Expand/Collapse all
1. Overview of Magnetic Field Analysis
1.1. How Mechanical APDL Handles Magnetic Analysis
1.2. Types of Static, Harmonic, and Transient Magnetic Analysis
1.3. Comparing Magnetic Formulations
1.3.1. 2D Versus 3D Magnetic Analysis
1.3.2. What Is the Magnetic Scalar Potential Formulation?
1.3.3. What Is the Magnetic Vector Potential Formulation?
1.3.4. What Is the Edge Formulation?
1.3.5. Comparing Formulations
1.3.6. Static Analysis
1.4. Summary of Electromagnetic Elements
1.5. GUI Paths and Command Syntax
2. 2D Static Magnetic Analysis
2.1. Elements Used in 2D Static Magnetic Analysis
2.2. Older vs. Current 2D Magnetic Element Technologies
2.3. Steps in a Static Magnetic Analysis
2.3.1. Creating the Physics Environment
2.3.2. Building and Meshing the Model and Assigning Region Attributes
2.3.3. Applying Boundary Conditions and Loads
2.3.4. Excitation Loads
2.3.5. Flags and Other Loads
2.3.6. Solving the Analysis
2.3.7. Reviewing Results
2.3.8. Reading in Results Data
2.4. 2D Stranded Coil Analysis
2.4.1. Performing a 2D Stranded Coil Analysis
2.4.2. Reviewing Results from a 2D Stranded Coil Analysis
2.5. Example 2D Static Magnetic Analyses
2.5.1. Example: Basic 2D Static Magnetic Analysis
2.5.2. Example: 2D Static Magnetic Contact Analysis
2.5.3. Example: 2D Static Magnetic Analysis with Velocity Effects
2.5.4. Other Examples
3. 2D Harmonic Magnetic (AC) Analysis
3.1. Linear Versus Nonlinear Harmonic Analysis
3.2. Elements Used in Harmonic Magnetic Analysis
3.3. Creating a Harmonic 2D Physics Environment
3.3.1. Using DOFs to Manage Terminal Conditions on Conductors
3.3.2. Characteristics and Settings for Physical Regions of a Model
3.3.3. Velocity Effects
3.4. Building and Meshing the Model and Assigning Region Attributes
3.4.1. Skin Depth Considerations
3.5. Applying Boundary Conditions Loads (Excitation) to Harmonic Problems
3.5.1. Using the PERBC2D Macro
3.5.2. Amplitude, Phase Angle, and Operating Frequency
3.5.3. Applying Source Current Density to Stranded Conductors
3.5.4. Applying Current to Massive Conductors
3.5.5. Flags and Other Loads
3.6. Obtain a Solution
3.6.1. Defining the Harmonic Analysis Type
3.6.2. Defining Analysis Options
3.6.3. Selecting the Equation Solver
3.6.4. Setting the Analysis Frequency
3.6.5. Setting General Options
3.6.6. Setting Output Controls
3.6.7. Saving a Backup Copy of the Database
3.6.8. Starting the Solution
3.6.9. Tracking Convergence Graphically
3.6.10. Finishing the Solution
3.7. Reviewing Results
3.7.1. Commands or GUI Paths to Help You in Postprocessing
3.7.2. Reading in Results Data
3.8. Example 2D Harmonic Magnetic Analyses
3.8.1. Example: Harmonic Magnetic Analysis
3.8.2. Other Examples
4. 2D Transient Magnetic Analysis
4.1. Elements Used in Transient Magnetic Analysis
4.2. Creating a 2D Transient Magnetic Physics Environment
4.3. Building a Model, Assigning Region Attributes and Meshing the Model
4.4. Applying Boundary Conditions and Loads (Excitation)
4.4.1. Applying Boundary Conditions
4.4.2. Applying Current
4.4.3. Other Loads
4.5. Obtaining a Solution
4.5.1. Entering the SOLUTION Processor
4.5.2. Defining the Analysis Type
4.5.3. Defining Analysis Options
4.5.4. Load Step Options
4.5.5. Nonlinear Options
4.5.6. Output Controls
4.5.7. Saving a Backup Copy of the Database
4.5.8. Starting the Solution
4.5.9. Finishing the Solution
4.6. Reviewing Results
4.6.1. Reading Results in POST26
4.6.2. Reading Results in POST1
4.7. Example Transient Magnetic Analyses
4.7.1. Example: Transient Magnetic Analysis
4.7.2. Other Examples
5. 3D Static Magnetic Analysis (Scalar Method)
5.1. Elements Used in 3D Static Scalar Magnetic Analysis
5.2. Scalar Potential Formulation
5.2.1. Singly Versus Multiply Connected Domains
5.3. Analysis Considerations
5.4. Steps in a 3D Static Scalar Analysis
5.4.1. Create the Physics Environment
5.4.2. Build the Model
5.4.3. Apply Boundary Conditions and Loads (Excitation)
5.4.4. Solve the Analysis (RSP, DSP, or GSP Method)
5.4.5. Review Analysis Results (RSP, DSP, or GSP Method Analysis)
5.5. Example 3D Static Magnetic Analyses (Scalar Method)
5.5.1. Example of a 3D Static Magnetic Analysis
5.5.2. Other Examples
6. 3D Magnetostatics and Fundamentals of Edge-Based Analysis
6.1. Elements Used in Edge-Based Analysis
6.2. Characteristics and Settings for Physical Regions of a Model
6.3. Analysis Considerations
6.4. Performing a Static Edge-Based Analysis
6.5. Reviewing Results from a Static Edge-Based Analysis
6.5.1. Reading in Results Data
6.6. 3D Stranded Coil Analysis
6.6.1. Elements Used in a 3D Edge-Based Stranded Coil Analysis
6.6.2. Performing a Stranded Coil Analysis
6.6.3. Reviewing Results from a 3D Stranded Coil Analysis
6.7. Example 3D Magnetostatic and Edge-Based Analyses
6.7.1. Example: Current-Carrying Conductor
6.7.2. Example: Force Calculation Between Two Permanent Magnets
6.7.3. Example: Two-Plate Hall Sensor
6.7.4. Other Examples
7. 3D Harmonic Magnetic Analysis (Edge-Based)
7.1. Analysis Considerations
7.2. Performing a Harmonic Edge-Based Analysis
7.3. Reviewing the Results from a Harmonic Edge-Based Analysis
7.3.1. Commands to Help You in Postprocessing
7.3.2. Reading in Results Data
7.4. Example 3D Harmonic Magnetic (Edge-Based) Analyses
7.4.1. Example: 3D Harmonic Edge-Based Analysis
7.4.2. Example: Eddy Currents Induced in a Ferromagnetic Plate
7.4.3. Example: Magnetic Field in a Parallel Plate Capacitor
7.4.4. Example: Transformer Analysis
8. 3D Transient Magnetic Analysis (Edge-Based)
8.1. Analysis Considerations
8.2. Performing a Transient Edge-Based Analysis
8.2.1. Time Option
8.2.2. Number of Substeps or Time Step Size
8.2.3. Automatic Time Stepping
8.2.4. Newton-Raphson Options
8.2.5. Number of Equilibrium Iterations
8.2.6. Convergence Tolerances
8.2.7. Terminate an Unconverged Solution
8.2.8. Control Printed Output
8.2.9. Control Database and Results File Output
8.2.10. Saving a Backup Copy of the Database
8.2.11. Starting the Solution
8.3. Reviewing Results
8.3.1. Reading Results in POST26
8.3.2. Reading Results in POST1
8.4. Example 3D Transient Magnetic Edge-Based Analyses
8.4.1. Example: Transient Magnetic Field in a Conducting Block
8.4.2. Other Examples
9. Electromagnetic Linear Perturbation Analysis
9.1. Performing an Electromagnetic Linear Perturbation Analysis
9.2. Example: Electromagnetic Linear Perturbation Analysis
10. Electric and Magnetic Macros
10.1. Using Electric and Magnetic Macros
10.1.1. Modeling Aids
10.1.2. Solution Aids
10.1.3. Postprocessing Calculations
11. Far-Field Elements
11.1. Tips for Using Far-Field Elements
11.2. Example Far-Field Analysis
11.2.1. Problem Description
11.2.2. Results
11.2.3. Command Listing
12. Electric Field Analysis
12.1. Elements Used in Electric Field Analysis
12.2. Element Compatibility
12.3. Current Densities
12.4. Steady-State Current Conduction Analysis
12.4.1. Building the Model
12.4.2. Applying Loads and Obtaining a Solution
12.4.3. Reviewing Results
12.4.4. Extracting Conductance from Multi-Conductor Systems
12.5. Harmonic Quasistatic Electric Analysis
12.5.1. Building the Model
12.5.2. Applying Loads and Obtaining a Solution
12.5.3. Reviewing Results
12.6. Transient Quasistatic Electric Analysis
12.6.1. Building the Model
12.6.2. Applying Loads and Obtaining a Solution
12.6.3. Reviewing Results
12.7. Example Electric Field Analyses
12.7.1. Example: Steady-State Conduction Current Analysis
12.7.2. Example: Conductance Calculation
12.7.3. Example: Harmonic Quasistatic Electric Analysis
12.7.4. Example: Transient Quasistatic Electric Analysis
12.7.5. Other Examples
13. Electrostatic Field Analysis
13.1. Elements Used in h-Method Electrostatic Analysis
13.2. Steps in an h-Method Electrostatic Analysis
13.2.1. Building the Model
13.2.2. Applying Loads and Obtaining a Solution
13.2.3. Reviewing Results
13.3. Extracting Capacitance from Multi-conductor Systems
13.3.1. Ground Capacitances and Lumped Capacitances
13.3.2. Procedure
13.4. Example Electrostatic Field Analyses (h-Method)
13.4.1. Example: h-Method Electrostatic Analysis
13.4.2. Example: Capacitance Calculation
14. Electric Circuit Analysis
14.1. Elements Used in Circuit Analysis
14.2. Using the CIRCU125 Element
14.3. Using the Circuit Builder
14.3.1. Building a Circuit
14.4. Avoiding Inconsistent Circuits
14.4.1. DC and Harmonic Analyses
14.4.2. Transient Analyses
14.4.3. Inductors and Current Generators Should Not Form a Cut
14.5. Static (DC) Electric Circuit Analysis
14.5.1. Building a Circuit for Static Analysis
14.5.2. Applying Loads and Solving the Static Analysis
14.5.3. Reviewing Results from a Static Circuit Analysis
14.6. Harmonic (AC) Electric Circuit Analysis
14.6.1. Building a Circuit for Harmonic Analysis
14.6.2. Applying Loads and Solving the Analysis
14.6.3. Reviewing Results from a Harmonic Circuit Analysis
14.7. Transient Electric Circuit Analysis
14.7.1. Building a Circuit for Transient Analysis
14.7.2. Applying Loads and Solving the Static Analysis
14.7.3. Reviewing Results from a Transient Circuit Analysis
14.8. Example Electric Circuit Analyses
14.8.1. Example: Harmonic Circuit Analysis
14.8.2. Example Diode Circuit
14.8.3. Other Examples
15. Alternative Analysis Options and Solution Methods
15.1. Loading Options for 2D Static Magnetic Analysis
15.1.1. On Keypoints
15.1.2. On Lines
15.1.3. On Areas
15.1.4. On Volumes
15.1.5. On Nodes
15.1.6. On Elements
15.2. Using the Alternative Solution Option for 2D Static Magnetic Analysis
15.2.1. Specify Load Step Options for the Initial Solution
15.2.2. Write Load Data or Start the Solution
15.2.3. Specify Load Step Options for the Final Solution
15.2.4. Write Load Data or Start the Solution
15.2.5. Initiate the Solution
15.3. Loading Options for 2D Harmonic Magnetic Analysis
15.4. Load Step Options for 2D Harmonic Magnetic Analysis
15.4.1. Dynamic Options
15.4.2. General Options
15.4.3. Output Controls
15.5. Loading Options for 2D Transient Magnetic Analysis
15.6. Load Step Options for 2D Nodal-Based Transient Magnetic Analysis (MVP Method)
15.6.1. Dynamic Options
15.7. Loading Options for 3D Static Magnetic Analysis (Scalar Method)
15.8. Using the RSP Method for 3D Static Scalar Magnetic Analysis
15.8.1. Specify Load Step Options
15.8.2. Start the Solution
15.9. Using the DSP Method for 3D Static Scalar Magnetic Analysis
15.10. Using the GSP Method for 3D Static Scalar Magnetic Analysis
15.11. Loading Options for an Electric Field (Current Conduction) Analysis
15.12. Load Step Options for an Electric Field (Current Conduction) Analysis
15.13. Loading Options for an Electrostatic Field Analysis
15.14. Load Step Options for Electrostatic Field Analysis