7.6. Linear Perturbation Harmonic Response Analysis of Two Stages

This example uses two simplified gear teeth stages to create a multistage system and perform a linear perturbation harmonic response analysis. It demonstrates the following key points:

  • Performing a linear perturbation (LP) harmonic response analysis.

  • Applying loads to 2 stages.

  • Applying an engine order load manually by defining the appropriate load to both the base and duplicate sectors.

  • Applying an engine order load using a table having MSHI as a variable to automatically copy loads to the duplicate sectors (see Harmonic Index-based Tabular Loads).

  • Postprocessing sector 1 results in /POST26.

7.6.1. Problem Description

The multistage system consists of two axially aligned cyclic stages, each with a different number of teeth about the circumference. The two sector stages are shown in Figure 7.30: Multistage Model with Two Gear Teeth Stages. Stage 1 has 24 sectors (blue in the figure) and Stage 2 has 45 sectors (purple in the figure). For the base step of the LP multistage analysis, both HI = 0 stages undergo a rotational velocity and a temperature load. Both stages are then subjected to two different engine order 2 loadings, which are modeled using a single harmonic index (HI = 2).

Figure 7.30: Multistage Model with Two Gear Teeth Stages

Multistage Model with Two Gear Teeth Stages


7.6.2. Analysis Steps

Step Description Mechanical APDL commands
1.Read in stage meshes for base and duplicate sectors.CDREAD,…
2.Duplicate meshes.DUPLSTG.mac (macro provided)
3.Create stage components.CM,...
4.Create HI = 0 stages and apply cyclic constraints.

MSOPT,NEW,,,0

CECYCMS

5.Apply interstage constraints for all stage connections.CEIMS,…
6.Enter the solution processor./SOLU
7.Specify static analysis options.

ANTYPE,STATIC

8.Apply rotational load.OMEGA,…
9.Specify temperature load.TREF,…

BF,,TEMP

10.Apply boundary conditionsD,…
11.Solve the analysis.SOLVE
11.Exit and reenter the solution processor.

FINISH

/SOLU

12.Perform static LP restart and reform matrices for harmonic response

ANTYPE,STATIC,RESTART,,,PERTURB

PERTURB,MODAL

SOLVE,ELFORM

13.Specify harmonic response options.

HROPT,FULL

HARFRQ,…

NSUBST,…

14.Modify used stages and delete unused stage clones.

MSOPT,MODIFY

CECYCMS

15.Apply interstage constraints for desired stages and stage clones.CEIMS
16.Apply loads.SF,…
17.Solve the analysis.SOLVE
18.Post process the multistage results for all harmonics.

/POST1

MSOPT,EXPA,ALL,…

SET,…

19.Generate contour plot.PLNSOL,…
20.Postprocess frequency results/POST26

NSOL,…

PRCPLX,…

PLVAR,…

7.6.3. Input for the Analysis

Download the zipped .cdb file and macro used for this example problem.

/batch
/com, ============================================
/com, ============================================
/com,        FULL Harmonic Solve: MS Model
/com, ============================================
/com, ============================================

/filname,msHarmResp

/com, ============================================
/com,       MS Model Preparation
/com, ============================================

cdread,db,msHarmStage,cdb

/prep7

csys,1

! duplicate mesh using macro (provided in example package)
DUPLSTG,'stage1'
DUPLSTG,'stage2'

! create cyclic edge CEs
cmsel,s,_stage1_base_nod
nsel,r,loc,y,0
cm,_stage1_cyclow_nod,node
allsel

cmsel,s,_stage1_base_nod
nsel,r,loc,y,alpSec1
cm,_stage1_cychigh_nod,node
allsel

msopt,new,stage1,Nsec1,0
cecycms

cmsel,s,_stage2_base_nod
nsel,r,loc,y,0
cm,_stage2_cyclow_nod,node
allsel

cmsel,s,_stage2_base_nod
nsel,r,loc,y,alpSec2
cm,_stage2_cychigh_nod,node
allsel

msopt,new,stage2,Nsec2,0
cecycms

! create interstage CEs
cmsel,s,_stage1_base_nod
nsel,r,loc,z,0
cm,intf1_stage1_nod,node
allsel

cmsel,s,_stage2_base_nod
nsel,r,loc,z,0
cm,intf1_stage2_nod,node
allsel

ceims,,,stage1,stage2,,,,,,intf1_stage1_nod,intf1_stage2_nod

! components
cmsel,s,load_stage1
cmsel,r,_stage1_base_nod
nsel,r,loc,x,Ro_blad_stage1
nd0=ndnext(0)
allsel

cmsel,s,load_stage2
cmsel,r,_stage2_base_nod
nsel,r,loc,x,Ro_blad_stage2
nd1=ndnext(0)
allsel

finish

/com, ============================================
/com,        Static Base Step
/com, ============================================

/solu
antype,static
nlgeom,on

nsubst,2,2,2

! boundary conditions
cmsel,s,_stage1_base_nod
cmsel,a,_stage1_dupl_nod
nsel,r,loc,x,Ri_stage1
d,all,all
allsel

! loading
omega,,,600

tref,0

cmsel,s,_stage1_base_nod
cmsel,a,_stage1_dupl_nod
bf,all,temp,300
allsel

cmsel,s,_stage2_base_nod
cmsel,a,_stage2_dupl_nod
bf,all,temp,100
allsel

solve
finish

/com, ============================================
/com,        LP Harmonic Response
/com, ============================================

/SOLU
antype,static,restart,,,perturb
perturb,harmic,,,dzerokeep
solve,elform

hropt,full
Nfrq=40
Fmin=604
Fmax=605.5
harfrq,Fmin,Fmax
nsubst,Nfrq

! update harmonic index
HI1 = 2
HI2 = 2

msopt,modify,stage1,HI1
cecycms
msopt,modify,stage2,HI2
cecycms
ceims,,,stage1,stage2,,,,,,intf1_stage1_nod,intf1_stage2_nod

! Manually apply load to both base and duplicate sectors of stage 1.
! This will result in an engine order excitation equal to 
! HI1 (stage 1 harmonic index)
F1real = 1e6
F1imag = 0.25e6

cmsel,s,load_stage1
cmsel,r,_stage1_base_nod
sf,all,pres,F1real,F1imag
allsel

cmsel,s,load_stage1
cmsel,r,_stage1_dupl_nod
sf,all,pres,F1imag,-F1real
allsel

! Apply MSHI-based tabular load to base sector only of stage 2.
! This will result in an engine order 2 excitation.
EO = 2
*dim,press_tab_re,table,1,,,MSHI
press_tab_re(1,0) = EO
press_tab_re(1,1) = 1e6

*dim,press_tab_im,table,1,,,MSHI
press_tab_im(1,0) = EO
press_tab_im(1,1) = 0

cmsel,s,load_stage2
cmsel,r,_stage2_base_nod
 
sf,all,pres,%press_tab_re%,%press_tab_im%
allsel


kbc,1

! damping
dmpstr,1e-3

solve
finish

/post1
file,,rstp
msopt,expa,all,all
set,1,20
rsys,1
/graphics,power
/view,,1,1,1
/edge,,1
/show,png,rev
    plnsol,u,sum
    *get,umax,plnsol,,max
    plnsol,s,eqv
    *get,seqvmax,plnsol,,max
*stat,umax
*stat,seqvmax
finish

/POST26
file,,rstp
numvar,50

nsol,2,nd0,u,x ! base sector results - stage1
nsol,3,nd0,u,y
nsol,4,nd0,u,z

nsol,12,nd1,u,x ! base sector results - stage2
nsol,13,nd1,u,y
nsol,14,nd1,u,z

prcplx,1
lines,100000
/com
/com ------- TIP OF BLADE - STAGE 1 -------
/com
plvar,2,3,4
/com
/com ------- TIP OF BLADE - STAGE 2 -------
/com
plvar,12,13,14
/show,close
FINISH
/exit,nosave

7.6.4. Results

The following figures compare the results of the multistage LP harmonic analysis with those from the reference full 360° LP harmonic analysis. These figures show that the results of the two models are quite similar and verifies the accuracy of the more efficient multistage cyclic symmetry approach.

Figure 7.31: Displacement for Multistage (A) and Reference Full 360° (B)

Displacement for Multistage (A) and Reference Full 360° (B)

Figure 7.32: Stress for Multistage (A) and Reference Full 360° (B)

Stress for Multistage (A) and Reference Full 360° (B)

Figure 7.33: Stage 1 Displacement Frequency Response – Sector 1 for Multistage (A) and Reference Full 360° (B)

Stage 1 Displacement Frequency Response – Sector 1 for Multistage (A) and Reference Full 360° (B)

Figure 7.34: Stage 2 Displacement Frequency Response – Sector 1 for Multistage (A) and Reference Full 360° (B)

Stage 2 Displacement Frequency Response – Sector 1 for Multistage (A) and Reference Full 360° (B)