Expand/Collapse all
1. Understanding Fracture Mechanics
1.1. Introduction to Fracture Mechanics
1.1.1. Understanding Fracture Modes
1.1.2. Understanding the Fracture Parameters
1.1.3. Understanding Crack-Growth Simulation
1.2. Understanding How Fracture-Mechanics Problems Are Solved
1.2.1. Modeling the Crack-Tip Region
1.2.2. How the Fracture Parameters Are Evaluated
1.3. Learning More About Fracture Mechanics
2. Calculating Fracture Parameters
2.1. Fracture-Parameter Calculation Process
2.1.1. Step 1: Initiate a New Fracture-Parameter Calculation
2.1.2. Step 2: Specify the Type of Fracture-Parameter Calculation
2.1.3. Step 3: Define Crack Information
2.1.4. Step 4: Specify the Number of Contours (if Needed)
2.1.5. Step 5: Define a Crack-Symmetry Condition (if Needed)
2.1.6. Step 6: Specify Crack-Surface Traction to be Derived from Initial Stress (if Needed)
2.1.7. Step 7: Specify Output Controls
2.2. Fracture-Parameter Calculation Element and Material Support
2.3. Fracture-Parameter Calculation Requirements
2.4. Fracture-Parameter Calculation Types
2.4.1. J-integral Calculation
2.4.2. Stress-Intensity Factors (SIFS) Calculation
2.4.3. T-stress Calculation
2.4.4. Material-Force Calculation
2.4.5. C*-integral Calculation
2.4.6. VCCT Energy-Release Rate Calculation
2.5. Unstructured-Mesh Method (UMM)
2.5.1. Fracture-Mechanics Parameters Supported by UMM
2.5.2. UMM Default Settings
2.5.3. UMM Assumptions and Restrictions
3. Crack-Initiation and -Growth Simulation, Interface Delamination, and Fatigue Crack-Growth
3.1. Understanding Crack-Initiation and -Growth Mechanics
3.1.1. Crack-Initiation Mechanics
3.1.2. Static Crack-Growth Mechanics
3.1.3. Fatigue Crack-Growth Mechanics
3.2. SMART Method for Crack-Initiation Simulation
3.2.1. Performing a SMART Crack-Initiation Simulation
3.2.2. SMART Crack-Initiation Assumptions and Limitations
3.2.3. Example: SMART Crack-Initiation/-Growth Analysis
3.3. SMART Method for Crack-Growth Simulation
3.3.1. Understanding a SMART Crack-Growth Simulation
3.3.2. Performing the SMART Crack-Growth Calculation
3.3.3. SMART Crack-Growth Assumptions and Limitations
3.3.4. Postprocessing SMART Crack-Growth Analysis Results
3.3.5. Example: Fatigue Crack-Growth Analysis Using SMART
3.4. SMART Multiframe Restart Capability
3.5. VCCT-Based Crack-Growth Simulation
3.5.1. VCCT Crack-Growth Simulation Process
3.5.2. Crack Extension
3.5.3. Fracture Criteria
3.5.4. Example: Crack-Growth Simulation
3.5.5. VCCT Crack-Growth Simulation Assumptions
3.6. Modeling Interface Delamination with Interface Elements
3.6.1. Analyzing Interface Delamination
3.6.2. Interface Elements
3.6.3. Material Definition
3.6.4. Meshing and Boundary Conditions
3.6.5. Solution Procedure and Result Output
3.6.6. Reviewing the Results
3.7. Modeling Interface Delamination with Contact Elements (Debonding)
3.7.1. Analyzing Debonding
3.7.2. Contact Elements
3.7.3. Material Definition
3.7.4. Result Output
3.8. XFEM-Based Crack Analysis and Crack-Growth Simulation
3.8.1. XFEM Overview
3.8.2. XFEM Analysis Methods
3.8.3. Defining the Model in an XFEM Analysis
3.8.4. XFEM-Based Stationary Crack Analysis
3.8.5. XFEM-Based Crack-Growth Analysis
3.8.6. Postprocessing XFEM Analysis Results
3.8.7. XFEM Crack-Growth Simulation References
3.9. XFEM-Based Fatigue Crack-Growth
3.9.1. XFEM-Based Fatigue Crack-Growth in Mechanical APDL
3.9.2. Performing an XFEM-Based Fatigue Crack-Growth Analysis
3.9.3. XFEM-Based Fatigue Crack-Growth Assumptions
3.9.4. Postprocessing XFEM-Based Fatigue Crack-Growth Analysis Results
3.9.5. Example: XFEM-Based Fatigue Crack-Growth Analysis
A. Fracture Analysis Benchmarks
A.1. Center-Crack-Tension (CCT) Specimen Subjected to Cyclic Crack-Surface Pressure Loading
A.1.1. Problem Description
A.1.2. Material Properties
A.1.3. Finite Element Model
A.1.4. Boundary Conditions and Loading
A.1.5. Results and Discussion
A.1.6. References
A.1.7. Input Files
A.2. Disk-Shaped Compact Tension (CT) Specimen Subjected to Cyclic Tensile Loading
A.2.1. Problem Description
A.2.2. Material Properties
A.2.3. Finite Element Model
A.2.4. Boundary Conditions and Loading
A.2.5. Results and Discussion
A.2.6. Input Files
A.3. Round Bar Specimen with Internal Circular Crack Subjected to Initial Stress
A.3.1. Problem Description
A.3.2. Material Properties
A.3.3. Boundary Conditions and Loading
A.3.4. Finite Element Model
A.3.5. Results and Discussion
A.3.6. Input Files