Expand/Collapse all
1. Fluent Icing Tutorials
1.1. In-Flight Icing Tutorial Using Fluent Icing
1.1.1. Fluent Airflow on a Rough NACA0012 Airfoil
1.1.1.1. Introduction
1.1.1.2. Problem Description
1.1.1.3. Setup and Solution
1.1.1.3.1. Preparation
1.1.1.3.2. Setup
1.1.1.3.3. Solution
1.1.1.3.4. Post-processing
1.1.1.4. Summary
1.1.2. Droplet Impingement on the NACA0012
1.1.2.1. Monodispersed Calculation
1.1.2.2. Langmuir-D Distribution
1.1.2.3. Post-Processing Using Viewmerical
1.1.3. Fluent Icing Ice Accretion on the NACA0012
1.1.4. Postprocessing an Ice Accretion Solution Using CFD-Post Macros
1.1.5. Multi-Shot Ice Accretion with Automatic Remeshing
1.1.6. Multi-Shot Ice Accretion With Automatic Remeshing – Postprocessing Using CFD-Post
1.1.7. FENSAP Airflow on the Clean NACA0012 Airfoil
1.1.7.1. FENSAP Airflow Solution on a Clean NACA0012 Airfoil
1.1.8. FENSAP Airflow Solution on the Rough NACA0012 Airfoil
1.1.9. Scheduling a Sequence of Runs With Fluent Icing
1.1.9.1. Introduction
1.1.9.2. Problem Description
1.1.9.3. Setup and Solution
1.1.9.3.1. Preparation
1.1.9.3.2. Setup
1.1.9.3.3. Post-processing
1.1.9.4. Summary
1.2. Droplet Impingement Using Fluent Icing
1.2.1. Droplet Impingement on a Complete Aircraft
1.2.1.1. Introduction
1.2.1.2. Problem Description
1.2.1.3. Setup and Solution
1.2.1.3.1. Preparation
1.2.1.3.2. Setup
1.2.1.3.3. Solution
1.2.1.4. Summary
1.2.2. Splashing and Bouncing by Post-processing on a NACA23012 Airfoil
1.2.2.1. Introduction
1.2.2.2. Problem Description
1.2.2.3. Setup and Solution
1.2.2.3.1. Preparation
1.2.2.3.2. Setup
1.2.2.3.3. Solution
1.2.2.4. Summary
1.2.3. Splashing and Bouncing with Reinjection on a Three-Element Airfoil
1.2.3.1. Introduction
1.2.3.2. Problem Description
1.2.3.3. Setup and Solution
1.2.3.3.1. Preparation
1.2.3.3.2. Setup
1.2.3.3.3. Solution
1.2.3.4. Summary
1.3. Ice Accretion Using Fluent Icing
1.3.1. Ice Accretion at High Speed
1.3.1.1. Introduction
1.3.1.2. Problem Description
1.3.1.3. Setup and Solution
1.3.1.3.1. Preparation
1.3.1.3.2. Setup
1.3.1.3.3. Solution
1.3.1.4. Summary
1.3.2. Ice Shedding on an Engine Fan Blade
1.3.2.1. Introduction
1.3.2.2. Limitations
1.3.2.3. Problem Description
1.3.2.4. Setup and Solution
1.3.2.4.1. Preparation
1.3.2.4.2. Setup
1.3.2.4.3. Solution
1.3.2.5. Summary
1.4. Multishot Icing with Automatic Remeshing Tutorial
1.4.1. Limitations
1.4.2. Multishot Glaze Ice with Automatic Remeshing Using Fluent Meshing
1.4.2.1. Introduction
1.4.2.2. Problem Description
1.4.2.3. Setup and Solution
1.4.2.3.1. Preparation
1.4.2.3.2. Setup
1.4.2.3.3. Solution
1.4.2.3.4. Post-processing
1.4.2.4. Summary
1.4.3. Multishot Icing with Automatic Remeshing - Run in Batch Mode
1.4.4. Multishot Glaze Ice with Automatic Remeshing - Postprocessing Using CFD-Post
1.5. Anti-Icing CHT Using Fluent Icing Tutorial
1.5.1. Introduction
1.5.2. Problem Description
1.5.3. Setup and Solution
1.5.3.1. Preparation
1.5.3.2. Setup
1.5.3.3. Solution
1.5.4. Summary
2. Fluent Aero Tutorials
2.1. Computing Aerodynamic Coefficients on an ONERA M6 Wing at a Range of Angles of Attack
2.1.1. Part 1: Using the Fluent Aero GUI and Post Processing
2.1.1.1. Introduction
2.1.1.2. Launching Fluent Aero and setting up the simulation
2.1.1.3. Post Processing
2.1.2. Part 2: Using Python Scripting and Project Archiving
2.1.2.1. Introduction
2.1.2.2. Recording a python journal while setting up a simulation
2.1.2.3. Manually editing the python journal
2.1.2.4. Executing the python journal (including using Fluent Aero in batch mode on cluster)
2.1.2.5. Archiving the Fluent Aero project and deleting files to save disk space
2.2. Computing Aerodynamic Coefficients and Wall Heat Flux on a Re- Entry Capsule at Different Altitudes in Earth and Mars Atmospheres Using Mixtures
2.3. Introduction to Aircraft Component Groups and Computing Aerodynamic Coefficients on an Aircraft at Different Flight Altitudes and Engine Regimes
2.4. Computing Aerodynamic Coefficients on an Aircraft Horizontal Tail Wing in a Wind Tunnel Domain at Different Mass Flow Rates
2.5. Fluent Aero AET – Creating a VBM Input File for Blade Sections
2.5.1. Introduction
2.5.2. Prerequisites
2.5.3. Problem Description
2.5.4. Setup and Solution
2.5.4.1. Preparation
2.5.4.2. Setup, Solution and Post-processing
2.5.5. Appendix
2.5.5.1. Using the Results of the AET Workflow in the Fluent Virtual Blade Model
2.5.5.2. Using the Virtual Blade Model With Fluent Aero
2.5.6. Summary
2.5.7. Limitations
3. Fluent Material Processing Tutorials
3.1. 3D Polymer Extrusion
3.1.1. Introduction
3.1.2. Problem Description
3.1.3. Setup and Solution
3.1.3.1. Preparation
3.1.3.2. Launching Ansys Fluent
3.1.3.3. Setup Your Simulation
3.1.3.4. General Properties
3.1.3.5. Material Properties
3.1.3.6. Cell Zone Properties
3.1.3.7. Boundary Condition Properties
3.1.3.8. Mesh Deformation Properties
3.1.3.9. Solution
3.1.4. Results
3.1.5. Summary
3.2. Multiple Material Coextruded Tubing
3.2.1. Introduction
3.2.2. Problem Description
3.2.3. Setup and Solution
3.2.3.1. Preparation
3.2.3.2. Launching Ansys Fluent
3.2.3.3. Setup Your Simulation
3.2.3.4. General Properties
3.2.3.5. Material Properties
3.2.3.6. Cell Zone Properties
3.2.3.7. Boundary Condition Properties
3.2.3.8. Mesh Deformation Properties
3.2.3.9. Solution
3.2.4. Results
3.2.5. Summary
3.3. 3D Polymer Blow Molding & Thermoforming
3.3.1. Introduction
3.3.2. Problem Description
3.3.3. Setup and Solution
3.3.3.1. Preparation
3.3.3.2. Launching Ansys Fluent
3.3.3.3. Setup Your Simulation
3.3.3.4. General Properties
3.3.3.5. Material Properties
3.3.3.6. Cell Zone Properties
3.3.3.7. Layer Properties
3.3.3.8. Fluid Boundary Condition Properties
3.3.3.9. Contact Boundary Conditions
3.3.3.10. Mesh Deformation Properties
3.3.3.11. Adaptive Mesh Settings
3.3.3.12. Solution
3.3.4. Results
3.3.5. Summary
3.4. Injection Stretch Blow Molding (ISBM)
3.4.1. Introduction
3.4.2. Problem Description
3.4.3. Setup and Solution
3.4.3.1. Preparation
3.4.3.2. Launching Ansys Fluent
3.4.3.3. Setup Your Simulation
3.4.3.4. General Properties
3.4.3.5. Material Properties
3.4.3.6. Cell Zone Properties
3.4.3.7. Layer Properties
3.4.3.8. Boundary Condition Properties
3.4.3.9. Contact Boundary Conditions
3.4.3.10. Mesh Deformation Properties
3.4.3.11. Adaptive Mesh Settings
3.4.3.12. Solution
3.4.4. Results
3.4.5. Summary
3.5. Glass Pressing
3.5.1. Introduction
3.5.2. Problem Description
3.5.3. Setup and Solution
3.5.3.1. Preparation
3.5.3.2. Launching Ansys Fluent
3.5.3.3. Setup Your Simulation
3.5.3.4. General Properties
3.5.3.5. Material Properties
3.5.3.6. Cell Zone Properties
3.5.3.7. Boundary Condition Properties
3.5.3.8. Contact Boundary Conditions
3.5.3.9. Mesh Deformation Properties
3.5.3.10. Adaptive Mesh Settings
3.5.3.11. Solution
3.5.4. Results
3.5.5. Summary
3.6. 3D Inverse Extrusion
3.6.1. Introduction
3.6.2. Problem Description
3.6.3. Setup and Solution
3.6.3.1. Preparation
3.6.3.2. Launching Ansys Fluent
3.6.3.3. Setup Your Simulation
3.6.3.4. General Properties
3.6.3.5. Boundary Condition Properties
3.6.3.6. Solution
3.6.4. Results
3.6.5. Summary
3.7. Mesh Superposition Technique
3.7.1. Introduction
3.7.2. Problem Description
3.7.3. Setup and Solution
3.7.3.1. Preparation
3.7.3.2. Launching Ansys Fluent
3.7.3.3. Setup Your Simulation
3.7.3.4. General Properties
3.7.3.5. Material Properties
3.7.3.6. Cell Zone Properties
3.7.3.7. Boundary Condition Properties
3.7.3.8. Solution
3.7.4. Results
3.7.5. Summary
4. Fluent Material Processing Examples
4.1. Spinning Simulation of a Non-Symmetric Trilobal Viscoelastic Fiber
4.1.1. Problem Description
4.1.2. Setup and Solution
4.1.2.1. Preparation
4.1.2.2. Mesh
4.1.2.3. Simulation Settings
4.1.2.4. Materials
4.1.2.5. Cell Zones
4.1.2.6. Boundary Conditions
4.1.2.7. Mesh Deformations
4.1.2.8. Solution Settings
4.1.2.9. Postprocessing
4.2. Reinforcements and Pantographing in Rubber Tire Molding
4.2.1. Problem Description
4.2.1.1. Concepts Covered in this Example
4.2.1.1.1. Orthotropic Fluid Model
4.2.1.1.2. Orientation of Reinforcements for Flat and Cylindrical Domains
4.2.1.1.3. Contact With a Solid Mold
4.2.1.1.4. Adaptive Meshing
4.2.1.1.5. Expressions Utilized
4.2.2. Setup and Solution
4.2.2.1. Preparation
4.2.2.2. Mesh
4.2.2.3. Simulation Settings
4.2.2.4. Materials
4.2.2.5. Cell Zones
4.2.2.6. Fluid Boundary Conditions
4.2.2.7. Interface Boundary Conditions
4.2.2.8. Contact Boundary Conditions
4.2.2.9. Mesh Deformations
4.2.2.10. Adaptive Meshing
4.2.2.11. Solution Settings
4.2.2.12. Postprocessing
4.3. 3D Non-isothermal Flow with a Non-conformal Mesh
4.3.1. Problem Description
4.3.2. Setup and Solution
4.3.2.1. Preparation
4.3.2.2. Mesh
4.3.2.3. Simulation Settings
4.3.2.4. Materials
4.3.2.5. Cell Zones
4.3.2.6. Boundary Conditions
4.3.2.7. Solution Settings
4.3.2.8. Postprocessing
4.4. Extrusion of a Foamed Profile
4.4.1. Problem Description
4.4.2. Setup and Solution
4.4.2.1. Preparation
4.4.2.2. Mesh
4.4.2.3. Simulation Settings
4.4.2.4. Materials
4.4.2.5. Cell Zones
4.4.2.6. Boundary Conditions
4.4.2.7. Mesh Deformations
4.4.2.8. Solution Settings
4.4.2.9. Postprocessing
4.5. Filling of a Sample
4.5.1. Problem Description
4.5.2. Setup and Solution
4.5.2.1. Preparation
4.5.2.2. Mesh
4.5.2.3. Simulation Settings
4.5.2.4. Materials
4.5.2.5. Cell Zones
4.5.2.6. Boundary Conditions
4.5.2.7. Solution Settings
4.5.2.8. Postprocessing
4.6. 3D Structure Interaction for Die
4.6.1. Problem Description
4.6.2. Setup and Solution
4.6.2.1. Preparation
4.6.2.2. Mesh
4.6.2.3. Simulation Settings
4.6.2.4. Materials
4.6.2.5. Cell Zones
4.6.2.6. Boundary Conditions
4.6.2.7. Mesh Deformations
4.6.2.8. Solution Settings
4.6.2.9. Postprocessing
4.7. Thermal Simulation of the Internal Flow of a Fluid in a Channel with One Entry and Four Exits
4.7.1. Problem Description
4.7.2. Setup and Solution
4.7.2.1. Preparation
4.7.2.2. Mesh
4.7.2.3. Simulation Settings
4.7.2.4. Materials
4.7.2.5. Cell Zones
4.7.2.6. Boundary Conditions
4.7.2.7. Solution Settings
4.7.2.8. Postprocessing
4.8. Multilayer Film Casting
4.8.1. Problem Description
4.8.2. Setup and Solution
4.8.2.1. Preparation
4.8.2.2. Mesh
4.8.2.3. Simulation Settings
4.8.2.4. General
4.8.2.5. Materials
4.8.2.6. Cell Zones
4.8.2.7. Layers
4.8.2.8. Boundary Conditions
4.8.2.9. Mesh Deformations
4.8.2.10. Solution Settings
4.8.2.11. Postprocessing
4.9. Extrusion of a Rubber Profile With a Metal Insert
4.9.1. Problem Description
4.9.2. Setup and Solution
4.9.2.1. Preparation
4.9.2.2. Mesh
4.9.2.3. Simulation Settings
4.9.2.4. Materials
4.9.2.5. Cell Zones
4.9.2.6. Boundary Conditions
4.9.2.7. Mesh Deformations
4.9.2.8. Solution Settings
4.9.2.9. Postprocessing
4.10. Extrusion of a D-Fender
4.10.1. Problem Description
4.10.2. Setup and Solution
4.10.2.1. Preparation
4.10.2.2. Mesh
4.10.2.3. Simulation Settings
4.10.2.4. Materials
4.10.2.5. Cell Zones
4.10.2.6. Boundary Conditions
4.10.2.7. Mesh Deformations
4.10.2.8. Solution Settings
4.10.2.9. Postprocessing