VM-NR1677-02-4-a

VM-NR1677-02-4-a
NUREG/CR-1677: Volume 2, Benchmark Problem No. 4

Overview

Reference:

NUREG/CR-1677 Volume II Piping Benchmark Problems, Dynamic Analysis Independent Support Motion Response Spectrum Method, P. Bezler, M. Subudhi & M. Hartzman of Brookhaven National Laboratory, prepared for the U.S. Nuclear Regulatory Commission, August 1985, Problem 1, pages 244-445

Analysis Type(s):
Modal analysis (ANTYPE = 2)
Spectral analysis (ANTYPE = 8)
Element Type(s):
Elastic straight pipe elements (PIPE16)
Elastic curved pipe elements (PIPE18)
Spring-Damper Element (COMBIN14)
tructural Mass Elements (MASS21)
Input Listing:

Test Case

This benchmark problem is a three-branch, three-anchor piping subsystem from an actual nuclear power plant. The system configuration is shown in Figure 629: FE Model of the Benchmark Problem. The boundary or spring support elements ranged in stiffness from relatively soft to virtually rigid. Modal and response spectrum analysis is performed on the piping model. The input excitation consisted of four different excitation spectra sets developed for the actual system and show variations for elevation and extent. Each solution had a fifty natural frequency approximation with various spectra and spectrum weighting factors.

Response spectrum solutions are done for two cases:

  • Case 1: Envelope spectrum excitation

  • Case 2: Independent support excitation with absolute sum combination.

Frequencies obtained from modal solve and the nodal/element solution obtained from spectrum solve are compared against reference results.

Figure 629: FE Model of the Benchmark Problem

FE Model of the Benchmark Problem

Material PropertiesGeometric PropertiesLoading

Pipe Elements:

E = 0.283 x 108 psi
Nu = 0.3
G = 0.108 x 108 psi
K = 0.911 x 10-5

Stiffness for Spring-Damper Elements (lb/in):

Since there are multiple Spring Supports at different locations, the Stiffness for Spring Damper Elements are listed based on the real constant set number.

Set 48:

K = 0.1 x 109

Set 49:

K = 0.1 x109

Set 50:

K = 0.1 x 109

Set 51:

K = 0.1080 x 104

Set 52:

K = 0.6001 x 105

Set 53:

K = 0.6001 x 105

Set 55:

K = 0.7541 x 106

Set 58:

K = 0.6000 x 103

Set 60:

K = 0.7601 x 105

Set 62:

K = 0.8000 x 103

Set 63:

K = 0.6001 x 105

Set 64:

K = 0.1000 x 109

Set 65:

K = 0.1000 x 109

Set 66:

K = 0.1000 x 109

Set 67:

K = 0.2600 x 103

Set 68:

K = 0.5901 x 105

Set 70:

K = 0.7601 x 105

Set 72:

K = 0.2460 x 106

Set 75:

K = 0.7501 x 105

Set 76:

K = 0.4660 x 106

Set 77:

K = 0.3400 x 103

Set 79:

K = 0.5000 x 106

Set 80:

K = 0.5000 x 106

Set 81:

K = 0.1000 x 109

Set 82:

K = 0.1000 x 109

Set 83:

K = 0.1000 x 109

Mass Elements (lb-sec2/in):

(Isotropic Mass)

Set 23:

Mass @ Node 12 = 1.69306
Mass @ Node 21 = 1.69306
Mass @ Node 25 = 1.69306

Set 24:

Mass @ Node 15 = 5.07505

Set 25:

Mass @ Node 33 = 4.96894

Set 26:

Mass @ Node 34 = 1.20212

Set 27:

Mass @ Node 39 = 1.42495
Mass @ Node 42 = 1.42495

Set 28:

Mass @ Node 45 = 1.88768
Mass @ Node 46 = 1.88768

Set 29:

Mass @ Node 53 = 2.18323

Set 30:

Mass @ Node 58 = 2.4397
Mass @ Node 59 = 2.4397

Set 31:

Mass @ Node 66 = 2.98188

Set 32:

Mass @ Node 69 = 1.41874

Set 33:

Mass @ Node 78 = 0.104943

Set 34:

Mass @ Node 79 = 0.930124
Mass @ Node 83 = 0.930124
Mass @ Node 84 = 0.930124

Set 35:

Mass @ Node 93 = 1.6118

Set 36:

Mass @ Node 102 = 0.6744
Mass @ Node 104 = 0.6744
Mass @ Node 107 = 0.674

Set 37:

Mass @ Node 110 = 0.643
Mass @ Node 111 = 0.643

Set 38:

Mass @ Node 114 = 1.06962

Set 39:

Mass @ Node 123 = 1.20549
Mass @ Node 124 = 1.20549

Set 40:

Mass @ Node 129 = 1.05642
Mass @ Node 130 = 1.05642

Set 41:

Mass @ Node 137 = 1.25388
Mass @ Node 138 = 1.25388

Set 42:

Mass @ Node 143 = 1.3543
Mass @ Node 144 = 1.3543

Set 43:

Mass @ Node 151 = 0.666149
Mass @ Node 154 = 0.666149
Mass @ Node 160 = 0.666149

Set 44:

Mass @ Node 162 = 2.27769

Set 45:

Mass @ Node 167 = 1.15217
Mass @ Node 168 = 1.15217

Set 46:

Mass @ Node 173 = 1.23214
Mass @ Node 176 = 1.23214
Mass @ Node 178 = 1.23214
Mass @ Node 185 = 1.23214

Set 47:

Mass @ Node 189 = 1.52976
Mass @ Node 190 = 1.52976
Mass @ Node 191 = 1.52976

Straight Pipe:

Set 1:

Outer Diameter = 32.35 in
Wall Thickness = 2.25 in

Set 2:

Outer Diameter = 15.625 in
Wall Thickness = 3.44 in

Set 3:

Outer Diameter = 10.75 in
Wall Thickness = 1.0 in

Set 4:

Outer Diameter = 16.03 in
Wall Thickness = 2.64 in

Set 5:

Outer Diameter = 160.3 in
Wall Thickness = 74.775 in

Set 6:

Outer Diameter = 10.75 in
Wall Thickness = 2.64 in

Set 7:

Outer Diameter = 16.03 in
Wall Thickness = 2.64 in

Set 8:

Outer Diameter = 6.625 in.
Wall Thickness = 0.7180 in

Set 9:

Outer Diameter = 9.87 in
Wall Thickness = 1.62 in

Set 10:

Outer Diameter = 98.7 in
Wall Thickness = 46.035 in

Set 11:

Outer Diameter = 6.625 in
Wall Thickness = 0.7180 in

Set 12:

Outer Diameter = 8.625 in
Wall Thickness = 0.906 in

Set 13:

Outer Diameter = 10.75 in
Wall Thickness = 0.365 in

Bend Pipe Elements:

Set 14:

Outer Diameter = 10.75 in
Wall Thickness = 1.0 in
Radius of Curvature = 15.0 in

Set 15:

Outer Diameter = 10.75 in
Wall Thickness = 1.0 in
Radius of Curvature = 15.0 in

Set 16:

Outer Diameter = 10.75 in
Wall Thickness = 1.0 in
Radius of Curvature = 14.9 in

Set 17:

Outer Diameter = 10.75 in
Wall Thickness = 0.365 in
Radius of Curvature = 15.0 in

Set 18:

Outer Diameter = 10.75 in
Wall Thickness = 0.365 in
Radius of Curvature = 14.9 in

Set 19:

Outer Diameter = 6.625 in
Wall Thickness = 0.7180 in
Radius of Curvature = 9.0 in

Set 20:

Outer Diameter = 8.625 in.
Wall Thickness = 0.906 in
Radius of Curvature = 12.0 in

Set 21:

Outer Diameter = 8.625 in
Wall Thickness = 0.906 in
Radius of Curvature = 40.0 in

Set 22:

Outer Diameter = 8.625 in
Wall Thickness = 0.906 in
Radius of Curvature = 8.0 in

Case 1:

Acceleration Response Spectrum Curve defined by FREQ and SV commands.

Case 2:

Acceleration Response Spectrum Curve defined by SPVAL and SPFREQ commands.

Results Comparison

Table 85: Frequencies Obtained from Modal Solution

ModeTargetMechanial APDLRatio
12.6122.6101.000
22.9142.9141.000
34.3374.3361.000
44.6604.6601.000
55.7345.7231.000
65.8335.8321.000
77.3597.3581.000
87.7697.7681.000
99.9529.9561.000
1010.32910.3271.000
1110.67910.6761.000
1210.94310.9451.000
1312.03012.0211.000
1412.28612.2981.000
1513.25113.2501.000
1613.40713.4041.000
1714.42914.4261.000
1814.72014.7171.000
1915.25315.2521.000
2015.55315.5491.000
2116.17216.1661.000
2216.79716.8031.000
2317.23017.2301.000
2417.27517.2731.000
2517.45317.4531.000
2618.71018.7021.000
2718.89818.8961.000
2819.99319.9821.000
2921.46021.4551.000
3021.52321.5221.000
3122.73622.7331.000
3223.28123.2981.000
3324.06724.0641.000
3424.59324.5951.000
3525.11725.1051.000
3626.51626.5131.000
3726.93526.9431.000
3827.50927.5031.000
3928.66228.6591.000
4029.54229.5371.000
4130.59630.6031.000
4231.27431.2611.000
4332.28332.2741.000
4435.48435.4651.000
4536.02236.0421.000
4636.39436.3431.000
4736.76936.7361.000
4838.00037.9921.000
4938.42038.3281.000
5040.18540.1731.000

Case 1: Envelope Spectrum Excitation

Table 86: Maximum Displacements and Rotations Obtained from Spectrum Solve

Result NodeTargetMechanial APDLRatio
UX at node810.9290.9301.001
UY at node1550.3190.2950.925
UZ at node610.6180.6181.000
ROTX at node1430.0060.0050.972
ROTY at node1490.0100.0090.966
ROTZ at node840.00920.0091.001

Table 87: Reaction forces Obtained from Spectrum Solve

Result NodeTargetMechanial APDLRatio

FX at node1

3724.000

3689.557

0.990

FY at node1

2390.000

2378.323

0.995

FZ at node1

2156.000

2150.482

0.997

FY at node17

42.000

41.866

0.996

FY at node29

2466.000

2446.638

0.992

FZ at node37

4850.000

4829.495

0.995

FX at node43

4765.000

4740.622

0.994

FY at node49

3835.000

3571.352

0.931

FZ at node51

3482.000

3415.523

0.980

FX at node56

2101.000

2063.547

0.982

FY at node62

61.000

57.640

0.944

FZ at node67

6860.000

6625.256

0.965

FY at node72

2669.000

2647.903

0.992

FZ at node74

6554.000

6543.720

0.998

FY at node87

109.000

109.018

1.000

FY at node89

5015.000

5013.799

0.999

FX at node94

3334.000

3332.158

0.999

FY at node94

4739.000

4740.105

1.000

FZ at node94

861.000

852.660

0.990

FY at node108

64.000

62.142

0.971

FX at node112

2312.000

2295.611

0.992

FZ at node117

2079.000

2058.463

0.990

FY at node119

1153.000

1131.719

0.981

FZ at node127

1829.000

1812.821

0.991

FY at node133

886.000

880.659

0.994

FZ at node135

889.000

865.222

0.973

FX at node141

1858.000

1843.740

0.992

FZ at node145

2571.000

2486.985

0.967

FY at node149

1349.000

1319.100

0.977

FY at node157

106.000

98.521

0.929

FX at node165

4370.000

4308.793

0.986

FY at node169

1340.000

1305.014

0.973

FY at node188

1170.000

1165.614

0.996

FX at node192

970.000

939.963

0.969

FY at node192

749.000

749.140

1.000

FZ at node192

2952.000

2849.996

0.965


Table 88: Element Forces and Moments Obtained from Spectrum Solve

ResultTargetMechanial APDLRatio
Element 1   
PX(I)2273.0002267.6200.998
VY(I)3719.0003544.1930.953
VZ(I)2287.0002488.0551.088
TX(I)105000.000103993.5190.990
MY(I)229900.000240284.8951.045
MZ(I)351600.000340778.6240.969
    
PX(J)2273.0002267.6200.998
VY(J)3719.0003544.1930.953
VZ(J)2287.0002488.0551.088
TX(J)105000.000103993.5190.990
MY(J)198700.000205919.6461.036
MZ(J)292000.000283741.8890.972

Case 2: Independent Support Excitation with Absolute Sum Combination

Table 89: Maximum Displacements and Rotations Obtained from Spectrum Solve

Result NodeTargetMechanial APDLRatio
UX at node1820.68840.68510.995
UY at node1550.2590.25470.983
UZ at node1430.62470.63121.010
ROTX at node1430.00530.00541.011
ROTY at node1490.00790.00790.999
ROTZ at node1550.00280.00280.980

Table 90: Reaction forces Obtained from Spectrum Solve

Result NodeTargetMechanial APDLRatio

FX at node1

3033.000

2979.648

0.982

FY at node1

2119.000

2081.495

0.982

FZ at node1

1917.000

1886.063

0.983

FY at node17

34.000

32.889

0.967

FY at node29

2018.000

1972.229

0.977

FZ at node37

3482.000

3384.218

0.971

FX at node43

4132.177

4098.492

0.991

FY at node49

2970.000

2914.793

0.981

FZ at node51

2882.485

2763.316

0.958

FX at node56

1739.497

1704.352

0.979

FY at node62

47.000

45.592

0.970

FZ at node67

6205.159

5879.702

0.947

FY at node72

2469.000

2400.031

0.972

FZ at node74

6490.198

6246.645

0.962

FY at node87

97.000

87.5166

0.902

FY at node89

4444.000

4025.096

0.905

FX at node94

2944.000

2653.078

0.901

FY at node94

4206.000

3789.072

0.900

FZ at node94

823.000

789.087

0.958

FY at node108

51.000

49.034

0.961

FX at node112

1887.000

1855.151

0.983

FZ at node117

1752.225

1719.744

0.981

FY at node119

914.000

884.858

0.968

FZ at node127

1258.628

1214.817

0.965

FY at node133

703.000

684.570

0.973

FZ at node135

626.592

612.336

0.977

FX at node141

1363.724

1310.226

0.960

FZ at node145

2031.000

2024.344

0.996

FY at node149

1182.000

1159.275

0.980

FY at node157

86.000

84.787

0.985

FX at node165

3972.166

3899.844

0.981

FY at node169

1058.000

1046.958

0.989

FY at node188

665.000

652.613

0.981

FX at node192

834.000

806.000

0.966

FY at node192

431.000

428.392

0.993

FZ at node192

2296.000

2286.566

0.995


Table 91: Element Forces and Moments Obtained from Spectrum Solve

ResultTargetMechanial APDLRatio
Element 1
PX(I)2021.0002000.5900.990
VY(I)3016.0002851.2980.945
VZ(I)2045.0002153.1171.053
TX(I)82260.00080273.6210.976
MY(I)200700.000209122.0921.042
MZ(I)290200.000277198.3130.955
    
PX(J)2021.0002000.5900.990
VY(J)3016.0002851.2980.945
VZ(J)2045.0002153.1171.053
TX(J)82260.00080273.6210.976
MY(J)172100.000178506.7981.037
MZ(J)241800.000231289.8820.957


Note:  PX (I) and PX (J) = Section axial force at node I and J.

VY (I) and VY (J) = Section shear forces along Y direction at node I and J.

VZ (I) and VZ (J) = Section shear forces along Z direction at node I and J.

TX (I) and TX (J) = Section torsional moment at node I and J.

MY (I) and MY (J) = Section bending moments along Y direction at node I and J.

MZ (I) and MZ (J) = Section bending moments along Z direction at node I and J.

The element forces and moments along Y and Z directions are flipped between Mechanical APDL and NRC results.