Expand/Collapse all
1. Forte Best Practices Introduction
2. Operating Environment
2.1. General Core Count Recommendations
2.1.1. Examples of Representative Scenarios
2.2. General Hardware Recommendations and Guidance on Memory Usage
2.3. Troubleshooting
2.3.1. Memory Related Errors
2.3.2. Memory Error Fixed by Simulation Restart
3. Meshing
3.1. Surface Mesh Generation
3.2. Troubleshooting
3.2.1. Error Caused by Surface Intersection (Assertion Failure)
3.2.2. Mesh Generation or Mesh Preview Takes a Very Long Time
3.2.3. Diagnosing Error: Vertex Reached Unexpected Location
3.2.4. Orphan Cells When Using the Automatic Mesh Generator
3.2.5. Error Converting Mass Flow Rate Into Velocity for Boundary
4. Engine Simulations
4.1. DI Diesel Engine Case (Typically, Sector Mesh)
4.1.1. Initial Set-up
4.1.1.1. Sector Mesh Generation
4.1.1.1.1. Bowl Profile
4.1.1.1.2. Topology Selection, Mesh Control Points, and Size Parameters
4.1.1.2. Evaluating Initial (IVC) Gas Composition
4.1.1.2.1. Initial (IVC) NOx for High EGR Cases
4.1.1.3. Fuel Mass for Direct Injection Cases
4.1.2. Basic Calibration Procedures
4.1.2.1. IVC Pressure and Temperature
4.1.2.2. Injection Timing
4.1.3. Advanced Calibration
4.1.4. Comparing to Experimental Data
4.1.4.1. Calculating Apparent Heat Release Rate from Experimental Pressure
4.1.4.2. Read Data Arrays into Forte Monitor
4.1.4.3. Review Spray Behavior
4.1.4.4. Emissions and Performance Data
4.1.4.4.1. Conversion to Mass per Time Units
4.2. Setting Up Generic Engine Cases with Valve Motion Using Automatic Mesh Generation
4.2.1. Read In and Process the Surface Mesh
4.2.1.1. Selecting the Source of Surface Meshes
4.2.1.2. Splitting the Geometry
4.2.1.3. Normals
4.2.2. Set Up Mesh Size and Mesh Refinement
4.2.2.1. Material Point
4.2.2.2. Global Mesh Size
4.2.2.3. Mesh Refinement
4.2.2.4. Modeling the Crevice
4.2.2.5. Modeling Sector Geometry Using Automatic Mesh Generation
4.2.2.6. Multi-Cylinder Simulations
4.2.3. Models
4.2.3.1. Turbulence Model
4.2.3.2. Flame Speed Model for SI Engine Simulations
4.2.3.2.1. SAM Settings for Flame Propagation
4.2.3.3. Spray Model
4.2.3.3.1. SAM Settings for Spray Vaporization
4.2.3.4. Spark Model
4.2.3.5. Soot Model
4.2.4. Boundary Conditions
4.2.4.1. Boundary Profiles
4.2.4.2. Valves
4.2.4.3. Valve Angles
4.2.4.4. Valve Lift
4.2.4.5. Movement Type
4.2.4.6. Inlet Boundary
4.2.4.7. Outlet Boundary
4.2.5. Initial Conditions
4.2.5.1. Initialization Order
4.2.6. Simulation Controls
4.2.7. Output Controls
4.2.8. Preview Simulation
4.2.9. Forte Engine Simulation Checklist
4.3. Setting Up Two-stroke Engine Cases
4.3.1. Piston/Cylinder Wall Gap
4.3.2. Locating the Piston and Defining Motion
4.3.3. Surface Mesh Topology and Other Considerations
4.3.4. Runtime Port Open/Close Considerations
4.4. "How-to"
4.4.1. Convert Between Crank Angle and Time
4.4.2. Specify, Change, or Specify Compression Ratio in an Engine Setup
4.4.3. Set Sub-Volume Region Initialization Order
4.4.4. Set Initial Swirl Ratio and Initial Swirl Profile
4.4.5. Set Up a Valve Lift Profile
4.4.6. Set Up a PFI Engine by Assuming Homogeneous Charge
4.4.7. Set Up a PFI Engine by Port Fuel Injection
4.4.8. Set Up a Gasoline Engine with Pre-chamber and Spark-Ignition
4.4.9. Model Knock
4.4.10. Speed Up a Flame Kernel Growth Under Lean-Burn Conditions for Gasoline Engines
4.4.11. Reduce Computational Time in Spark-Ignition (SI) Engine Simulation
4.4.12. Add or Modify Fuel Species in the Fuel Library
4.4.13. Set Up an Ammonia-Fueled Engine
4.4.14. Set Up a Hydrogen Combustion Engine
4.4.15. Monitor the Penetration Length of a Gas Injection Plume
4.5. Troubleshooting
4.5.1. No Combustion or Misfire in Engine
4.5.2. Mass in Cylinder Not Constant When Valves Are Closed
4.5.3. Mismatch of Compression Pressure
4.5.4. Mismatch of Expansion Pressure
4.5.5. Flame Completely Quenches After the Switch from Ignition Kernel to G-Equation
4.5.6. Error: "Spark plug # 1 must be put inside a Cylinder/Primary region or a Sub-Chamber region"
5. Compressor, Pump, and Valve Simulations
5.1. Overview of Compressor Simulation
5.1.1. Supported Compressor Types
5.1.2. Simulation Strategy
5.1.3. Geometry Preparation and Fluid Volume Formation
5.1.4. Boundary Motion Specification
5.1.5. Small Gap Handling
5.1.6. Refrigerant Properties
5.1.7. Simulation Preview Through Ensight
5.1.8. Torque, Power, and Force Outputs
5.2. Simulation of Rotary Lobe Compressors
5.2.1. Surface Geometry Import and Manipulation
5.2.2. Mesh Controls
5.2.3. Model Settings
5.2.4. Boundary Conditions
5.2.5. Initial Conditions
5.2.6. Simulation Controls
5.2.7. Output Controls
5.2.8. Preview Simulation
5.3. Simulation of Scroll Compressors
5.4. Simulation of Pumps
5.5. Simulation of Flows Involving Valves
5.6. "How-to"
5.6.1. Resolve Assertion Failure or Surface Intersection in a Screw Compressor
5.6.2. Modeling Small Gaps That Are Not Flow Passages
5.6.3. Set Mesh Refinement Controls Near a Very Thin Plate
5.6.4. Prevent Backflow
5.6.5. Set Surface Proximity Manually in Gap Feature Meshing Control
6. Preparing and Submitting Runs
6.1. "How-to"
6.1.1. Submit Multiple Runs
6.1.2. Restart Runs with a Reduced Mesh Resolution
6.1.3. Keep Old Restart Files
7. System Coupling Simulations
7.1. Post-Processing System Coupling Solutions – Spatially Resolved Solutions
7.2. "How-to"
7.2.1. Change the Default MPI Used by a Participant
7.3. Troubleshooting
7.3.1. Cannot Add Forte as a Participant Through Ansys Workbench
7.3.2. How to Diagnose Convergence Problems
8. Forte Monitor
8.1. "How-to"
8.1.1. Zoom In the Plot to View a Subset of Data
9. Post-Processing Using Ansys EnSight
9.1. "How-to"
9.1.1. Reduce the Time of Processing Data in EnSight
9.1.2. Generate Streamlines on a Cut Plane
9.1.3. View the Components of a Vector Variable When Reading DVS Results
9.1.4. Create Time-Varying Probed Results Using Query/Plot