Expand/Collapse all
About This Archive
I. Archived Features
1. Piping Models
1.1. What the Piping Commands Can Do for You
1.2. Modeling Piping Systems with Piping Commands
1.2.1. Specify the Jobname and Title
1.2.2. Set Up the Basic Piping Data
1.2.3. Define the Piping System's Geometry
1.3. Example Piping Model Input
2. Subroutines
2.1. Subroutine UserPL (Writing Your Own Plasticity Laws)
2.2. Subroutine usflex (Computes the flexibility factor for PIPE16 and PIPE18)
3. Restarting a Direct Coupled-Field Analysis
3.1. Singleframe Restart
3.1.1. Singleframe Restart Requirements
3.1.2. Singleframe Restart Procedure
3.1.3. Restarting a Nonlinear Analysis From an Incompatible Database
4. Partial-Solution Procedure
4.1. Partial Inertia Relief Calculations
4.2. Comparison of Linear Perturbation and Partial-Solution Procedures
5. Fatigue
5.1. How Fatigue Is Calculated
5.2. Fatigue Terminology
5.3. Evaluating Fatigue
5.3.1. Enter POST1 and Resume Your Database
5.3.2. Establish the Size, Fatigue Material Properties, and Locations
5.3.3. Store Stresses and Assign Event Repetitions and Scale Factors
5.3.4. Activate the Fatigue Calculations
5.3.5. Review the Results
5.3.6. Other Approaches to Range Counting
5.3.7. Example: Fatigue Evaluation Input
6. Cracking and Crushing Plots (SOLID65 and PLCRACK)
7. Stress-Intensity Factors (SIFS) Calculation via Displacement Extrapolation
7.1. Step 1: Define a Local Crack-Tip or Crack-Front Coordinate System
7.2. Step 2: Define a Path Along the Crack Face
7.3. Step 3: Calculate KI, KII, and KIII
8. Gap Condition
II. Archived Commands
BELLOW - Defines a bellows in a piping run.
BEND - Defines a bend in a piping run.
BRANCH - Defines the starting point for a piping branch.
CRPLIM - Specifies the creep criterion for automatic time stepping.
CECYC - Generates the constraint equations for a cyclic symmetry analysis
FATIGUE - Specifies "Fatigue data status" as the subsequent status topic.
FE - Defines a set of fatigue event parameters.
FELIST - Lists the fatigue event parameters.
FL - Defines a set of fatigue location parameters.
FLANGE - Defines a flange in a piping run.
FLLIST - Lists the fatigue location parameters.
FP - Defines the fatigue S vs. N and Sm vs. T tables.
FPLIST - Lists the property table stored for fatigue evaluation.
FS - Stores fatigue stress components at a node.
FSDELE - Deletes a stress condition for a fatigue location, event, and loading.
FSLIST - Lists the stresses stored for fatigue evaluation.
FSNODE - Calculates and stores the stress components at a node for fatigue.
FSPLOT - Displays a fatigue stress item for a fatigue location and event.
FTCALC - Performs fatigue calculations for a given node location.
FTSIZE - Defines the fatigue data storage array.
FTWRITE - Writes all currently stored fatigue data on a file.
GAP - Specifies "mode-superposition transient gap conditions" as the subsequent status topic.
GAPF - Defines the gap force data to be stored in a variable.
GP - Defines a gap condition for transient analyses.
GPDELE - Deletes gap conditions.
GPLIST - Lists the gap conditions.
KCALC - Calculates stress intensity factors in fracture mechanics analyses.
MITER - Defines a mitered bend in a piping run.
PCORRO - Specifies the allowable exterior corrosion thickness for a piping run.
PDRAG - Defines the external fluid drag loading for a piping run.
PFLUID - Defines the contained fluid density for a piping run.
PGAP - Defines a spring-gap constraint in a piping run.
PINSUL - Defines the external insulation constants in a piping run.
PIPE - Specifies "Pipe modeling" as the subsequent status topic.
PLCRACK - Displays cracking and crushing locations in SOLID65 elements.
POPT - Selects the piping analysis standard for a piping run.
PPRES - Defines the internal pressure for a piping run.
PSOLVE - Directs the program to perform a partial solution.
PSPEC - Defines pipe material and dimensions.
PSPRNG - Defines a spring constraint in a piping run.
PTEMP - Defines the pipe wall temperatures in a piping run.
PUNIT - Selects the system of length units to be used in a piping run.
REDUCE - Defines a reducer in a piping run.
RUN - Defines a pipe run.
SSTIF - Activates stress stiffness effects in a nonlinear analysis.
TEE - Defines a tee in a piping run.
VALVE - Defines a valve in a piping run.
III. Archived Material Properties
1. Multilinear Kinematic Hardening (TB,MKIN and TB,KINH)
1.1. Defining the Multilinear Kinematic Hardening Model
1.2. Material Model Combinations Using Multilinear Kinematic Hardening
2. Multilinear Isotropic Hardening (TB,MISO)
2.1. Defining the Multilinear Isotropic Hardening Model
2.2. Material Model Combinations Using Multilinear Isotropic Hardening
3. Bilinear Isotropic Hardening (TB,BISO)
3.1. Understanding Bilinear Isotropic Hardening
3.2. Defining the Bilinear Isotropic Hardening Model
3.3. Material Model Combinations Using Bilinear Isotropic Hardening
3.3.1. BISO and CHAB Example
3.3.2. GURSON and BISO Example
3.3.3. GURSON and CHAB and BISO Example
3.3.4. RATE and BISO Example
3.3.5. BISO and CREEP Example
3.3.6. HILL and BISO Example
3.3.7. HILL and BISO and CHAB Example
3.3.8. HILL and RATE and BISO Example
3.3.9. HILL, CREEP and BISO Example
3.3.10. RATE and CHAB and BISO Example
4. Bilinear Kinematic Hardening (TB,BKIN)
4.1. Understanding Bilinear Kinematic Hardening
4.2. Defining the Bilinear Kinematic Hardening Model
4.3. Material Model Combinations Using Bilinear Kinematic Hardening
4.3.1. BKIN and CREEP Example
4.3.2. HILL and BKIN Example
4.3.3. HILL and CREEP and BKIN Example
5. Classic Drucker-Prager Plasticity (TB,DP)
5.1. Understanding Classic Drucker-Prager Plasticity
5.1.1. Classic Drucker-Prager Plasticity Model Theory
5.2. Defining the Classic Drucker-Prager Plasticity Model
IV. Archived Elements
BEAM4 - 3D Elastic Beam
CONTAC12 - 2D Point-to-Point Contact
PIPE16 - Elastic Straight Pipe
PIPE18 - Elastic Curved Pipe
PLANE42 - 2D Structural Solid
SOLID45 - 3D Structural Solid
CONTAC52 - 3D Point-to-Point Contact
PIPE59 - Immersed Pipe or Cable
SHELL63 - Elastic Shell
SOLID65 - 3D Reinforced Concrete Solid
FLUID79 - 2D Contained Fluid
FLUID80 - 3D Contained Fluid
FLUID81 - Axisymmetric-Harmonic Contained Fluid
PLANE82 - 2D 8-Node Structural Solid
SOLID92 - 3D 10-Node Tetrahedral Structural Solid
SOLID95 - 3D 20-Node Structural Solid
CONTA171 - 2D 2-Node Surface-to-Surface Contact
CONTA173 - 3D 4-Node Surface-to-Surface Contact
CONTA176 - 3D Line-to-Line Contact
V. Archived Theory
1. Archived Theory Element Library
1.1. BEAM4 - 3D Elastic Beam
1.1.1. Stiffness and Mass Matrices
1.1.2. Gyroscopic Damping Matrix
1.1.3. Pressure and Temperature Load Vector
1.1.4. Local to Global Conversion
1.1.5. Stress Calculations
1.2. CONTAC12 - 2D Point-to-Point Contact
1.2.1. Element Matrices
1.2.2. Orientation of the Element
1.2.3. Rigid Coulomb Friction
1.3. PIPE16 - Elastic Straight Pipe
1.3.1. Assumptions and Restrictions
1.3.2. Stiffness Matrix
1.3.3. Mass Matrix
1.3.4. Gyroscopic Damping Matrix
1.3.5. Load Vector
1.3.6. Stress Calculation
1.4. PIPE18 - Elastic Curved Pipe
1.4.1. Other Applicable Sections
1.4.2. Stiffness Matrix
1.4.3. Mass Matrix
1.4.4. Load Vector
1.4.5. Stress Calculations
1.5. PLANE42 - 2D Structural Solid
1.5.1. Other Applicable Sections
1.6. SOLID45 - 3D Structural Solid
1.6.1. Other Applicable Sections
1.7. CONTAC52 - 3D Point-to-Point Contact
1.7.1. Other Applicable Sections
1.7.2. Element Matrices
1.7.3. Orientation of Element
1.8. PIPE59 - Immersed Pipe or Cable
1.8.1. Overview of the Element
1.8.2. Location of the Element
1.8.3. Stiffness Matrix
1.8.4. Mass Matrix
1.8.5. Load Vector
1.8.6. Hydrostatic Effects
1.8.7. Hydrodynamic Effects
1.8.8. Stress Output
1.9. SHELL63 - Elastic Shell
1.9.1. Other Applicable Sections
1.9.2. Foundation Stiffness
1.9.3. In-Plane Rotational Stiffness
1.9.4. Warping
1.9.5. Options for Non-Uniform Material
1.9.6. Extrapolation of Results to the Nodes
1.10. SOLID65 - 3D Reinforced Concrete Solid
1.10.1. Assumptions and Restrictions
1.10.2. Description
1.10.3. Linear Behavior - General
1.10.4. Linear Behavior - Concrete
1.10.5. Linear Behavior - Reinforcement
1.10.6. Nonlinear Behavior - Concrete
1.10.7. Modeling of a Crack
1.10.8. Modeling of Crushing
1.11. FLUID79 - 2D Contained Fluid
1.11.1. Other Applicable Sections
1.12. FLUID80 - 3D Contained Fluid
1.12.1. Other Applicable Sections
1.12.2. Assumptions and Restrictions
1.12.3. Material Properties
1.12.4. Free Surface Effects
1.12.5. Other Assumptions and Limitations
1.13. FLUID81 - Axisymmetric-Harmonic Contained Fluid
1.13.1. Other Applicable Sections
1.13.2. Assumptions and Restrictions
1.13.3. Load Vector Correction
1.14. PLANE82 - 2D 8-Node Structural Solid
1.14.1. Other Applicable Sections
1.14.2. Assumptions and Restrictions
1.15. SOLID92 - 3D 10-Node Tetrahedral Structural Solid
1.15.1. Other Applicable Sections
1.16. SOLID95 - 3D 20-Node Structural Solid
1.16.1. Other Applicable Sections
1.17. CONTA171 - 2D 2-Node Surface-to-Surface Contact
1.17.1. Other Applicable Sections
1.18. CONTA173 - 3D 4-Node Surface-to-Surface Contact
1.18.1. Other Applicable Sections
1.19. CONTA176 - 3D Line-to-Line Contact
1.19.1. Other Applicable Sections
1.19.2. Contact Kinematics
1.19.3. Contact Models
1.19.4. Contact Forces
2. Concrete (with SOLID65)
2.1. The Domain (Compression - Compression - Compression)
2.2. The Domain (Tension - Compression - Compression)
2.3. The Domain (Tension - Tension - Compression)
2.4. The Domain (Tension - Tension - Tension)
3. Creep
3.1. Definition and Limitations
3.2. Calculation of Creep
3.3. Time-Step Size
4. Hydrodynamic Loads on Line Elements
4.1. Wave Theory
5. POST1 - Fatigue Module
6. POST1 - Crack Analysis (KCALC)
7. Gap Condition in Mode Superposition Transient