Expand/Collapse all
Using This Manual
1. The Contents of This Manual
2. The Contents of the Ansys Polyflow Classic Manuals
3. Typographical Conventions Used in This Manual
1. Getting Started
1.1. The Ansys Product Improvement Program
1.2. Introduction
1.3. Program Structure
1.3.1. The Ansys Polyflow Classic Package
1.3.1.1. License-Specific Capabilities
1.4. Overview of Using Ansys Polyflow Classic
1.4.1. Planning Your Ansys Polyflow Classic Analysis
1.4.2. Problem Solving Steps
1.5. Basic Concepts
1.5.1. Tasks and Sub-Tasks
1.5.1.1. Tasks
1.5.1.2. Sub-Tasks
1.5.2. Subdomains and Boundary Sets
1.5.3. Boundary Conditions
1.6. Starting Ansys Polydata and Ansys Polyflow Classic
1.6.1. Starting Ansys Polydata
1.6.1.1. Starting License-Specific Versions of Ansys Polydata
1.6.2. Starting Ansys Polyflow Classic
1.6.2.1. Starting License-Specific Versions of Ansys Polyflow Classic
1.7. GPU Accelerator Capability
1.7.1. Activating the GPU Accelerator Capability
1.7.2. Limitations
1.7.3. Messages
1.7.4. Troubleshooting
1.8. The .p3rc Configuration File
1.8.1. Setting Up Your .p3rc Files
1.8.2. Keywords in the .p3rc File
1.8.2.1. Solution Keywords
1.8.2.2. Setup Keywords
1.8.2.3. Example
1.9. Known Limitations in Ansys Polyflow Classic 2025 R1
1.10. Ansys Polyflow Classic Documentation
2. Ansys Polydata Graphical User Interface
2.1. Ansys Polydata GUI
2.2. Menu Bar
2.2.1. File
2.2.2. Graphical window
2.2.3. Help
2.3. Keywords
2.4. Text Window
2.5. The Tree View Window
2.6. Ansys Polydata Tabs
2.6.1. Menus Tab
2.6.2. Mesh Tab
2.6.3. Help Tab
2.7. Graphics Display Window
2.8. Graphics Toolbar
2.9. Output Text Window
3. Sample Session
3.1. Problem Description
3.2. Outline of Procedure
3.3. Starting Ansys Polydata and Reading the Mesh File
3.4. Creating a Task
3.5. Creating a Sub-Task and Specifying its Domain
3.5.1. Creating a Sub-Task
3.5.2. Specifying the Sub-Task’s Domain of Definition
3.6. Defining Material Properties for the Fluid
3.7. Defining Flow Boundary Conditions
3.7.1. Flow Inlet
3.7.2. Outer Wall
3.7.3. Free Surface
3.7.4. Flow Exit
3.7.5. Symmetry Axis
3.7.6. Rotating Screw
3.8. Defining the Remeshing
3.8.1. Specifying the Region To Be Remeshed
3.8.2. Specifying the Parameters for the System of Spines
3.9. Assigning the Stream Function Value
3.10. Define the Units for Simulation
3.11. Saving the Data File and Exiting from Ansys Polydata
3.12. Calculating a Solution with Ansys Polyflow Classic
3.13. Examining the Results with CFD-Post
3.13.1. Starting CFD-Post and Reading the Results
3.13.2. Displaying Contours of Pressure
3.13.3. Displaying Velocity Vectors
3.13.4. Exiting from CFD-Post
4. Reading and Writing Files
4.1. Files Written and Read by Ansys Polydata and Ansys Polyflow Classic
4.2. Reading Mesh Information into Ansys Polydata
4.2.1. Reading Files Directly
4.2.1.1. Optional Conversion to a Case File
4.2.2. Converting Mesh Files Created by Other Programs
4.3. Reading and Writing Ansys Polydata Data Files
4.3.1. Writing a Data File
4.3.2. Reading a Data File into Ansys Polydata
4.3.3. Contents of the Data File
4.4. Reading and Writing Ansys Polydata Session Files
4.5. Reading Mesh, Data, and Results Files into Ansys Polyflow Classic
4.5.1. Reading a Data File into Ansys Polyflow Classic
4.5.2. Starting an Ansys Polyflow Classic Calculation from an Existing Results File
4.5.3. Starting an Evolution or Time-Dependent Calculation from Existing Results and Restart Files
4.6. Writing an Ansys Polyflow Classic Results File
4.7. Writing an Ansys Polyflow Classic Listing File
4.7.1. Saving Ansys Polyflow Classic Messages to a Listing File
4.7.2. Controlling the Amount of Information in the Listing File
4.7.3. Contents of a Sample Listing File
4.8. Exporting Files for Postprocessing and Additional Simulations
4.8.1. Exporting Mesh and Solution Data
4.8.1.1. PATRAN Files
4.8.1.2. I-deas Files
4.8.1.3. IGES Files
4.8.1.4. CSV Files
4.8.1.5. FieldView Files
4.8.1.6. CFD-Post Files
4.8.1.7. EnSight Files
4.8.1.8. Ansys Mechanical APDL Files
4.8.1.9. Ansys Mechanical Files
4.8.2. Saving Data at a Specified Point
4.8.3. Output for Time-Dependent, and Evolution Calculations
4.9. Filename Syntax
4.9.1. Naming Conventions
5. Unit Systems
5.1. Overview of Units
5.2. Converting to a New Unit System
5.3. Restrictions on Units
6. Meshes
6.1. Mesh Topologies
6.1.1. PMeshes
6.1.2. Examples of Acceptable Mesh Topologies
6.1.3. Choosing the Appropriate Mesh Type
6.1.3.1. Setup Time
6.1.3.2. Computational Expense
6.1.3.3. Application Being Modeled
6.2. .poly Meshes Created with Ansys ICEM CFD or Ansys Meshing
6.3. Meshes Created with PATRAN or I-deas
6.3.1. Element and Node Numbering
6.3.2. Jacobians
6.3.3. Subdomains
6.3.4. Boundary Sets
6.3.5. Elements of Mixed Dimension and PMesh Generation
6.3.6. Notes for I-deas Master Series Users
6.4. Meshes Created with HYPERMESH
6.4.1. Element and Node Numbering
6.4.1.1. Meshes
6.4.2. Jacobians
6.4.3. Subdomains and Boundary Sets
6.4.4. Restrictions
6.5. Ansys Fluent Meshes Created with Ansys Meshing, Ansys Fluent, and Fluent Meshing
6.6. Mesh Decomposition and Optimization
6.6.1. About the Optimization of Element Numbering
6.6.2. About Domain Decomposition
6.6.3. Decomposing and Optimizing the Mesh
6.6.4. Using Optimized or Decomposed Mesh
6.6.5. Specifying the Number of Sub-Parts for Decomposition
6.7. Results Interpolation Onto Another Mesh
6.7.1. The CSV File
6.7.2. Using Mesh-to-Mesh Interpolation
6.7.3. Using the CSV File to Initialize Solution Variables
6.8. Combining Meshes with Ansys Polyfuse
6.8.1. Introduction
6.8.2. Starting Ansys Polyfuse
6.8.3. Steps for Combining Meshes
6.8.4. Reading and Writing Files
6.8.4.1. Selecting the Mesh Files
6.8.4.2. Saving the Combined Mesh File
6.8.4.3. Reading and Writing an Ansys Polyfuse Session File
6.8.5. Translating, Rotating, and Scaling a Mesh
6.8.5.1. Translating a Mesh
6.8.5.2. Rotating a Mesh
6.8.5.3. Scaling a Mesh
6.8.5.4. Manipulating Translation, Rotation, and Scaling Operations
6.8.6. Viewing the Mesh
6.8.7. Reporting Information about the Mesh
6.9. Examining the Mesh in Ansys Polydata
6.9.1. Translating, Rotating, and Zooming with the Mouse
6.9.2. Changing the View Axis
6.9.3. Scaling and Resizing the View
6.9.4. Displaying Perspective and Orthographic Views
6.9.5. Modifying the Background Color for the Display
6.9.6. Including the Coordinate Axes in the Display
6.9.7. Selecting Portions of the Mesh for Display
6.9.8. Modifying the Color of the Mesh Display
6.9.9. Specifying Outline, Wireframe, and Shaded Displays
6.9.10. Reporting Information about the Mesh
6.10. Generating a Sliceable Free Jet Mesh
6.11. Converting a Shell Mesh and Results
7. Boundary Conditions
7.1. Overview of Boundary Conditions
7.1.1. Available Boundary Conditions
7.1.2. Setting Boundary Conditions
7.2. Zero Wall Velocity Condition
7.3. Slip Condition
7.3.1. Shear Force Calculation
7.3.2. User Inputs for the Slip Condition
7.4. Porous Wall Condition
7.4.1. Normal Force Calculation
7.4.2. User Inputs for the Porous Wall Condition
7.5. Symmetry Condition
7.6. Inflow Condition
7.6.1. Inflow Calculation for Generalized Newtonian Flow
7.6.2. Inflow Calculation for Viscoelastic Flow
7.6.3. User Inputs for the Inflow Condition
7.7. Outflow Condition
7.7.1. Outflow Condition for Generalized Newtonian Flow
7.7.2. Outflow Condition for Viscoelastic Flow
7.7.3. User Inputs for the Outflow Condition
7.8. Free Surface Condition
7.9. Normal and Tangential Velocity Condition
7.10. Normal and Tangential Force Condition
7.11. Normal Velocity and Tangential Force Condition
7.12. Normal Force and Tangential Velocity Condition
7.13. Global Force Condition
7.14. Cartesian Velocity Condition
7.15. Velocity Profile from a CSV File
7.16. Interface Condition
7.17. Interface with Elastic Solid
7.18. Periodic Condition
7.19. Non-Conformal Boundaries
7.19.1. Solution Technique for Non-Conformal Boundaries
7.19.2. Connecting Non-Conformal Boundaries
7.20. Specifying Conditions Using Sub-Models
7.20.1. The Topo-Object
7.20.2. Types of Sub-Models
7.20.3. Defining a Sub-Model
7.20.4. Defining a Topo-Object
7.20.5. Defining a Material Dataset
7.21. Using a Rotating Reference Frame
8. Material Properties
8.1. Overview of Material Properties
8.2. Specifying Material Properties as Algebraic Functions
8.2.1. Example
8.2.2. User Inputs
8.2.3. Compressible Flows
8.3. Reading and Writing Material Data Files
8.4. Curve Fitting for Material Properties
8.5. Using Material Data from the CAMPUS Database
8.6. Using Material Data from the Ansys Polyflow Classic Databases
8.6.1. The Miscellaneous and Shell_Materials Directories
8.6.2. The Extrusion, BlowMolding, and BlowMolding_viscoelastic Directories
9. Generalized Newtonian Flow
9.1. Introduction
9.2. Theory and Equations
9.2.1. Basic Equations
9.2.2. Shear-Rate-Dependent Viscosity Laws
9.2.2.1. Constant
9.2.2.2. Power Law
9.2.2.3. Bird-Carreau Law
9.2.2.4. Cross Law
9.2.2.5. Modified Cross Law
9.2.2.6. Bingham Law
9.2.2.7. Modified Bingham Law
9.2.2.8. Herschel-Bulkley Law
9.2.2.9. Modified Herschel-Bulkley Law
9.2.2.10. Log-Log Law
9.2.2.11. Carreau-Yasuda Law
9.2.3. Temperature-Dependent Viscosity Laws
9.2.3.1. Arrhenius Law
9.2.3.2. Arrhenius Shear Rate vs. Arrhenius Shear Stress
9.2.3.3. Approximate Arrhenius Law
9.2.3.4. Fulcher Law
9.2.3.5. WLF Law
9.2.3.6. WLF Shear-Stress Law
9.2.3.7. Mixed-Dependence Law
9.2.4. Orthotropic Materials
9.3. Problem Setup
9.3.1. General Procedure
9.3.2. Problem Setup for Reinforced Materials
9.3.3. Controlling the Interpolation
9.3.3.1. Interpolation for Nonisothermal Flows
9.3.3.2. Finite-Element Interpolation for 2D Models
9.3.3.3. Finite-Element Interpolation for 3D Models
9.3.3.4. Viscosity-Related Iterations
9.3.3.5. Interpolation for Nonisothermal Flows
9.3.3.6. Quadratic and Linear Coordinates
9.3.4. Using Evolution to Compute Generalized Newtonian Flow
9.3.4.1. Sample Applications
10. Viscoelastic Flows
10.1. Overview of Viscoelastic Flow
10.1.1. Modeling Viscoelastic Flow
10.2. Differential Viscoelastic Models
10.2.1. Theory and Equations
10.2.1.1. Extra-Stress Tensor
10.2.1.2. Basic Equations
10.2.1.3. Viscoelastic Models
10.2.1.3.1. Upper-Convected Maxwell Model
10.2.1.3.2. Oldroyd-B Model
10.2.1.3.3. White-Metzner Model
10.2.1.3.4. Phan-Thien-Tanner Model
10.2.1.3.5. Giesekus Model
10.2.1.3.6. FENE-P Model
10.2.1.3.7. POM-POM Model [DCPP]
10.2.1.3.8. Leonov Model
10.2.1.4. Temperature Dependence of Viscosity and Relaxation Time in Nonisothermal Flows
10.2.1.5. The Components of a Tensor
10.2.2. Problem Setup for Differential Viscoelastic Flows
10.2.3. Choosing the Differential Viscoelastic Model
10.2.3.1. Analyzing the Problem
10.2.3.1.1. Viscoelasticity
10.2.3.1.2. The Weissenberg Number
10.2.3.1.3. Inertia Effects
10.2.3.1.4. Storage and Loss Moduli
10.2.3.2. Guidelines for Model Selection
10.2.3.2.1. Maxwell Model
10.2.3.2.2. Oldroyd-B Model
10.2.3.2.3. White-Metzner Model
10.2.3.2.4. PTT Model
10.2.3.2.5. Giesekus Model
10.2.3.2.6. FENE-P Model
10.2.3.2.7. POM-POM Model [DCPP]
10.2.3.2.8. Leonov Model
10.2.4. Setting the Viscosity Ratio
10.2.5. Selecting the Interpolation
10.2.5.1. Interpolation for Pressure and Velocity
10.2.5.2. Interpolation for Viscoelastic Stresses
10.2.5.2.1. The Streamwise Approximation for Tensors (SAFT) Technique
10.2.5.2.2. Default Options and Parameters
10.2.5.2.3. Selecting an Interpolation
10.2.5.2.4. Combining Interpolation
10.2.5.2.5. Iterative Scheme for Viscosity and Relaxation Time
10.2.5.3. Interpolation for Nonisothermal Flows
10.2.5.4. Field Names for Viscoelastic Flows
10.2.6. Computing Differential Viscoelastic Flow
10.2.6.1. Using Evolution
10.2.6.2. Convergence Strategy for Viscoelasticity
10.2.6.3. Sample Applications
10.2.7. Supported Features for Differential Viscoelastic Flow Calculations
10.3. Integral Viscoelastic Models
10.3.1. Introduction
10.3.2. Theory and Equations
10.3.2.1. Extra-Stress Tensor
10.3.2.2. Basic Equations
10.3.2.3. Viscoelastic Models
10.3.2.3.1. Doi-Edwards Model
10.3.2.3.2. KBKZ Model
10.3.2.3.3. Equivalent Generalized Newtonian Models
10.3.2.4. Temperature Shift Functions for Nonisothermal Flows
10.3.2.5. Numerical Method for Integral Viscoelastic Flow
10.3.3. Problem Setup for Integral Viscoelastic Flows
10.3.4. Choosing the Integral Viscoelastic Model
10.3.4.1. Doi-Edwards Model
10.3.4.2. KBKZ Model
10.3.5. Setting the Evolutive Viscosity
10.3.6. Using Evolution to Compute Integral Viscoelastic Flow
10.3.7. Additional Strategies for Convergence
10.3.7.1. Calculations Involving Moving Boundaries
10.3.8. Additional Hints
10.3.8.1. Mesh Resolution
10.3.8.2. Performance on Vector Machines
10.4. Simplified Viscoelastic Model
10.4.1. Theory and Equations
10.4.2. Considerations
10.4.3. Identifying Model Parameters and Functions
10.4.4. Selecting the Interpolation
10.4.5. Problem Setup for Simplified Viscoelastic Model
11. Flow Induced Crystallization (FIC)
11.1. Introduction
11.2. Crystallization Model
11.2.1. Qualitative Description
11.2.2. Extra-Stress Contribution from the Amorphous Phase
11.2.3. Extra-Stress Contribution from the Semicrystalline Phase
11.2.4. Degree of Transformation
11.2.5. Energy Equation
11.2.6. Boundary Conditions
11.2.7. Evolution Schemes
11.2.8. Rheological Model and Properties
11.2.9. Total Extra-stress Postprocessor
11.3. Problem Setup
11.3.1. Names of Variables in Ansys Polyflow Classic
12. Heat Transfer
12.1. Conduction and Convection
12.1.1. Theory
12.1.1.1. Basic Equations
12.1.1.2. Heat Flux Boundary Conditions
12.1.1.3. Boussinesq Approximation for Density in Nonisothermal Flows
12.1.1.4. Boundaries with Incoming and Outgoing Flows
12.1.2. Problem Setup
12.1.2.1. General Procedure
12.1.2.2. Using Evolution in Heat Conduction and Nonisothermal Flow Calculations
12.1.3. A Note on the Temperature Field
12.2. Internal Radiation
12.2.1. Theory
12.2.1.1. Angular Discretization
12.2.1.2. Domain Boundaries
12.2.1.3. Boundaries Internal to a Domain
12.2.2. User Inputs for Internal Radiation Model
13. Porous Media
13.1. Introduction
13.2. Theory
13.3. Using the Model
13.3.1. General Procedure
14. Free Surfaces and Extrusion
14.1. Introduction
14.2. Theory and Equations
14.2.1. Free Surfaces
14.2.1.1. Dynamic Condition
14.2.1.2. Kinematic Condition
14.2.1.3. Geometrical Degree of Freedom
14.2.2. Moving Interfaces
14.2.2.1. Fixed-Interface Condition
14.2.2.2. Dynamic Condition
14.2.2.3. Kinematic Condition
14.2.2.4. Slipping Between Two Layers in Coextrusion
14.2.3. Directors
14.2.4. Surface Tension
14.2.4.1. Surface Tension Force
14.2.4.2. Velocity Imposed on the Boundary of the Free Surface
14.2.5. Discontinuity of the Normal Direction
14.2.5.1. Corner Lines
14.2.5.2. Surface Kinematic Condition
14.2.5.3. Line Kinematic Condition
14.2.6. Drag
14.2.7. Fluid-Fluid Contact
14.2.8. Guiding Devices
14.3. User Inputs for Free Surfaces and Moving Interfaces
14.3.1. General Procedure
14.3.2. Defining the Direction of Motion
14.3.2.1. Boundary of the Free Surface or Moving Interface
14.3.2.2. Directors and Symmetry Planes
14.3.2.3. Frequency of the Director Calculation
14.3.3. Controlling the Interpolation
14.3.4. Convergence Strategies
14.3.5. Guidelines for 3D Extrusion Problems
14.3.5.1. Convergence
14.3.5.2. Discontinuity of the Normal Direction
14.3.6. Guidelines for Coextrusion Problems
14.3.7. Static and Dynamic Contact Points or Lines
14.3.7.1. Contact Points and Lines
14.3.7.2. The Moving-Contact-Point Model
14.3.7.3. Inputs for Dynamic Contact Points
14.3.8. Inverse Extrusion and Die Design
14.3.8.1. Maintaining a Constant Shape for a Portion of the Die
14.3.9. Constraint on Global Displacement
14.3.9.1. Finite-Element Formulation
14.3.9.2. Limitations
14.3.9.3. Compatibility with Specific Geometries and Boundary Conditions
14.3.9.4. User Inputs for the Constraint on Global Displacement
14.3.10. Defining Guiding Devices
14.3.11. Mapping for Fluid-Fluid Contact
15. Remeshing
15.1. Introduction to Remeshing
15.1.1. About Remeshing
15.1.2. Remeshing Techniques in Ansys Polyflow Classic
15.1.3. Choosing a Remeshing Technique
15.2. Method of Spines
15.3. Euclidean Method
15.4. Method of Planes
15.5. Thompson Transformation
15.5.1. Theory
15.5.2. Example
15.5.3. Implementation
15.6. Optimesh
15.6.1. Theory
15.6.2. Boundary Conditions
15.7. Thin Shell Method
15.7.1. Theory
15.8. Lagrangian Method
15.9. Thin Shell Method with Lagrangian Master
15.10. Lagrangian Method on Borders
15.11. Streamwise Method
15.12. Elastic Methods
15.13. User Inputs for Remeshing
15.13.1. Element Distortion Check
15.14. Local Remeshing
15.14.1. User Inputs for Local Remeshing
15.15. Adaptive Meshing
15.15.1. Overview and Usage
15.15.2. Adaptive Meshing Technique
15.15.3. User Inputs for Adaptive Meshing
15.15.3.1. Adaptive Meshing Parameters for Moving Parts
15.15.3.2. Adaptive Meshing Parameters for Large Variations of Fields
15.15.3.3. Adaptive Meshing Parameters for Contact and Remeshing
15.15.3.3.1. Adaptive Meshing for Contact
15.15.3.3.1.1. Basing the Calculation on Distance
15.15.3.3.1.2. Basing the Calculation on Curvature
15.15.3.3.1.3. Basing the Calculation on Angle and Curvature
15.15.3.3.2. Mapping
15.15.3.3.3. Adaptive Meshing for Remeshing
15.15.3.4. Manage Zones for Remeshing
15.15.3.4.1. Defining Fixed Zones
15.15.3.4.2. Defining Moving Zones
15.15.3.5. Criteria for Remeshing
15.15.3.5.1. for Adaptive Meshing
16. Blow Molding and Thermoforming
16.1. Working of Contact Detection
16.1.1. Shell Elements for 3D Models
16.2. Theory and Equations
16.2.1. Penalty Technique for Detecting Contact
16.2.2. Velocity-Driven Motion
16.2.3. Contact Release
16.2.4. Velocity- or Force-Driven Mold
16.2.5. Heat Transfer and Contact (Imposed Temperature)
16.2.6. Heat Transfer and Contact (Conjugate Heat Transfer)
16.2.7. Strain-Dependent Viscosity
16.2.8. Orthotropic Material
16.2.9. 3D Viscoelastic Blow Molding Simulations
16.2.10. Calculation of the Parison Thickness
16.2.11. Calculation of the Extensions
16.2.11.1. Evaluation of the Extension Components
16.2.11.2. Evaluation of the Area Stretch Ratio
16.2.12. Calculation of the Mass of the Blown Product
16.2.13. Calculation of the Volume of the Blown Product
16.2.14. Calculation of the Permeability of the Blown Product
16.2.15. Time Dependence and Contact Handling
16.2.16. Residual Deformations and Stresses
16.2.17. Temperature Programming
16.3. Setting Up a Contact Problem
16.3.1. Inputs for 2D and 3D Contact Detection
16.3.2. Inputs for Shell Contact Detection
16.3.3. Defining the Thickness Interpolation for Shell Elements
16.3.3.1. Controlling the Thickness Interpolation
16.3.4. Generating a Mesh with Shell Elements
16.4. Computing Derived Quantities in Contact Problems
16.4.1. Inputs for Computing the Extension Components
16.4.2. Inputs for Computing the Mass of the Blown Product
16.4.3. Inputs for Computing the Volume of the Blown Product
16.4.4. Inputs for Computing the Permeability of the Blown Product
16.4.5. Inputs for Parison Programming
16.4.6. Inputs for Residual Stresses and Deformations
16.4.7. Inputs for Temperature Programming
16.4.8. Inputs for Self-Contact Detection
17. Film Casting
17.1. Introduction
17.2. Theory
17.2.1. Overview
17.2.2. Flow Equations
17.2.2.1. Boundary Conditions
17.2.2.2. Stress Boundary Conditions for the DCPP Model in Film Casting
17.2.3. Multilayer Films (Coextrusion)
17.2.4. Heating and Cooling of the Film
17.2.5. Stream Function
17.2.6. Film Problems and Nonlinearity
17.3. Inputs for Film Casting Problems
17.3.1. General Procedure
17.3.2. Guidelines for Setting Boundary Conditions
17.3.2.1. Flow Boundary Conditions
17.3.2.1.1. Multilayer Film Casting Problems
17.3.2.1.2. Viscoelastic Flow Film Problems
17.3.2.2. Thermal Boundary Conditions
17.3.2.2.1. Multilayer Film Problems
17.3.2.3. Stress Boundary Conditions for the DCPP Model in Film Casting
18. Chemically Reacting Flows
18.1. Introduction
18.2. Theory
18.2.1. Overview of Reactions
18.2.2. Definitions
18.2.3. Advection-Diffusion Mechanism
18.2.4. General Transport Equation
18.2.5. Chemical Reactions
18.3. User Inputs
18.3.1. Defining Chemical Species
18.3.2. Defining Chemical Reactions
18.3.3. Defining the Species Transport Equations
18.3.4. Defining a Closure Equation
18.3.5. Chemical Reactions and Evolution
19. Physical Foaming
19.1. Introduction
19.2. Theory
19.2.1. Arefmanesh PMAT function
19.2.2. Exit Boundary Conditions
19.3. User Inputs
20. Volume of Fluid (VOF) Model
20.1. Introduction
20.2. Theory
20.2.1. Volume Conservation
20.2.2. Time Step Management
20.2.3. Numerical Considerations
20.2.4. Viscoelastic Fluids
20.3. Problem Setup
21. Flows with Internal Moving Parts
21.1. Introduction
21.1.1. Advantages of the Mesh Superposition Technique
21.1.2. Limitations of the Mesh Superposition Technique
21.2. Theory
21.2.1. Navier-Stokes Equations
21.2.2. Mass Conservation Equation
21.2.3. Energy Equation
21.2.4. Interpolation
21.2.5. Transient Moving Part Velocities
21.2.5.1. Description of Motion
21.2.5.2. Computation of the New Position
21.2.5.3. Computation of the Velocity
21.3. User Inputs
21.3.1. Mesh Considerations
21.3.2. Setting Up Your Problem in Ansys Polydata
21.3.3. Time-Dependent Parameters
21.4. Guidelines for Problems with Transient Velocities
21.5. Additional Guidelines
22. Sliding Mesh Technique
22.1. Introduction
22.1.1. Advantages of the Sliding Mesh Technique
22.1.2. Limitations of the Sliding Mesh Technique
22.2. Examples
22.3. Meshing
22.4. Equations
22.5. Guidelines
22.6. User Inputs
23. Using Multiple Materials in Polymer Flows
23.1. General Procedure for Using Multiple Materials
23.2. Conditions and Limitations for Using Multiple Materials
24. Glass Furnaces and Electrical Heating
24.1. Introduction
24.2. Electrical Heating
24.2.1. Theory
24.2.2. User Inputs for Electrical Heating
24.3. Radiative (Rosseland) Correction
24.3.1. Theory
24.3.2. Using Radiative Correction
24.4. Bubblers
24.4.1. Introduction
24.4.2. Theory
24.4.3. User Inputs for Bubblers
24.4.3.1. Mesh Requirements
24.4.3.2. Defining a Bubble Column in Ansys Polydata
25. Residual Stresses and Deformations
25.1. Introduction
25.2. Theory and Equations
25.2.1. Modeling
25.2.2. Material parameters
25.2.3. Boundary Conditions
25.2.4. Physical Interpretation
25.2.5. Numerical Treatment
25.3. Problem Setup
26. Fluid Structure Interaction (FSI) Model
26.1. Introduction
26.2. Theory
26.2.1. Effect of Elastic Sub-task on the Flow Domain
26.3. Elasticity Boundary Conditions
26.3.1. Interface With Solid
26.3.2. Interface With a Fluid
26.3.3. Normal and Tangential Displacement Imposed
26.3.4. Normal and Tangential Force Imposed
26.3.5. Normal Displacement and Tangential Force Imposed
26.3.6. Normal Force and Tangential Displacement Imposed
26.3.7. Symmetry Condition
26.3.8. Contact with the Parison
26.3.9. Border of a Moving Part
26.3.10. Assign Displacement at Points
26.3.11. No Displacement
26.3.12. Free Displacement
26.3.13. Cartesian Displacement Imposed
26.3.14. Global Force Imposed
26.4. Problem Setup
26.4.1. Numerical Parameters in Elastic Problem Coupled with Flow Problem
27. Evolution
27.1. Introduction
27.2. Nonlinearity and Evolution
27.3. Available Evolution Functions
27.4. Using Evolution
27.4.1. When to Use Evolution
27.4.2. Determining an Appropriate Evolution Parameter
27.4.3. Problem Setup
27.4.4. Initial Conditions
27.4.5. Output of Results for Evolution Problems
27.5. Interrupting Evolution
27.5.1. Criterion Definition
27.5.2. Available Fields (X) for Criteria
27.5.3. Restriction Functions R
27.5.4. Functions for Obtaining the Check Value F
27.5.5. Coordinate Functions
27.5.6. Inequality Tests
27.5.7. Multiple Criteria
27.5.8. Inputs for Criteria to Interrupt the Evolution
27.5.9. Output for Interruption Criteria
28. Time-Dependent Flows
28.1. Introduction
28.2. Theory
28.2.1. Equations
28.2.2. Integration Methods
28.2.3. Internal Solution Strategy
28.2.4. Time-Marching Schemes
28.3. User Inputs for Time-Dependent Problems
28.3.1. Setting Up a Time-Dependent Problem
28.3.2. Initial Conditions
28.3.3. Output of Results for Time-Dependent Problems
28.4. Outputs to a Listing File
28.5. Interrupting Time-Dependent Computations
28.6. Volume Conservation
29. Computing Derived Quantities
29.1. Overview of Derived Quantities
29.2. Stream Function
29.2.1. Calculation of Stream Function
29.2.2. User Inputs for Stream Function
29.3. Local Shear Rate
29.4. Viscosity
29.5. Rate-of-Deformation Tensor
29.6. Inelastic Stress Tensor
29.7. Viscous and Wall Friction Heating and Dissipated Power
29.8. Total Extra-Stress Tensor
29.9. Residence Time
29.9.1. Calculation of Residence Time
29.9.2. User Inputs for the Residence Time
29.10. Tracking of Material Points
29.10.1. Calculation for Tracking Material Points
29.10.2. User Inputs for Tracking Material Points
29.11. Tracking of a Material Property
29.12. Forces on Slices
29.13. Heat Fluxes
29.14. Flow Rate
29.15. Joule Effect
29.16. Mixing Index
29.17. Vorticity
29.18. Convected Heat
29.19. Parison Thickness
29.20. Extension Evaluation
29.21. Mass of Blown Product
29.22. Volume of Blown Product
29.23. Permeability of Blown Product
29.24. Stress Eigenvalues and Components
29.24.1. Calculation of Eigenvalues
29.24.2. Calculation of the Stress Component Along the Velocity Direction
29.24.3. Calculation of the Generalized First Normal Stress Difference
29.25. Quantification of Die Balancing
29.26. Energy Balance
29.27. Parison Programming
29.28. Volume of Liquid
29.29. Temperature Programming
29.30. Thickness Evaluation
29.31. Self-Contact
30. Using the Solver
30.1. Controlling the Calculations
30.1.1. Recalculating with a Different Interpolation
30.1.2. Specifying the Number of Iterations
30.1.3. Convergence and Divergence
30.1.4. Convergence Strategy for Rheology and Slipping
30.1.5. Convergence Strategy for Viscoelasticity
30.1.6. Automatic Detection of Distorted Elements
30.1.7. Time-Marching
30.1.8. Decoupling Calculations
30.1.8.1. Internal Radiation
30.1.8.2. Free Surfaces and Moving Surfaces
30.1.8.3. Transport of Species
30.1.8.4. Nonisothermal Flows
30.1.8.5. Viscoelastic Flows
30.1.8.6. Combining Decoupled Calculations
30.1.8.7. Nonisothermal Operating Temperature
30.2. Solver Details
30.2.1. Selecting the Solver
30.2.2. Classic Direct Solver
30.2.2.1. Ansys Polyflow Classic’s Implementation
30.2.2.2. Mesh Decomposition and Optimization
30.2.2.3. Solver Robustness
30.2.3. AMF Direct Solver
30.2.4. AMF Direct Solver + Secant
30.2.5. AMF Direct Solver + ILU
30.2.6. AMF Direct Solver + Secant + ILU
30.2.7. MUMPS Solver
30.2.7.1. Selecting the MUMPS Solver
30.2.7.2. Recommendations for the MUMPS Solver
30.2.8. MUMPS Solver + Secant
30.3. Distribute-Memory Parallel (DMP) Analysis for Ansys Polyflow Classic
30.3.1. Configuring a Distributed-Memory Parallel (DMP) Analysis
30.3.1.1. DMP Analysis Under Windows
30.3.1.2. DMP Analysis Under Linux
30.4. DMP Analysis on a Cluster
30.4.1. How to determine the MPI parameters
30.4.2. Linux Cluster
30.4.3. Windows Cluster
31. User-Defined Functions (UDFs)
31.1. Introduction
31.1.1. Solver Performance with UDFs
31.2. Writing User-Defined Functions
31.2.1. Naming Your UDF
31.2.2. Summary of CLIPS Syntax
31.2.2.1. Example
31.2.2.2. Using Variables
31.2.3. Testing Your UDF
31.2.4. Mathematical Functions
31.2.4.1. Standard Mathematical Functions
31.2.4.2. Extended Mathematical Functions
31.2.5. Procedural Functions
31.3. Using User-Defined Functions
31.4. Dependence with Respect to Quantities Derived from the Kinematics
31.4.1. Some Quantities Derived from the Kinematics
31.4.2. Possible Viscosity Models with Distinct Behaviors in Shear and Extension
31.5. Best Practices for Complex User Defined Functions
31.5.1. An Example of a Complex UDF
31.5.2. CLIPS File Structure
32. CSV-Defined Functions
32.1. Introduction
32.2. Using CSV-Defined Functions
33. User-Defined Templates (UDTs)
33.1. Introduction
33.2. Defining a UDT
33.2.1. Creating a New Template Entry to Flag a Parameter
33.2.2. Reviewing a Template Entry
33.2.3. Modifying a Template Entry
33.3. Using UDTs
33.3.1. As Usual Method
33.3.2. Real UDT Method
33.3.3. Script Method
34. Die Shape Parameterization
34.1. Introduction
34.2. Theory
34.2.1. Element Stiffness During Elastic Remeshing
34.2.2. Domain Transformations
34.2.3. Surface Transformations
34.2.4. Line Transformations
34.2.5. Point Displacement
34.2.6. Hierarchy of Equations
34.3. Remarks and Limitations
34.4. Problem Setup
34.4.1. Fixed Domain
34.4.2. Rigid Translation
34.4.3. Elastic Remeshing
35. Optimization
35.1. Introduction
35.2. Theory
35.2.1. Constrained Optimization
35.2.2. Solving the Optimization Problem
35.2.2.1. The Augmented Lagrange Multiplier (ALM) Method
35.2.2.2. The Fletcher-Reeves (FR) Method
35.2.2.3. The Line Search (LS) Method
35.3. Optimization in Ansys Polyflow Classic
35.3.1. Design Variables
35.3.2. Extractors
35.3.3. Objective Functions
35.3.4. Constraints
35.3.5. Optimizer Parameters
35.3.6. Remarks
35.4. Problem Setup
35.5. Files and Output for Optimization
35.5.1. The Standard Listing File
35.5.2. The Listing File for Optimization
35.5.3. The Sensitivities Files
35.5.4. The Result Files for Successful Evaluations of the Solution
35.6. Additional Options for Solution Exploration
35.6.1. Design Exploration
35.6.2. VisualDOC
A. Sub-Task Compatibility Charts
B. Running Ansys Polyflow Classic with VisualDOC
B.1. Introduction
B.2. Constraints and Limitations
B.3. Parameterization Types in Ansys Polydata
B.3.1. Optimization Files in Ansys Polydata
B.3.1.1. Ansys Polydata Parameterization
B.3.1.2. Geometrical Parameterization
B.3.1.3. External Parameterization
B.3.1.4. Combining Types of Optimization
B.3.2. Tagging of Inputs
B.3.2.1. Tagging of Inputs in Ansys Polydata
B.3.3. Defining a Response in Ansys Polydata
B.3.4. File Management for Optimization
B.3.5. Files Generated by an Ansys Polydata Session
B.4. Problem Setup
C. Known Static Array Limitations
Bibliography