Expand/Collapse all
1. Coupled-Field Analyses
1.1. Types of Coupled-Field Analysis
1.1.1. Direct Method
1.1.2. Load-Transfer Methods
1.1.3. When to Use Direct vs. Load-Transfer
1.1.4. Coupled Physics Circuit Simulation
1.2. System of Units
2. Direct Coupled-Field Analysis
2.1. Lumped Electric Elements
2.2. Thermal-Electric Analysis
2.2.1. Elements Used in a Thermal-Electric Analysis
2.2.2. Performing a Thermal-Electric Analysis
2.2.3. Example: Thermoelectric Cooler Analysis
2.2.4. Example: Thermoelectric Generator Analysis
2.2.5. Example: Transient Thermoelectric Analysis of a Peltier Cooler
2.2.6. Other Thermal-Electric Analysis Examples
2.3. Piezoelectric Analysis
2.3.1. Hints and Recommendations for Piezoelectric Analysis
2.3.2. Material Properties for Piezoelectric Analysis
2.3.3. Additional Material Properties for Dynamic Piezoelectric Analysis
2.3.4. Example: Piezoelectric Analysis of a Bimorph
2.3.5. Example: Piezoelectric Analysis with Coriolis Effect
2.3.6. Example: Mode-Superposition Piezoelectric Analysis
2.3.7. Example: Piezoelectric Vibrations of a Quartz Plate
2.3.8. Example: Damped Vibrations of a Piezoelectric Disc
2.3.9. Example: Piezoelectric Perfectly Matched Layers
2.3.10. Other Piezoelectric Analysis Examples
2.4. Electrostatic-Structural Analysis
2.4.1. Elements Used in an Electrostatic-Structural Analysis
2.4.2. Performing an Electrostatic-Structural Analysis
2.4.3. Example: Electrostatic-Structural Analysis of a Dielectric Elastomer
2.4.4. Example: Electrostatic-Structural Analysis of a MEMS Switch
2.4.5. Example: Electromechanical Comb Finger Analysis
2.4.6. Example: Electrostatic-Structural Analysis of a Folded Dielectric Elastomer Actuator
2.4.7. Example: Electrostatic-Structural Analysis of a Clamped-Clamped Beam
2.4.8. Example: Electrostatic-Structural Analysis of a Micromirror
2.5. Piezoresistive Analysis
2.5.1. Material Properties
2.5.2. Example: Piezoresistive Analysis
2.5.3. Other Piezoresistive Analysis Examples
2.6. Structural-Thermal Analysis
2.6.1. Elements Used in a Structural-Thermal Analysis
2.6.2. Performing a Structural-Thermal Analysis
2.6.3. Example: Thermoelastic Damping in a Silicon Beam
2.6.4. Example: Thermoplastic Heating of a Thick-Walled Sphere
2.6.5. Example: Viscoelastic Heating of a Rubber Cylinder
2.6.6. Other Structural-Thermal Analysis Examples
2.7. Structural-Thermal-Electric Analyses
2.7.1. Structural-Thermoelectric Analysis
2.7.2. Thermal-Piezoelectric Analysis
2.7.3. Example: Electro-Thermal Microactuator Analysis
2.8. Magneto-Structural Analysis
2.8.1. Elements Used in a Magneto-Structural Analysis
2.8.2. Performing a Magneto-Structural Analysis
2.8.3. Example: Double-Clamped Beam Above a Magnet
2.8.4. Example: Skin Effect in an Elastic Wire
2.8.5. Other Magneto-Structural Analysis Examples
2.9. Electromechanical Analysis
2.9.1. Element Physics
2.9.2. A Reduced-Order Model
2.9.3. Static Analysis
2.9.4. Modal Analysis
2.9.5. Harmonic Analysis
2.9.6. Transient Analysis
2.9.7. Electromechanical Circuit Simulation
2.9.8. Example: Electromechanical Analysis
2.10. Thermal-Electromagnetic Analysis
2.10.1. Element Used in a Thermal-Electromagnetic Analysis
2.10.2. Performing a Thermal-Electromagnetic Analysis
2.11. Structural Implicit Gradient Regularization
2.11.1. Understanding Implicit Gradient Regularization Theory
2.12. Structural-Pore-Fluid-Diffusion-Thermal Analysis
2.12.1. Structural-Pore-Fluid-Diffusion-Thermal Applications
2.12.2. Understanding Porous Media Analysis
2.12.3. Material Models, Solid Phase, and Effective Stress
2.12.4. Fluid Flow in Porous Media
2.12.5. Heat Transfer in Porous Media
2.12.6. Geostatic Stress Equilibrium
2.12.7. Automatic Time-Stepping
2.12.8. Solution Control via a Steady-State Condition
2.12.9. Initial Condition and Initial State
2.12.10. Field Variables
2.12.11. Boundary Conditions and Loading
2.12.12. Coupled Pore-Pressure-Thermal Element Support
2.12.13. Results Output
2.12.14. Performing a Structural Pore-Fluid-Diffusion Analysis
2.13. Structural-Diffusion Analysis
2.13.1. Elements Used in a Structural-Diffusion Analysis
2.13.2. Performing a Structural-Diffusion Analysis
2.13.3. Example: Structural-Diffusion Analysis of a Bimorph Beam
2.13.4. Example: Hydrogen Stress Migration
2.13.5. Other Structural-Diffusion Analysis Examples
2.14. Thermal-Diffusion Analysis
2.14.1. Elements Used in a Thermal-Diffusion Analysis
2.14.2. Performing a Thermal-Diffusion Analysis
2.14.3. Example: Thermal-Diffusion Analysis
2.15. Structural-Thermal-Diffusion Analysis
2.15.1. Elements Used in a Structural-Thermal-Diffusion Analysis
2.15.2. Performing a Structural-Thermal-Diffusion Analysis
2.16. Electric-Diffusion Analysis
2.16.1. Elements Used in an Electric-Diffusion Analysis
2.16.2. Performing an Electric-Diffusion Analysis
2.16.3. Electric-Diffusion Analysis Example
2.17. Thermal-Electric-Diffusion Analysis
2.17.1. Elements Used in a Thermal-Electric-Diffusion Analysis
2.17.2. Performing a Thermal-Electric-Diffusion Analysis
2.17.3. Example: Electromigration and Thermomigration in a Solder Joint
2.18. Structural-Electric-Diffusion Analysis
2.18.1. Elements Used in a Structural-Electric-Diffusion Analysis
2.18.2. Performing a Structural-Electric-Diffusion Analysis
2.18.3. Example: Electromigration and Stress Migration in a Solder Joint
2.19. Structural-Thermal-Electric-Diffusion Analysis
2.19.1. Elements Used in a Structural-Thermal-Electric-Diffusion Analysis
2.19.2. Performing a Structural-Thermal-Electric-Diffusion Analysis
3. Load-Transfer Coupled Physics Analysis via the LDREAD command
3.1. General Analysis Procedures
3.2. Transferring Loads Between Different Analyses
3.2.1. Compatible Element Types
3.2.2. Types of Results Files You May Use
3.3. Mesh Updating
3.4. Example Thermal-Stress Analysis
3.4.1. Problem Description
3.4.2. Procedure
3.4.3. Command Listing
3.5. Example Induction Heating Analysis
3.5.1. Problem Description
3.5.2. Procedure
3.5.3. Results
3.5.4. Command Listing
4. Unidirectional Load-Transfer for CFD Applications
4.1. The Unidirectional Load-Transfer Method: Mechanical APDL to CFX
4.2. Unidirectional Pressure Mapping: CFD to Mechanical APDL
5. Coupled Physics Circuit Simulation
5.1. Electromagnetic-Circuit Simulation
5.1.1. 3D Circuit Coupled Solid Source Conductor
5.1.2. Taking Advantage of Symmetry
5.2. Electromechanical-Circuit Simulation
5.3. Piezoelectric-Circuit Simulation
5.4. Sample Electromechanical-Circuit Analysis
5.4.1. Problem Description
5.4.2. Results
5.4.3. Command Listing
5.5. Sample Piezoelectric-Circuit Analysis (Batch or Command Method)
5.5.1. Problem Description
5.5.2. Problem Specifications
5.5.3. Equivalent Electric Circuits (Reduced Order Model)
5.5.4. Results
5.5.5. Command Listing