marker type
*enddo
plcamp,,,rpm
prcamp,,,rpm
/show,close
*dim,FRQ_RRF,ARRAY,4
*do,iloop,1,4
   *get,FRQ_RRF(iloop),CAMP,iloop,FREQ,nbp+1
*enddo
finish

! ** Compare SRF and RRF frequencies at maximum spin
frend = omend/(2*pi)
*dim,FRQ_SRF_INRRF,ARRAY,4
FRQ_SRF_INRRF(1) = abs(FRQ_SRF(2) - frend) 
FRQ_SRF_INRRF(2) = FRQ_SRF(1) + frend 
FRQ_SRF_INRRF(3) = abs(FRQ_SRF(4) - frend) 
FRQ_SRF_INRRF(4) = FRQ_SRF(3) + frend 
*status,FRQ_SRF
*status,FRQ_RRF
*status,FRQ_SRF_INRRF

5.4.1.3. Output for the Analysis

The outputs for this analysis are shown in the figures below.

Figure 5.1: Campbell Diagram for the Jeffcott Rotor - Stationary Reference Frame (SRF)

Campbell Diagram for the Jeffcott Rotor - Stationary Reference Frame (SRF)

Figure 5.2: Campbell Diagram for the Jeffcott Rotor - Rotating Reference Frame (RRF)

Campbell Diagram for the Jeffcott Rotor - Rotating Reference Frame (RRF)

Figure 5.3: Relationship Between SRF and RRF Frequencies

PARAMETER STATUS- FRQ_SRF  (     21 PARAMETERS DEFINED)
                  (INCLUDING        2 INTERNAL PARAMETERS)

      LOCATION                VALUE
        1       1       1    27.1023115
        2       1       1    85.1999476
        3       1       1    95.8462296
        4       1       1    371.081927

 PARAMETER STATUS- FRQ_RRF  (     21 PARAMETERS DEFINED)
                  (INCLUDING        2 INTERNAL PARAMETERS)

      LOCATION                VALUE
        1       1       1    81.4667190
        2       1       1    193.768978
        3       1       1    204.415260
        4       1       1    262.512896

 PARAMETER STATUS- FRQ_SRF_INRRF  (     21 PARAMETERS DEFINED)
                  (INCLUDING        2 INTERNAL PARAMETERS)

      LOCATION                VALUE
        1       1       1    81.4667190
        2       1       1    193.768978
        3       1       1    204.415260
        4       1       1    262.512896

5.4.2. Example: Campbell Diagram Analysis of a Non-Axisymmetric Beam Model

The following example from the reference [Friswell et al.] shows a Campbell diagram analysis in the rotating reference frame of an asymmetric rotor carrying two disks, as shown in Figure 5.4: Asymmetric Rotor.

The model is an asymmetric shaft (BEAM188) defined by its cross-section and inertias supported at its ends by identical bearings (COMBI214). The disks are modeled with two point-mass elements (MASS21) located at 0.5 m and 1 m.

The undamped system is studied first, then damping is introduced in the bearings.

The rotational velocity varies between 0 rpm and 4500 rpm. The evolution of the frequencies and of the stability values are plotted for both undamped and damped systems (PLCAMP). To obtain a more precise shape of the curves around the instability regions, more points are requested by specifying a smaller rotational velocity increment.

Only the shaft and disks are rotating, and the bearings are stationary. Bearing damping thus introduces rotating damping terms in the rotating reference frame analysis (RotDamp = ON on the CORIOLIS command).

Figure 5.4: Asymmetric Rotor

Asymmetric Rotor

Reference

Friswell, M., Penny, J., Garvey, S., and Lees, A. Dynamics of Rotating Machines. Cambridge University Press. 2010.

5.4.2.1. Problem Specifications

Geometric properties of the shaft:

Length = 1.5 m
Cross sectional area = 2e-3 m2
Moments of area (Iax, Iay) = (4.2043e-7 m4, 2.4112e-7 m4)

Geometric properties of the disk:

Diameter_1 = 0.28 m
Thickness_1 = 0.07 m
Diameter_2 = 0.07 m
Thickness_2 = 0.35 m

Material properties:

Young’s modulus (E) = 2.11e+11 N/m2
Density = 7810 kg/m3
Poisson's ratio (ν) = 0.3

Bearing properties:

Stiffness (K) = 1e+6 N/m
Damping (C) = 5e+3 N·s/m

5.4.2.2. Input for the Analysis

/title, Campbell of Non-Axisymmetric Beam Model


! *** parameters
    
l = 1.5 
a = 2e-3
iax = 4.2043e-7 
iay = 2.4112e-7 
jdummy = 1e-7   
    
e = 211e+9  
dens = 7810 
nu = 0.3
    
lld = 0.5   
lrd = 1 
    
thkld = 0.07
dld = 0.28  
    
thkrd = 0.07
drd = 0.35  
    
k = 1e+6
c = 5e+3

pi = acos(-1)   
ratio = pi/30   
omend = 4500
    
esiz = 0.1  
   
rld = dld/2 
mld = pi*thkld*dens*rld**2  
idld = mld*(3*rld**2 + thkld**2)/12 
ipld = mld*rld**2/2 
    
rrd = drd/2 
mrd = pi*thkrd*dens*rrd**2  
idrd = mrd*(3*rrd**2 + thkrd**2)/12 
iprd = mrd*rrd**2/2 
     
/prep7  

! *** geometry
    
k,1 
k,2,,,lld   
k,3,,,lrd   
k,4,,,l 
    
l,1,2   
l,2,3   
l,3,4   

! *** mesh    

lesize,all,esiz 

et,1,beam188
mp,ex,1,e   
mp,dens,1,dens  
mp,nuxy,1,nu
sectype,1,beam,asec 
secdata,a,iax,,iay,,jdummy  
type,1  
mat,1   
secnum,1  
lmesh,1,3   
    
et,2,mass21 
r,2,mld,mld,mld,idld,idld,ipld  
type,2  
real,2  
e,node(0,0,lld) 
    
et,3,mass21 
r,3,mrd,mrd,mrd,idrd,idrd,iprd  
type,3  
real,3  
e,node(0,0,lrd) 
    
et,4,combi214   
r,4,k,k 
type,4  
real,4  
n,100,0.1   
n,104,0.1,,l
e,100,node(0,0,0)   
e,104,node(0,0,l)   

! *** boundary conditions
    
d,all,rotz  
d,all,uz
d,100,all   
d,104,all   

! *** component definition    

esel,,type,,1,3 
cm,shaftcm,elem 
allsel  
finish  
    
save,case1,db   
 
! *************** Campbell diagram analysis of undamped model
   
nbp = 60
domg = omend/nbp
nbspins = 73
*dim,omg,array,nbspins+1
*do,iloop,1,nbspins 
 *if,omg(iloop)+domg,gt,675,and,omg(iloop)+domg,lt,1000,then,   
    omg(iloop+1) = omg(iloop) + domg/2 
 *elseif,omg(iloop)+domg,gt,2550,and,omg(iloop)+domg,lt,2925,then,  
    omg(iloop+1) = omg(iloop) + domg/2 
 *elseif,omg(iloop)+domg,gt,4200,then,  
    omg(iloop+1) = omg(iloop) + domg/2 
 *else  
    omg(iloop+1) = omg(iloop) + domg  
 *endif 
*enddo  
omg(1) = domg*1e-2  
    
/solu   
antype,modal
modopt,damp,20  
mxpand,20   
coriolis,on  
*do,iloop,1,nbspins+1   
   cmomega,shaftcm,,,omg(iloop)*ratio   
   solve
*enddo  
finish  
    
/post1  
/show,png,rev   
/yrange,0,150   
/gthk,curve,-1  
/psymb,mark,2   
*do,iloop,1,10  
 /gmarker,iloop,3   
*enddo  
plcamp,,,rpm,,shaftcm,,yes,yes
prcamp,,,rpm,,shaftcm,,yes,yes
/yrange,-5,5  
plcamp,,,rpm,,shaftcm,1,yes,yes
prcamp,,0,rpm,,shaftcm,1,yes,yes
/show,close 
finish  

/clear,nostart  

! ***************** Campbell diagram analysis of damped model 
   
/filname,case2  
resume,case1,db 

/prep7  
rmodif,4,5,C,C   ! add damping in bearing   
finish  

nbp2 = 40 
nbp = 52  
domg = omend/nbp2  
*dim,omg,array,nbp+1  
*do,iloop,1,nbp   
  *if,omg(iloop)+domg,gt,600,and,omg(iloop)+domg,lt,1100,then,
     omg(iloop+1) = omg(iloop) + domg/4
 *else
     omg(iloop+1) = omg(iloop) + domg
 *endif
*enddo  
omg(1) = domg*1e-2
    
/solu   
antype,modal
modopt,damp,15  
mxpand,15   
coriolis,on,,,,on     ! activate rotating damping effect
*do,iloop,1,nbp+1  
   cmomega,shaftcm,,,omg(iloop)*ratio  
   solve
*enddo  
finish  
    
/post1  
/show,png,rev   
/yrange,0,150   
/gthk,curve,-1  
/psymb,mark,2   
*do,iloop,1,10  
 /gmarker,iloop,3   
*enddo  
plcamp,,,rpm,,shaftcm,,yes,yes
prcamp,,,rpm,,shaftcm,,yes,yes
/yrange,-30,10  
plcamp,,,rpm,,shaftcm,1,yes,yes
prcamp,,0,rpm,,shaftcm,1,yes,yes
/show,close 
finish

5.4.2.3. Output for the Analysis

Without damping, instability regions are identified based on the sign of the stability value. The stability of the rotor is improved when damping is introduced. The results are shown in the graphs below.

Figure 5.5: Campbell Diagram for the Undamped Model

Campbell Diagram for the Undamped Model

Figure 5.6: Stability Values for the Undamped Model

Stability Values for the Undamped Model

Figure 5.7: Campbell Diagram for the Damped Model

Campbell Diagram for the Damped Model

Figure 5.8: Stability Values for the Damped Model

Stability Values for the Damped Model

5.4.3. Example: Campbell Diagram Analysis of a 3D Bladed Shaft-Disk Assembly

The following example from the reference [Ruffini et al.] presents a Campbell analysis of the 3D bladed shaft-disk assembly shown in Figure 5.9: Bladed Shaft-Disk Assembly (THETA = 0).

The model consists of:

  • 9 blades (SHELL181 shell elements)

  • A disk (SOLID185 solid elements)

  • A shaft (BEAM188 beam elements)

  • Contact interfaces between shaft and disk and between disk and blades (TARGE170 target elements and CONTA175 contact elements).

The shaft is fixed at its end. The rotational velocity varies between 0 rpm and 12,000 rpm along the Z axis.

The orientation angle of the blade with respect to the rotational velocity axis (parameter THETA) is first modeled as 0 degrees, then as 90 degrees.

Coriolis effects are activated in the rotating reference frame (CORIOLIS command), and the Campbell procedure (CAMPBELL command) is used to support the Campbell diagram plot.

Figure 5.9: Bladed Shaft-Disk Assembly (THETA = 0)

Bladed Shaft-Disk Assembly (THETA = 0)

Figure 5.10: Bladed Shaft-Disk Assembly (THETA = 90)

Bladed Shaft-Disk Assembly (THETA = 90)

Reference

Ruffini V., Schwingshackl C.W., Green J.S. Prediction Capabilities of Coriolis and Gyroscopic Effects in Current Finite Element Software. Proceedings of the 9th IFToMM International Conference on Rotor Dynamics. Mechanisms and Machine Science, vol 21. Springer, Cham. 2015.

5.4.3.1. Problem Specifications

Geometric properties of the shaft:

Length = 0.25 m
Inner diameter = 0.014 m
Outer diameter = 0.02 m

Geometric properties of the disk:

Outer diameter = 0.2 m
Thickness = 0.04 m

Geometric properties of the blades:

Length = 0.3 m
Thickness = 0.003 m
Width = 0.04 m

Material properties:

Young’s modulus (E) = 2.07e+11 N/m2
Density = 7800 kg/m3
Poisson's ratio (ν) = 0.3

5.4.3.2. Input for the Analysis

The input listing corresponds to the blade angle THETA = 0.

/title, Campbell of 3D Bladed-Disk-Shaft assembly

! *** PARAMETERS
NS   = 9           ! number of blades
THETA = 0          ! orientation of the blades
! disk
Length_D = 0.04
ODiam_D  = 0.1*2
! shaft
Length_S = 0.25
IDiam_S  = 0.007*2
ODiam_S  = 0.01*2
! blade
Length_B = 0.3
Width_B  = 0.04
Thick_B  = 0.003

! *** ELEMENT TYPES

/PREP7  
et,1,185        
mp,ex,1,2.07e11
mp,dens,1,7800
mp,nuxy,1,0.3

et,3,170        
real,3
et,4,175        
keyopt,4,2,2	
keyopt,4,9,1    
keyopt,4,12,5    

et,5,188
mp,ex,5,2.07e11
mp,dens,5,7800
mp,nuxy,5,0.3
sectype,5,beam,ctube
secdata,IDiam_S/2,ODiam_S/2,12

et,6,181   
mp,ex,6,2.07e11
mp,dens,6,7800
mp,nuxy,6,0.3
sectype,6,shell
secdata,Thick_B

et,7,170   
real,7
et,8,177        
keyopt,8,2,2	
keyopt,8,9,1    
keyopt,8,12,5    

! *** DISK GEOMETRY AND MESH 

cylind,ODiam_S/2,ODiam_D/2,Length_S-Length_D,Length_S,0,360/NS
ndvDR = 6    ! radial
ndvDC = 8    ! circumferential
ndvDZ = 8    ! along Z 
LL = (ODiam_D/2) - (ODiam_S/2)
lsel,,length,,LL
lesize,all,,,ndvDR          
lsel,,length,,Length_D
lesize,all,,,ndvDZ
lsel,,length,,Length_D
lsel,r,length,,LL
lsel,inve
lesize,all,,,ndvDC
allsel

type,1
mat,1
vmesh,1

! *** BLADE GEOMETRY AND MESH

csys,1
*get,maxnod,NODE,0,NUM,MAXD
n,maxnod+1,ODiam_D/2,360/NS/2,Length_S-(Length_D/2)
n,maxnod+2,(ODiam_D/2)+Length_B,360/NS/2,Length_S-(Length_D/2)
n,maxnod+3,ODiam_D/2,360/NS/2,Length_S
cs,20,0,maxnod+1,maxnod+2,maxnod+3
wpcsys,,20
wprota,,-THETA
rectng, 0,Length_B, Width_B/2,-Width_B/2
ndvBW = 6         ! width divisions
ndvBL = 50        ! length divisions
lsel,,length,,Length_B
lesize,all,,,ndvBL
lsla
lsel,r,length,,Width_B
lesize,all,,,ndvBW

csys,1
asel,,loc,x,(ODiam_D+Length_B)/2
type,6
mat,6
secnum,6
amesh,all
allsel

! *** CONTACT DISK-BLADE

! contact on blade root
csys,1
asel,,LOC,X,(ODiam_D+Length_B)/2
lsla
lsel,R,LOC,X,ODiam_D/2
nsll,,1
esln
real,3
type,4
esurf   
allsel

! target on disk
csys,1
asel,,LOC,X,ODiam_D/2
nsla,,1
esln
type,3
esurf   
allsel

! *** CONTACT SHAFT-DISK 1/2 (target elements on disk)

csys,1
asel,,LOC,X,ODiam_S/2
nsla,,1
esln
real,7
type,7
esurf   
allsel

! *** GENERATE ALL SECTORS

csys,1
*get,_node_maxval,node,,num,maxd		
egen,NS,_node_maxval,all, , , , , , , , , 360/NS
/out,scratch
esel,,type,,1
nsle
nummrg,node
allsel
/output

! *** SHAFT GEOMETRY AND MESH

*get,kpmax,KP,,NUM,MAXD
k,kpmax+1
k,kpmax+2,,,Length_S - Length_D
k,kpmax+3,,,Length_S
ndvS1 = 12
ndvS2 = 4
l,kpmax+1,kpmax+2,ndvS1
l,kpmax+2,kpmax+3,ndvS2
ksel,,kp,,kpmax+1,kpmax+3
lslk

type,5
mat,5
secnum,5
lmesh,all

! *** CONTACT SHAFT-DISK 2/2 (contact elements on shaft)
kpsel,,kp,,kpmax+3
lslk
nsll,,1
esln,,1
real,7
type,8
esurf   
allsel

! *** BOUNDARY CONDITIONS
nsel,,loc,z,0
d,all,all
allsel
finish

! *** ROTATIONAL VELOCITY TABLE
nbstep = 25
spin   = 12000
dspin  = spin/(nbstep-1)
*dim,spins,,nbstep
*vfill,spins,ramp,0,dspin
RATIO = acos(-1)/30

! *** CAMPBELL ANALYSIS

*do,I,1,nbstep
   /solu
   antype,static
   nlgeom,on	
   autots,on
   nsub,2,20,1
   omega,,,spins(I)*RATIO
   coriolis,on
   campbell,rstp
   outres,all,none
   outres,nsol,all
   solve	
   fini

   /solu
   antype,static, restart,,,perturb
   perturb, modal,,, INERKEEP         
   solve, elform               
   modopt,damp,40
   mxpand,40
   solve
   fini
*enddo

! *** PLOT CAMPBELL DIAGRAM

/post1
file,,rstp

/show,JPEG
/yrange,0,250
/gthk,CURVE,-1	
/psymb,MARK,4	
*do,ILOOP,1,10
 /gmarker,ILOOP,3	
*enddo
plcamp,off,,RPM,,,,YES,YES
prcamp,off,,RPM,,,,YES,YES
finish

5.4.3.3. Output for the Analysis

Campbell diagrams for the THETA = 0 and THETA = 90 cases are shown below.

Figure 5.11: Campbell Diagram THETA = 0 Degrees

Campbell Diagram THETA = 0 Degrees

Figure 5.12: Campbell Diagram THETA = 90 Degrees

Campbell Diagram THETA = 90 Degrees

5.4.4. Example: Unbalance Response of a Jeffcott Rotor

This example demonstrates the response of a Jeffcott rotor to mass unbalance excitation. It illustrates the equivalence between the static response in the rotating reference frame and the synchronous excitation (SYNCHRO command) in the stationary reference frame.

The model is the same as that shown in Example: Campbell Diagram Analysis of a Jeffcott Rotor, except damping is added in the bearings. This introduces rotating damping terms in the rotating reference frame analysis.

In this example, a force due to a fictive mass unbalance is acting on the mass. The response is calculated over a frequency range of 0 to 300 Hz. POST26 commands are used to output amplitude versus frequency/time graphs.

5.4.4.1. Problem Specification

Inertia properties of the mass:

Mass = 25 kg
Inertia (XX,YY) = 5 kg·m2
Inertia (ZZ) = 10 kg·m2

Shaft length: 1 m

Bearing stiffness: 4e+6 N/m

Bearing damping: 1e+3 N·s/m

Excitation force amplitude (mass unbalance multiplied by eccentricity): 1e-3 kg·m

5.4.4.2. Input for the Analysis

/title, Unbalance Response of a Jeffcott Rotor

! ** parameters

mass = 25
iz = 10
ix = 5
iy = 5
k = 4e+6
c = 1e+3
pi = acos(-1)
nstep = 300
f0 = 1e-3

/prep7

n,1,0,0,0
n,2,0,0,1
n,3,0,0,0.2

et,1,mass21             ! fake mass for CERIG 6 dofs
r,1
type,1
real,1
e,1
e,2

et,2,mass21
r,2,mass,mass,mass,ix,iy,iz
type,2
real,2
e,3

cerig,3,all,all

n,100,,,0
n,110,,,1

et,3,combi214           ! bearing
r,3,k,k,,,c,c
type,3
real,3
e,100,1
e,110,2

d,all,uz,0
d,all,rotz,0
d,100,all,0
d,110,all,0

esel,,type,,2
cm,masscm,elem
allsel,all
finish
save

! *** SYNCHRO ANALYSIS IN SRF

/solu
antype,harmonic
hropt,full
harfr,0,300
nsubst,nstep
kbc,1
f,3,fx,f0
f,3,fy,,-f0
coriolis,on,,,on
synchro
omega,,,1.0
solve
finish

/post26
nsol,2,3,u,x,ux3
nsol,3,3,u,y,uy3
realvar,4,2,,,ux3r
realvar,5,3,,,uy3r
prod,6,4,4,,ux3_2
prod,7,5,5,,uy3_2
add,8,6,7,,ux3_2+uy3_2
sqrt,9,8,,,ampl3_srf
*get,max_srf_,VARI,9,EXTREM,VMAX
parsav
/show,png,rev
/gropt,logy,1
/xrange,0,300
plvar,9
finish

! *** STATIC ANALYSIS IN RRF

/clear, nostart
resume,,db
parres

dfrq = 1

/solu
antype,static
kbc,1
coriolis,on,,,,on
frq = dfrq
*do,iloop,1,nstep
/gopr
   time,frq
   omg = 2*pi*frq
   cmomega,masscm,,,omg
   ftot = f0*omg**2
   f,3,fx,ftot
   solve
   frq = frq + dfrq
*enddo
finish

/post26
nsol,2,3,u,x,ux3
nsol,3,3,u,y,uy3
prod,6,2,2,,ux3_2
prod,7,3,3,,uy3_2
add,8,6,7,,ux3_2+uy3_2
sqrt,9,8,,,ampl3_rrf
*get,max_rrf_,VARI,9,EXTREM,VMAX
/show,png,rev
/gropt,logy,1
/xrange,0,300
plvar,9
finish

! *** COMPARE MAXIMUM AMPLITUDE
*status,PRM_

5.4.4.3. Output for the Analysis

The unbalance force response is output for the stationary reference frame case, and the static response is output for the rotating reference frame case.

Figure 5.13: Unbalance Force Response in SRF

Unbalance Force Response in SRF

Figure 5.14: Static Response in RRF

Static Response in RRF