SOLID225


3D 8-Node Coupled-Field Solid

Valid Products: Pro | Premium | Enterprise | PrepPost | Solver | AS add-on

SOLID225 Element Description

SOLID225 supports the following physics combinations:

  • Structural-Thermal

  • Piezoresistive

  • Electrostatic-Structural

  • Piezoelectric

  • Thermal-Electric

  • Structural-Thermoelectric

  • Thermal-Piezoelectric

  • Structural-Diffusion

  • Thermal-Diffusion

  • Electric-Diffusion

  • Thermal-Electric-Diffusion

  • Structural-Thermal-Diffusion

  • Structural-Electric-Diffusion

  • Structural-Thermal-Electric-Diffusion

The element has eight nodes with up to six degrees of freedom per node.

Structural capabilities include elasticity, plasticity, hyperelasticity, viscoelasticity, viscoplasticity, creep, large strain, large deflection, and stress stiffening effects. It also has mixed formulation capability for simulating deformations of nearly incompressible elastoplastic materials, and fully incompressible hyperelastic materials.

For coupled-field analyses with structural degrees of freedoms (DOFs), SOLID225 uses the full-integration method (also known as the selective reduced integration method). For more information and limitations on this method, see B-Bar Method (Selective Reduced Integration). Enhanced Strain Formulation and Simplified Enhanced Strain Formulation are also supported for structural-thermal, piezoelectric, piezoresistive, structural-diffusion, structural-thermal-diffusion, structural-thermoelectric, structural-thermoelectric, and structural-electric-diffusion analyses. For more information on additional DOFs, see Element Technologies.

Piezoresistive capabilities include the piezoresistive effect. Piezoelectric capabilities include direct and converse piezoelectric effects. Electrostatic-structural capabilities include electrostatic force coupling. Thermoelectric capabilities include Seebeck, Peltier, and Thomson effects, as well as Joule heating. In addition to thermal expansion, structural-thermal capabilities include the piezocaloric effect in dynamic analyses. The Coriolis effect is available for analyses with structural degrees of freedom. The thermoplastic and viscoelastic heating effects are available for analyses with structural and thermal degrees of freedom.

The diffusion expansion is available for analyses with structural and diffusion degrees of freedom. The thermo-migration effect (Soret effect) and the temperature-dependent saturated concentration effect are available for analyses with thermal and diffusion degrees of freedom. The electro-migration effect is available for analyses with electrical and diffusion degrees of freedom.

You can customize structural and thermal material behavior via the UserMat and UserMatTh subroutines, respectively, in coupled-field analyses with structural and thermal degrees of freedom.

See SOLID225 in the Mechanical APDL Theory Reference for more details about this element.

Figure 225.1: SOLID225 Geometry

SOLID225 Geometry

SOLID225 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 225.1: SOLID225 Geometry. The element input data includes eight nodes and structural, thermal, electrical, and diffusion material properties.

KEYOPT(1) determines the element DOF set and the corresponding force labels and reaction solution. KEYOPT(1) is set equal to the sum of the field keys shown in Table 225.1: SOLID225 Field Keys. For example, KEYOPT(1) is set to 11 for a structural-thermal analysis (structural field key + thermal field key = 1 + 10). For a structural-thermal analysis, UX, UY, and TEMP are the DOF labels and force and heat flow are the reaction solution.

Table 225.1: SOLID225 Field Keys

Field Field Key DOF Label Force Label Reaction Solution
Structural1UX, UY, UZFX, FY, FZForce
Thermal 10TEMPHEATHeat Flow
Electric Conduction100VOLTAMPSElectric Current
Electrostatic1000VOLTCHRGElectric Charge
Diffusion100000CONCRATEDiffusion Flow Rate

The coupled-field analysis KEYOPT(1) settings, DOF labels, force labels, reaction solutions, and analysis types are shown in the following table.

Table 225.2: SOLID225 Coupled-Field Analyses

Coupled-Field Analysis KEYOPT(1) DOF Label Force Label Reaction Solution Analysis Type
Structural-Thermal [1], [2]11

UX, UY, UZ,

TEMP

FX, FY, FZ,

HEAT

Force,

Heat Flow

Static

Full Harmonic

Full Transient

Piezoresistive101

UX, UY, UZ,

VOLT

FX, FY, FZ,

AMPS

Force,

Electric Current

Static

Full Transient

Electrostatic-Structural 1001 [3]

UX, UY, UZ,

VOLT

FX, FY, FZ,

CHRG

Force,

Electric Charge (negative)

Static

Full Transient

Linear Perturbation Static

Linear Perturbation Harmonic

Linear Perturbation Modal

Piezoelectric (Charge-Based)1001 [3]

UX, UY, UZ,

VOLT

FX, FY, FZ,

CHRG

Force,

Electric Charge (negative)

Static

Modal

Linear Perturbation Modal

Full, Linear Perturbation, or Mode Superposition Harmonic

Full or Mode Superposition Transient

Piezoelectric (Current-Based)101

UX, UY, UZ,

VOLT

FX, FY, FZ,

AMPS

Force,

Electric Current

Full Harmonic

Full Transient

Thermal-Electric110

TEMP,

VOLT

HEAT,

AMPS

Heat Flow,

Electric Current

Static

Full Transient

Structural-Thermoelectric [1]111

UX, UY, UZ,

TEMP,

VOLT

FX, FY, FZ,

HEAT,

AMPS

Force,

Heat Flow,

Electric Current

Static

Full Transient

Thermal-Piezoelectric [1], [2]1011

UX, UY, UZ,

TEMP,

VOLT

FX, FY, FZ,

HEAT,

CHRG

Force,

Heat Flow,

Electric Charge (negative)

Static

Full Harmonic

Full Transient

Structural-Diffusion [1]100001

UX, UY, UZ,

CONC

FX, FY, FZ,

RATE

Force,

Diffusion Flow Rate

Static

Full Transient

Thermal-Diffusion [1]100010

TEMP,

CONC

HEAT,

RATE

Heat Flow,

Diffusion Flow Rate

Static

Full Transient

Electric-Diffusion [1]100100

VOLT,

CONC

AMP,

RATE

Electric Current,

Diffusion Flow Rate

Static

Full Transient

Thermal-Electric Diffusion [1]100110

TEMP,

VOLT,

CONC

HEAT,

AMP,

RATE

Heat Flow,

Electric Current,

Diffusion Flow Rate

Static

Full Transient

Structural-Thermal-Diffusion [1]100011

UX, UY, UZ,

TEMP,

CONC

FX, FY, FZ,

HEAT,

RATE

Force,

Heat Flow,

Diffusion Flow Rate

Static

Full Transient

Structural-Electric-Diffusion [1]100101

UX, UY, UZ,

VOLT,

CONC

FX, FY, FZ,

AMPS,

RATE

Force,

Electric Current,

Diffusion Flow Rate

Static

Full Transient

Structural-Thermal-Electric-Diffusion [1]100111

UX, UY, UZ,

TEMP,

VOLT,

CONC

FX, FY, FZ,

HEAT,

AMPS,

RATE

Force,

Heat Flow,

Electric Current,

Diffusion Flow Rate

Static

Full Transient


  1. For static and full transient analyses, KEYOPT(2) can specify a strong (matrix) or weak (load vector) structural-thermal, structural-diffusion, thermal-diffusion, and electric-diffusion coupling.

  2. For harmonic analyses, only strong coupling (KEYOPT(2) = 0) applies.

  3. The electrostatic-structural analysis available with KEYOPT(1) = 1001 defaults to electrostatic force coupling. To turn off the electrostatic force coupling, you can set KEYOPT(4) = 2 for elastic air or KEYOPT(4) = 4 for solid dielectrics, respectively. Alternatively, to do an uncoupled structural-electrostatic analysis, you can specify a negligible piezoelectric coefficient using TBDATA with TB,PIEZ.

As shown in the following tables, material property requirements consist of those required for the individual fields (structural, thermal, electric conduction, electrostatic, or diffusion) and those required for field coupling. Individual material properties are defined via the MP and MPDATA commands. Nonlinear and multiphysics material models are defined via the TB command.

Table 225.3: Structural Material Properties


Table 225.4: SOLID225 Material Properties and Material Models

Coupled-Field Analysis KEYOPT(1) Material Properties and Material Models
Structural-Thermal11StructuralSee Table 225.3: Structural Material Properties
Thermal

KXX, KYY, KZZ, DENS, C, ENTH, HF, State variables (user-defined), User-defined (structural and thermal)

Coupling

ALPX, ALPY, ALPZ, REFT, QRATE

Piezoresistive [1]101StructuralSee Table 225.3: Structural Material Properties
Electric

RSVX, RSVY, RSVZ, PERX, PERY, PERZ

Coupling

Piezoresistivity

Electrostatic-structural1001StructuralSee Table 225.3: Structural Material Properties
Electric

PERX, PERY, PERZ, LSST (and/or RSVX, RSVY, RSVZ)

---

Anisotropic electric permittivity

---

Anisotropic dielectric loss tangent

Piezoelectric

1001

(Charge-Based)

101

(Current-Based)

Structural

See Table 225.3: Structural Material Properties [2]

---

Anisotropic viscosity

---

Anisotropic elastic loss tangent

Electric

PERX, PERY, PERZ, LSST (and/or RSVX, RSVY, RSVZ)

---

Anisotropic electric permittivity

---

Anisotropic dielectric loss tangent

Coupling

Piezoelectric matrix

Thermal-Electric [1]110Thermal

KXX, KYY, KZZ, DENS, C, ENTH, HF

Electric

RSVX, RSVY, RSVZ, PERX, PERY, PERZ

Coupling

SBKX, SBKY, SBKZ

Structural-Thermoelectric111StructuralSee Table 225.3: Structural Material Properties
Thermal

KXX, KYY, KZZ, DENS, C, ENTH, HF

Electric

RSVX, RSVY, RSVZ, PERX, PERY, PERZ

Coupling

ALPX, ALPY, ALPZ, REFT, QRATE

---

SBKX, SBKY, SBKZ

---

Piezoresistivity

Thermal-Piezoelectric1011StructuralSee Table 225.3: Structural Material Properties [2]
Thermal

KXX, KYY, KZZ, DENS, C, ENTH, HF

Electric

PERX, PERY, PERZ, LSST (and/or RSVX, RSVY, RSVZ)

---

Anisotropic electric permittivity

Coupling

ALPX, ALPY, ALPZ, REFT

---

Piezoelectric matrix

Structural-Diffusion [1]100001StructuralSee Table 225.3: Structural Material Properties
Diffusion

DXX, DYY, DZZ, CSAT

Coupling

BETX, BETY, BETZ, CREF

Thermal-Diffusion [1]100010Thermal

KXX, KYY, KZZ, DENS, C, ENTH, HF

Diffusion

DXX, DYY, DZZ, CSAT

Coupling

Temperature-dependent CSAT

---

Migration Model

Electric-Diffusion [1]100100Electric

RSVX, RSVY, RSVZ, PERX, PERY, PERZ

Diffusion

DXX, DYY, DZZ, CSAT

Coupling

Migration Model

Thermal-Electric Diffusion [1]100110Thermal

KXX, KYY, KZZ, DENS, C, ENTH, HF

Electric

RSVX, RSVY, RSVZ, PERX, PERY, PERZ

Diffusion

DXX, DYY, DZZ, CSAT

Coupling

SBKX, SBKY, SBKZ

---

Temperature-dependent CSAT

---

Migration Model

Structural-Thermal-Diffusion [1]100011StructuralSee Table 225.3: Structural Material Properties
Thermal

KXX, KYY, KZZ, DENS, C, ENTH, HF

Diffusion

DXX, DYY, DZZ, CSAT

Coupling

ALPX, ALPY, ALPZ, REFT, QRATE

---

BETX, BETY, BETZ, CREF

---

Temperature-dependent CSAT

---

Migration Model

Structural-Electric-Diffusion [1]100101StructuralSee Table 225.3: Structural Material Properties
Electric

RSVX, RSVY, RSVZ, PERX, PERY, PERZ

Diffusion

DXX, DYY, DZZ, CSAT

Coupling

BETX, BETY, BETZ, CREF

---

Migration Model

Structural-Thermal-Electric-Diffusion [1]100111 StructuralSee Table 225.3: Structural Material Properties
Thermal

KXX, KYY, KZZ, DENS, C, ENTH, HF

Electric

RSVX, RSVY, RSVZ, PERX, PERY, PERZ

Diffusion

DXX, DYY, DZZ, CSAT

Coupling

ALPX, ALPY, ALPZ, REFT, QRATE

---

BETX, BETY, BETZ, CREF

---

SBKX, SBKY, SBKZ

---

Temperature-dependent CSAT

---

Migration Model


  1. For this analysis type, some of the material properties can be defined as a function of primary variables by using tabular input on the MP command. For more information, see Defining Linear Material Properties Using Tabular Input in the Material Reference.

  2. For piezoelectric and thermal-piezoelectric analyses (KEYOPT(1) = 101, 1001, or 1011 with TB,PIEZ), only elastic material properties and material models are valid.

Various combinations of nodal loading are available for this element (depending upon the KEYOPT(1) value). Nodal loads are defined with the D and the F commands.

Element loads are described in Element Loading. Loads may be input on the element faces indicated by the circled numbers in Figure 225.1: SOLID225 Geometry using the SF and SFE commands. Positive pressures act into the element. Body loads may be input at the element's nodes or as a single element value using the BF and BFE commands.

SOLID225 surface and body loads are given in the following table. CHRGS and CHRGD are interpreted as negative surface charge density and negative volume charge density, respectively.

Most surface and body loads can be defined as a function of primary variables by using tabular input. For more information, see Applying Loads Using Tabular Input in the Basic Analysis Guide and the individual surface or body load command description in the Command Reference.

Table 225.5: SOLID225 Surface and Body Loads

Coupled-Field Analysis KEYOPT(1) Load Type Load Command Label
Structural-Thermal11Surface
Pressure
PRES
CONV
HFLUX
RDSF
Body
Force Density
FORC
Heat Generation --
Nodes I, J, ..., O, P
HGEN
Piezoresistive and Piezoelectric (Current-Based)101Surface
Pressure
PRES
Body
Force Density
FORC
Temperature --
Nodes I, J, ..., O, P
TEMP
Electrostatic-Structural and Piezoelectric (Charge-Based)1001Surface
Pressure
Surface Charge Density
PRES
CHRGS[1]
Body
Force Density
FORC
Temperature --
Nodes I, J, ..., O, P
TEMP
Volume Charge Density --
Nodes I, J, ..., O, P
CHRGD[1]
Thermal-Electric110Surface
Convection
Heat Flux
Radiation
CONV
HFLUX
RDSF
Body
Heat Generation --
Nodes I, J, ..., O,P
HGEN
Structural-Thermoelectric111Surface
Pressure
PRES
CONV
HFLUX
RDSF
Body
Force Density
FORC
Heat Generation --
Nodes I, J, ..., O, P
HGEN
Thermal-Piezoelectric1011Surface
Pressure
Surface Charge Density
PRES
CHRGS[1]
Convection
Heat Flux
Radiation
CONV
HFLUX
RDSF
Body
Force Density
FORC
Heat Generation --
Nodes I, J, ..., O,P
HGEN
Volume Charge Density --
Nodes I, J, ..., O,P
CHRGD[1]
Structural-Diffusion 100001Surface
Pressure
PRES
Diffusion Flux
DFLUX
Body
Force Density
FORC
Temperature --
Nodes I, J, ..., O,P
TEMP
Diffusing Substance Generation --
Nodes I, J, ..., O,P
DGEN
Thermal-Diffusion100010Surface
Convection
Heat Flux
Radiation
CONV
HFLUX
RDSF
Diffusion Flux
DFLUX
Body
Heat Generation --
Nodes I, J, ..., O,P
HGEN
Diffusing Substance Generation --
Nodes I, J, ..., O,P
DGEN
Electric-Diffusion100100Surface
Diffusion Flux
DFLUX
Body
Diffusing Substance Generation --
Nodes I, J, ..., O,P
DGEN
Temperature --
Nodes I, J, ..., O,P
TEMP
Thermal-Electric-Diffusion100110Surface
Convection
Heat Flux
Radiation
CONV
HFLUX
RDSF
Diffusion Flux
DFLUX
Body
Heat Generation --
Nodes I, J, ..., O,P
HGEN
Diffusing Substance Generation --
Nodes I, J, ..., O,P
DGEN
Structural-Thermal-Diffusion100011Surface
Pressure
PRES
CONV
HFLUX
RDSF
Diffusion Flux
DFLUX
Body
Force Density
FORC
Heat Generation --
Nodes I, J, ..., O,P
HGEN
Diffusing Substance Generation --
Nodes I, J, ..., O,P
DGEN
Structural-Electric-Diffusion100101Surface
Pressure
PRES
Diffusion Flux
DFLUX
Body
Force Density
FORC
Diffusing Substance Generation --
Nodes I, J, ..., O,P
DGEN
Temperature --
Nodes I, J, ..., O,P
TEMP
Structural-Thermal-Electric-Diffusion100111Surface
Pressure
PRES
CONV
HFLUX
RDSF
Diffusion Flux
DFLUX
Body
Force Density
FORC
Heat Generation --
Nodes I, J, ..., O,P
HGEN
Diffusing Substance Generation --
Nodes I, J, ..., O,P
DGEN

  1. CHRGS and CHRGD are interpreted as negative surface charge density and negative volume charge density, respectively.

Automatic element technology selections are given in the following table (for more information, see Automatic Selection of Element Technologies and Formulations).

Table 225.6: Automatic Element Technology Selection

Coupled-Field Analysis ETCONTROL Command Suggestions/Resettings
All analyses with structural and thermal fieldsKEYOPT(2) = 1 for elastoplastic or hyperelastic materials
Analyses with a structural field that support the enhanced strain (KEYOPT(6) = 2) or simplified enhanced strain (KEYOPT(6) = 3) formulations

KEYOPT(6) = 3 for linear materials with Poisson’s ratio ν ≤ 0.49 only

KEYOPT(6) = 2 for linear materials with Poisson’s ratio ν > 0.49 or anisotropic materials only

KEYOPT(6) = 2 for elastoplastic materials[a]

KEYOPT(6) = 0 for hyperelastic materials only

[a] Hyperelastic materials may be present.


A summary of the element input is given in "SOLID225 Input Summary". A general description of element input is given in Element Input.

SOLID225 Input Summary

Nodes

I, J, K, L, M, N, O, P

Degrees of Freedom

Set by KEYOPT(1). See Table 225.2: SOLID225 Coupled-Field Analyses.

Real Constants

none

Material Properties

See Table 225.4: SOLID225 Material Properties and Material Models.

Surface Loads

See Table 225.5: SOLID225 Surface and Body Loads.

Body Loads

See Table 225.5: SOLID225 Surface and Body Loads.

Special Features

Note:  Linear perturbation is available for the following coupled analyses: electrostatic-structural and piezoelectric analyses (KEYOPT(1) = 1001).


KEYOPT(1)

Element degrees of freedom. See Table 225.2: SOLID225 Coupled-Field Analyses.

KEYOPT(2)

Coupling method between the DOFs for the following types of coupling: structural-thermal, structural-diffusion, thermal-diffusion, thermal-electric, and electric-diffusion:

0 -- 

Strong (matrix) coupling. May produce an unsymmetric matrix (see note [1]). In a linear analysis, a coupled response is achieved after one iteration.

1 -- 

Weak (load vector) coupling. Produces a symmetric matrix and requires at least two iterations to achieve a coupled response. (See note [2].)


Note:  

  1. In addition to unsymmetric constitutive equations, temperature-dependent thermal conductivity, electrical resistivity, and diffusivity produce unsymmetric matrices. Effects associated with the temperature-dependent material properties are not taken into account with the weak coupling option (KEYOPT(2) = 1).

  2. The weak coupling option (KEYOPT(2) = 1) can be used in a coupled electrostatic-structural analysis (KEYOPT(1) = 1001) to produce legacy element behavior. In this case, the reaction solution for the VOLT degree of freedom is positive charge (CHRG), and the analysis types are limited to static and full transient analyses. Linear perturbation analyses are not supported.


KEYOPT(4)

Electrostatic force coupling in electrostatic-structural analysis (KEYOPT(1) = 1001):

0 -- 

Applied to every element node. Used to model electrostatic or electromagnetic force coupling in solids.

1 -- 

Applied to the air-structure interface or to element nodes that have constrained structural degrees of freedom. Produces a symmetric electrostatic force coupling matrix by ignoring some terms associated with the nodes interior to the air domain. Recommended for models with a single layer of elastic air elements without midside nodes.

2 -- 

Not applied. Recommended for elastic air elements not directly attached to the air-structure interface to make the solution more efficient.

3 -- 

Applied to the air-structure interface or to element nodes that have constrained structural degrees of freedom. Compared to KEYOPT(4) = 1, all terms of the electrostatic force coupling matrix are retained, which produces an unsymmetric matrix. Recommended for models with multiple layers of elastic air elements.

4 -- 

Not applied. Can be used to turn off the default electrostatic or electromagnetic force coupling in solids. Compared to KEYOPT(4) = 2, elements with KEYOPT(4) = 4 can be subject to electrostatic or electromagnetic force coupling when connected to an elastic air element.


Note:  KEYOPT(4) = 1, 2, and 3 are used to identify elastic air elements during the automatic detection of the air-structure interface. The electrostatic or electromagnetic force coupling:

  • Will not be applied to the element nodes connected to another elastic air element.

  • Will be applied to the element nodes connected to a structure, that is, any element with structural degrees of freedom except for the elastic air elements.


For more information, see Electrostatic-Structural Analysis in the Coupled-Field Analysis Guide and Electroelasticity in the Mechanical APDL Theory Reference.

KEYOPT(6)

Element technology:

0 -- 

Full integration with method (default).

2 -- 

Enhanced strain formulation. (Available for the coupled analyses listed in the note.)

3 -- 

Simplified enhanced strain formulation. (Available for the coupled analyses listed in the note.)


Note:  The enhanced strain and simplified enhanced strain formulations are available for the following coupled analyses:

Structural-thermal (KEYOPT(1)=11) with thermoelastic damping turned off (KEYOPT(9)=1)
Piezoelectric (KEYOPT(1) = 1001)
Piezoresistive (KEYOPT(1)=101)
Structural-diffusion (KEYOPT(1) = 100001)
Structural-thermal-diffusion (KEYOPT(1) = 100011)
Structural-thermoelectric (KEYOPT(1) = 111)
Structural-electric-diffusion (KEYOPT(1) = 100101)

KEYOPT(9)

Thermoelastic damping (piezocaloric effect) in coupled-field analyses having structural and thermal degrees of freedom.

0 -- 

Active. Evaluated at the reference temperature. Applicable to harmonic and transient analyses.

1 -- 

Suppressed (required for frictional heating analyses).

2 -- 

Active. Evaluated at the actual temperature. Applicable to a transient analysis.

KEYOPT(10)

Damping matrix in coupled-field analyses having the diffusion DOF (CONC).

0 -- 

Consistent

1 -- 

Diagonalized

KEYOPT(11)

Element formulation in coupled-field analyses with structural DOFs:

0 -- 

Pure displacement formulation (default)

1 -- 

Mixed u-P formulation

KEYOPT(15)

Perfectly matched layers (PML) absorbing condition in a harmonic piezoelectric analysis (KEYOPT(1) = 1001):

0 -- 

Do not include the PML absorbing condition (default)

1 -- 

Include the PML absorbing condition

SOLID225 Output Data

The solution output associated with the element is in two forms:

The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output. See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file jobname.out. The R column indicates the availability of the items in the results file.

In either the O or R columns, “Y” indicates that the item is always available, a letter or number refers to a table footnote that describes when the item is conditionally available, and “-” indicates that the item is not available.

Table 225.7: SOLID225 Element Output Definitions

Name Definition O R
ALL ANALYSES
ELElement Number-Y
NODESNodes - I, J, K, L, M, N, O, P-Y
MATMaterial number-Y
VOLU:Volume-Y
XC, YC, ZCLocation where results are reported- 2
ALL ANALYSES WITH A STRUCTURAL FIELD
S:X, Y, Z, XY, YZ, XZStresses (SZ = 0.0 for plane stress elements)- 1
S:1, 2, 3Principal stresses- 1
S:EQVEquivalent stress- 1
EPEL:X, Y, Z, XY, YZ, XZElastic strains- 1
EPEL:EQVEquivalent elastic strain [3]- 1
EPTH:X, Y, Z, XY, YZ, XZThermal strains- 1
EPTH:EQVEquivalent thermal strain [3]- 1
EPPL:X, Y, Z, XY, YZ, XZPlastic strains- 1
EPPL:EQVEquivalent plastic strain [3]- 1
EPCR:X, Y, Z, XY, YZ, XZCreep strains- 1
EPCR:EQVEquivalent creep strain [3]- 1
EPTO:X, Y, Z, XY, YZ, XZTotal mechanical strains (EPEL + EPPL + EPCR)Y-
EPTO:EQVTotal equivalent mechanical strain (EPEL + EPPL + EPCR)--
EPTT:X, Y, Z, XY, YZ, XZTotal mechanical, thermal, and diffusion strains (EPEL + EPPL + EPCR + EPTH + EPDI)--
EPTT:EQVTotal equivalent mechanical strain (EPEL + EPPL + EPCR + EPTH + EPDI)--
NL:SEPLPlastic yield stress [10]-Y
NL:EPEQAccumulated equivalent plastic strain [10]-Y
NL:CREQAccumulated equivalent creep strain [10]-Y
NL:SRATPlastic yielding (1 = actively yielding, 0 = not yielding) [10]-Y
NL:HPRESHydrostatic pressure [10]-Y
SENE:Elastic strain energy-Y
ADDITIONAL OUTPUT FOR STRUCTURAL-THERMAL ANALYSES (KEYOPT(1) = 11) [11]
TG:X, Y, Z, SUMThermal gradient components and vector magnitude - 1
TF:X, Y, Z, SUMThermal flux components and vector magnitude- 1
UEElastic strain energy [7]- 1
UTTotal strain energy [8]- 1
PHEAT Plastic heat generation rate per unit volume- 1
VHEATViscoelastic heat generation rate per unit volume- 1
ADDITIONAL OUTPUT FOR PIEZORESISTIVE ANALYSES (KEYOPT(1) = 101) [11]
TEMPInput temperatures-Y
EF:X, Y, Z, SUMElectric field components (X, Y, Z) and vector magnitude- 1
JC:X, Y, Z, SUMConduction current density components (X, Y, Z) and vector magnitude - 1
JS:X, Y, Z, SUMCurrent density components

(in the global Cartesian coordinate system)

and vector magnitude [4]
- 1
JHEATJoule heat generation per unit volume [5]- 1
ADDITIONAL OUTPUT FOR ELECTROSTATIC-STRUCTURAL ANALYSES (KEYOPT(1) = 1001) [11]
TEMPInput temperatures-Y
EF:X, Y, Z, SUMElectric field components (X, Y, Z) and vector magnitude- 1
D:X, Y, Z, SUMElectric flux density components (X, Y, Z) and vector magnitude- 1
FMAG:X, Y, Z, SUMElectrostatic force components (X, Y, Z) and vector magnitude- 1
JS:X, Y, Z, SUMElement current density components (X, Y, Z) in the global Cartesian coordinate system and vector magnitude [4] -1
JHEATJoule heat generation per unit volume [5], [6]-1
UE, UM, UDElastic, mutual, and dielectric energies [7]- 1
SENESum of elastic and dielectric energies (UE+UD) [7]-1
DENEDamping energy [7]-1
KENEKinetic energy [7]-1
ADDITIONAL OUTPUT FOR PIEZOELECTRIC ANALYSES (KEYOPT(1) = 1001 and KEYOPT(1) = 101) [11]
TEMPInput temperatures-Y
EF:X, Y, Z, SUMElectric field components (X, Y, Z) and vector magnitude- 1
D:X, Y, Z, SUMElectric flux density components (X, Y, Z) and vector magnitude; available only for charge-based analysis (KEYOPT(1) = 1001)- 1
JC:X, Y, Z, SUMConduction current density components (X, Y, Z) and vector magnitude; available only for current-based analysis (KEYOPT(1) = 101)- 1
JS:X, Y, Z, SUMElement current density components (X, Y, Z) in the global Cartesian coordinate system and vector magnitude [4]- 1
JHEATJoule heat generation per unit volume [5], [6]- 1
UE, UM, UDElastic, mutual, and dielectric energies [7]- 1
UTTotal strain energy [8]- 1
SENESum of elastic and dielectric energies (UE+UD) [7]- 1
DENEDamping energy [7]- 1
KENEKinetic energy [7]- 1
P:X, Y, Z, SUMElement Poynting vector components (X, Y, Z) and vector magnitude [7]- 1
THERMAL-ELECTRIC ANALYSES (KEYOPT(1) = 110)
TG:X, Y, Z, SUMThermal gradient components and vector magnitude- 1
TF:X, Y, Z, SUMThermal flux components and vector magnitude- 1
EF:X, Y, Z, SUMElectric field components and vector magnitude- 1
JC:X, Y, Z, SUMConduction current density components and vector magnitude- 1
JS:X, Y, Z, SUMCurrent density components

(in the global Cartesian coordinate system)

and vector magnitude [4]
- 1
JHEATJoule heat generation per unit volume [5], [6]- 1
ADDITIONAL OUTPUT FOR STRUCTURAL-THERMOELECTRIC ANALYSES (KEYOPT(1) = 111) [11]
TG:X, Y, Z, SUMThermal gradient components and vector magnitude- 1
TF:X, Y, Z, SUMThermal flux components and vector magnitude- 1
EF:X, Y, Z, SUMElectric field components and vector magnitude- 1
JC:X, Y, Z, SUMConduction current density components and vector magnitude- 1
JS:X, Y, Z, SUMCurrent density components

components (in the global Cartesian coordinate system)

and vector magnitude [4]
- 1
JHEATJoule heat generation per unit volume [5], [6]- 1
UEElastic strain energy- 1
UTTotal strain energy [8]- 1
PHEAT Plastic heat generation rate per unit volume- 1
VHEATViscoelastic heat generation rate per unit volume- 1
ADDITIONAL OUTPUT FOR THERMAL-PIEZOELECTRIC ANALYSES (KEYOPT(1) = 1011) [11]
TG:X, Y, Z, SUMThermal gradient components and vector magnitude- 1
TF:X, Y, Z, SUMThermal flux components and vector magnitude- 1
EF:X, Y, Z, SUMElectric field components and vector magnitude- 1
D:X, Y, Z, SUMElectric flux density components and vector magnitude- 1
JHEATJoule heat generation per unit volume [5], [6]- 1
UE, UM, UDElastic, mutual, and dielectric energies [7]- 1
UTTotal strain energy [8]- 1
PHEAT Plastic heat generation rate per unit volume- 1
VHEATViscoelastic heat generation rate per unit volume- 1
ADDITIONAL OUTPUT FOR STRUCTURAL-DIFFUSION ANALYSES (KEYOPT(1)=100001) [11]
TEMPInput temperatures-Y
EPDI:X, Y, Z, XY, YZ, XZDiffusion strains- 1
CG:X, Y, Z, SUMConcentration gradient components and vector magnitude- 1
DF:X, Y, Z, SUMDiffusion flux components and vector magnitude- 1
CONCElement concentration [9]- 1
DFC:X,Y,Z,SUMPure diffusion flux components (X,Y,Z) and vector magnitude -1
DFS:X,Y,Z,SUMStress migration flux components (X,Y,Z) and vector magnitude -1
THERMAL-DIFFUSION ANALYSES (KEYOPT(1) = 100010)
TG:X, Y, Z, SUMThermal gradient components and vector magnitude- 1
TF:X, Y, Z, SUMThermal flux components and vector magnitude- 1
CG:X, Y, Z, SUMConcentration gradient components and vector magnitude- 1
DF:X, Y, Z, SUMDiffusion flux components and vector magnitude- 1
CONCElement concentration [9]- 1
DFC:X,Y,Z,SUMPure diffusion flux components (X,Y,Z) and vector magnitude -1
DFT:X,Y,Z,SUMThermal migration flux components (X,Y,Z) and vector magnitude -1
ELECTRIC-DIFFUSION ANALYSES (KEYOPT(1) = 100100)
TEMPInput temperatures-Y
EF:X, Y, Z, SUMElectric field components and vector magnitude- 1
JC:X, Y, Z, SUMConduction current density components and vector magnitude- 1
JS:X, Y, Z, SUMCurrent density components (in the global Cartesian coordinate system) and vector magnitude [4]- 1
CG:X, Y, Z, SUMConcentration gradient components and vector magnitude- 1
DF:X, Y, Z, SUMDiffusion flux components and vector magnitude- 1
CONCElement concentration [9]- 1
DFC:X,Y,Z,SUMPure diffusion flux components (X,Y,Z) and vector magnitude -1
DFE:X,Y,Z,SUMElectric migration flux components (X,Y,Z) and vector magnitude -1
THERMAL-ELECTRIC-DIFFUSION ANALYSES (KEYOPT(1) = 100110)
TG:X, Y, Z, SUMThermal gradient components and vector magnitude- 1
TF:X, Y, Z, SUMThermal flux components and vector magnitude- 1
EF:X, Y, Z, SUMElectric field components and vector magnitude- 1
JC:X, Y, Z, SUMConduction current density components and vector magnitude- 1
JS:X, Y, Z, SUMCurrent density components (in the global Cartesian coordinate system) and vector magnitude [4]- 1
JHEATJoule heat generation per unit volume [5], [6]- 1
CG:X, Y, Z, SUMConcentration gradient components and vector magnitude- 1
DF:X, Y, Z, SUMDiffusion flux components and vector magnitude- 1
CONCElement concentration [9]- 1
DFC:X,Y,Z,SUMPure diffusion flux components (X,Y,Z) and vector magnitude -1
DFT:X,Y,Z,SUMThermal migration flux components (X,Y,Z) and vector magnitude -1
DFE:X,Y,Z,SUMElectric migration flux components (X,Y,Z) and vector magnitude -1
ADDITIONAL OUTPUT FOR STRUCTURAL-ELECTRIC-DIFFUSION ANALYSES (KEYOPT(1) = 100101) [11]
TEMPInput temperatures-Y
EPDI:X, Y, Z, XY, YZ, XZDiffusion strains- 1
EF:X, Y, Z, SUMElectric field components and vector magnitude- 1
JC:X, Y, Z, SUMConduction current density components and vector magnitude- 1
JS:X, Y, Z, SUMCurrent density components (in the global Cartesian coordinate system) and vector magnitude [4]- 1
JHEATJoule heat generation per unit volume [5], [6]- 1
CG:X, Y, Z, SUMConcentration gradient components and vector magnitude- 1
DF:X, Y, Z, SUMDiffusion flux components and vector magnitude- 1
CONCElement concentration [9]- 1
DFC:X,Y,Z,SUMPure diffusion flux components (X,Y,Z) and vector magnitude -1
DFS:X,Y,Z,SUMStress migration flux components (X,Y,Z) and vector magnitude -1
DFE:X,Y,Z,SUMElectric migration flux components (X,Y,Z) and vector magnitude -1
ADDITIONAL OUTPUT FOR STRUCTURAL-THERMAL-DIFFUSION ANALYSES (KEYOPT(1) = 100011) [11]
EPDI:X, Y, Z, XY, YZ, XZDiffusion strains- 1
TG:X, Y, Z, SUMThermal gradient components and vector magnitude- 1
TF:X, Y, Z, SUMThermal flux components and vector magnitude- 1
CG:X, Y, Z, SUMConcentration gradient components and vector magnitude- 1
DF:X, Y, Z, SUMDiffusion flux components and vector magnitude- 1
CONCElement concentration [9]- 1
DFC:X,Y,Z,SUMPure diffusion flux components (X,Y,Z) and vector magnitude -1
DFS:X,Y,Z,SUMStress migration flux components (X,Y,Z) and vector magnitude -1
DFT:X,Y,Z,SUMThermal migration flux components (X,Y,Z) and vector magnitude -1
PHEAT Plastic heat generation rate per unit volume- 1
VHEATViscoelastic heat generation rate per unit volume- 1
ADDITIONAL OUTPUT FOR STRUCTURAL-THERMAL-ELECTRIC-DIFFUSION ANALYSES (KEYOPT(1) = 100111) [11]
EPDI:X, Y, Z, XY, YZ, XZDiffusion strains- 1
TG:X, Y, Z, SUMThermal gradient components and vector magnitude- 1
TF:X, Y, Z, SUMThermal flux components and vector magnitude- 1
EF:X, Y, Z, SUMElectric field components and vector magnitude- 1
JC:X, Y, Z, SUMConduction current density components and vector magnitude- 1
JS:X, Y, Z, SUMCurrent density components (in the global Cartesian coordinate system) and vector magnitude [4]- 1
JHEATJoule heat generation per unit volume [5], [6]- 1
CG:X, Y, Z, SUMConcentration gradient components and vector magnitude- 1
DF:X, Y, Z, SUMDiffusion flux components and vector magnitude- 1
CONCElement concentration [9]- 1
DFC:X,Y,Z,SUMPure diffusion flux components (X,Y,Z) and vector magnitude -1
DFS:X,Y,Z,SUMStress migration flux components (X,Y,Z) and vector magnitude -1
DFT:X,Y,Z,SUMThermal migration flux components (X,Y,Z) and vector magnitude -1
DFE:X,Y,Z,SUMElectric migration flux components (X,Y,Z) and vector magnitude -1
PHEAT Plastic heat generation rate per unit volume- 1
VHEATViscoelastic heat generation rate per unit volume- 1

  1. Solution values are output only if calculated (based on input values).

  2. Available only at centroid as a *GET item.

  3. The equivalent strains use an effective Poisson's ratio: for elastic and thermal this value is set by the user (MP,PRXY); for plastic and creep this value is set at 0.5.

  4. JS represents the sum of element conduction and displacement current densities.

  5. Calculated Joule heat generation rate per unit volume (JHEAT) may be made available for a subsequent thermal analysis with companion thermal elements. For piezoelectric and electrostatic-structural analyses, the heat generation rate output as JHEAT is produced by both the supported structural and electrical losses.

  6. For a time-harmonic analysis, Joule losses (JHEAT) are time-averaged. These values are stored in both the real and imaginary data sets. For more information, see Quasistatic Electric Analysis in the Mechanical APDL Theory Reference.

  7. For time-harmonic and modal analyses the following values are time-averaged: elastic (UE), mutual (UM), and dielectric (UD) energies, the sum of elastic and dielectric energies (SENE), damping energy (DENE), kinetic energy (KENE), and the Poynting vector (P). The real part of the UE, UM, UD, and SENE records represents the average energy, while the imaginary part represents the average energy loss. The real part of the Poynting vector represents the average power flow. For more information, see Piezoelectrics and Electroelasticity in the Mechanical APDL Theory Reference.

  8. For a time-harmonic analysis, total strain (UT) energy is time-averaged. The real part represents the average energy, while the imaginary part represents the average energy loss. For more information, see Thermoelasticity in the Mechanical APDL Theory Reference.

  9. With the normalized concentration approach, CONC is the actual concentration obtained by multiplying the saturated concentration (MP,CSAT) and the normalized concentration evaluated at the element centroid. For more information, see Normalized Concentration Approach in the Theory Reference.

  10. Nonlinear solution, output only if the element has a nonlinear material, or if large-deflection effects are enabled (NLGEOM,ON).

  11. Output listed for this coupled analysis is in addition to the structural field output at the beginning of this table.

Table 225.7: SOLID225 Element Output Definitions lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) of the Basic Analysis Guide and The Item and Sequence Number Table of this reference for more information. The following notation is used in Table 225.8: SOLID225 Item and Sequence Numbers:

Name

output quantity as defined in the Table 225.7: SOLID225 Element Output Definitions

Item

predetermined Item label for ETABLE command

E

sequence number for single-valued or constant element data

Table 225.8: SOLID225 Item and Sequence Numbers

Output Quantity Name ETABLE Command Input
Item E
Analyses that include DIFFUSION (KEYOPT(1) = 100001, 100010, 100100, 100110, 100011, 100101, and 100111)
CONCSMISC1
DFCXSMISC2
DFCYSMISC3
DFCZSMISC4
DFCSUMSMISC5
DFSXSMISC6
DFSYSMISC7
DFSZSMISC8
DFSSUMSMISC9
DFTXSMISC10
DFTYSMISC11
DFTZSMISC12
DFTSUMSMISC13
DFEXSMISC14
DFEYSMISC15
DFEZSMISC16
DFESUMSMISC17
STRUCTURAL-THERMAL ANALYSES (KEYOPT(1) = 11)
UENMISC1
UTNMISC4
PHEATNMISC5
VHEATNMISC6
ELECTROSTATIC-STRUCTURAL ANALYSES (KEYOPT(1) = 1001)
UENMISC1
UDNMISC2
UMNMISC3
PIEZOELECTRIC ANALYSES: (KEYOPT(1) = 1001 and 101)
UENMISC1
UDNMISC2
UMNMISC3
UTNMISC4
PXNMISC5
PYNMISC6
PZNMISC7
PSUMNMISC8
STRUCTURAL-THERMOELECTRIC ANALYSES (KEYOPT(1) = 111)
UENMISC1
UTNMISC4
PHEATNMISC5
VHEATNMISC6
THERMAL-PIEZOELECTRIC ANALYSES (KEYOPT(1) = 1011)
UENMISC1
UDNMISC2
UMNMISC3
UTNMISC4
PHEATNMISC5
VHEATNMISC6
STRUCTURAL-THERMAL-DIFFUSION ANALYSES (KEYOPT(1) = 100011)
STRUCTURAL-THERMAL-ELECTRIC-DIFFUSION ANALYSES (KEYOPT(1) = 100111)
PHEATNMISC5
VHEATNMISC6

SOLID225 Assumptions and Restrictions

  • In a piezoelectric or electrostatic-structural analysis, electric charge loading is interpreted as negative electric charge or negative charge density.

  • Optimized nonlinear solution defaults are applied in coupled-field analyses with structural degrees of freedom using this element.

  • This element may not be compatible with other elements with the VOLT degree of freedom. To be compatible, the elements must have the same reaction solution for the VOLT DOF. Elements that have an electric charge reaction solution must all have the same electric charge reaction sign. For more information, see Element Compatibility in the Low-Frequency Electromagnetic Analysis Guide.

  • When using mixed formulation (KEYOPT(11) = 1), use the sparse solver (default).

  • Stress stiffening is always included in geometrically nonlinear (NLGEOM,ON) coupled-field analyses with structural degrees of freedom. Prestress effects can be activated via the PSTRES command.

  • Graphical Solution Tracking (/GST) is not supported for the analyses with CONC DOFs (KEYOPT(1) = 100001, 100010, 100011, 100100, 100101, 100110, and 100111).

  • Reaction forces are not available for electrostatic-structural (KEYOPT(1) = 1001) analyses with the elastic air option (KEYOPT(4) = 1).

  • The stress-migration effect (specified using TB,MIGR) is not supported in an analysis with structural and diffusion degrees of freedom.

  • For the degenerated shape elements with the B-bar (KEYOPT(6) = 0), enhanced strain (KEYOPT(6) = 2), or simplified enhanced strain (KEYOPT(6) = 3) formulations specified in coupled-field analyses with structural degrees of freedom, a conventional full (prisms and pyramids) or reduced (tetrahedrons) integration scheme is used.

  • The film coefficient (if any) is evaluated at average film temperature (TS + TB)/2 for the coupled-thermal analyses (KEYOPT(1) = 11, 110, 111, 1011, 100010, 100110, 100011, and 100111).

SOLID225 Product Restrictions

There are no product-specific restrictions for this element.