VM-NR1677-02-3-a

VM-NR1677-02-3-a
NUREG/CR-1677: Volume 2, Benchmark Problem No. 3

Overview

Reference:

NUREG/CR-1677 Volume II Piping Benchmark Problems, Dynamic Analysis Independent Support Motion Response Spectrum Method, P. Bezler, M. Subudhi & M. Hartzman of Brookhaven National Laboratory, prepared for the U.S. Nuclear Regulatory Commission, August 1985, Problem 3, pages 138-243.

Analysis Type(s):
Modal analysis (ANTYPE = 2)
Spectral analysis (ANTYPE = 8)
Element Type(s):
Elastic Straight Pipe Elements (PIPE16)
Elastic Curved Pipe Elements (PIPE18)
Spring-Damper Element (COMBIN14)
Input Listing:

Test Case

This benchmark problem is a two-anchor configuration simulating safety injection piping of a nuclear power plant as shown in Figure 628: FE Model of the Benchmark Problem. The support elements were a combination of spring and snubber elements. Modal and response spectrum analysis is performed on the piping model. The input excitation consisted of four spectra sets with the vertical component of excitation varying from set to set while the horizontal components of excitation are identical for all supports. Each solution has a fifteen natural frequency approximation with various spectra and spectrum weighting factors.

Response spectrum solutions are done for three cases:

  • Case 1: Envelope spectrum excitation

  • Case 2: Independent support excitation with SRSS combination

  • Case 3: Independent support excitation with absolute sum combination

Figure 628: FE Model of the Benchmark Problem

FE Model of the Benchmark Problem

Material PropertiesGeometric PropertiesLoading

Pipe Elements:

Material ID 1:

E = 0.277 x 108 psi
Nu = 0.3
G = 10653846.15384 psi

Material ID 2:

E = 0.277 x 108 psi
Nu = 0.3
G = 10653846.15384 psi

Material ID 3:

E = 0.277 x 108 psi
Nu = 0.3
G = 10653846.15384 psi

Stiffness for Spring-Damper Elements (lb/in):

Since there are multiple Spring Supports at different locations, the Stiffness for the Spring Damper Elements are listed based on real constant set number.

Set 4:

K = 0.1 x 102

Set 5:

K = 0.1 x 1013

Set 6:

K = 0.1 x 1013

Set 7:

K = 0.1 x 1013

Set 8:

K = 0.1 x 1013

Set 9:

K = 0.1 x 1013

Set 10:

K = 0.1 x 1013

Straight Pipe:

Set 1:

Outer Diameter = 12.750 in
Wall Thickness = 0.3750 in

Bend Pipe:

Set 2:

Outer Diameter = 12.750 in
Wall Thickness = 0.3750 in
Radius of Curvature = 60 in

Set 3:

Outer Diameter = 12.750 in
Wall Thickness = 0.3750 in
Radius of Curvature = 18 in

Temperature = 400 F applied as body force.

Pressure = 615 psi. applied as surface pressure.

Case 1:

Acceleration Response Spectrum Curve defined by FREQ and SV commands.

Case 2:

Acceleration Response Spectrum Curve defined by SPVAL and SPFREQ commands.

Case 3:

Acceleration Response Spectrum Curve defined by SPVAL and SPFREQ commands.

Results Comparison

Table 75: Frequencies Obtained from Modal Solution:

ModeTargetMechanical APDLRatio
17.2387.24311.000
210.14510.14971.000
314.57914.60661.000
415.99116.02151.000
517.19817.1771.000
617.98717.99221.000
722.28222.2741.000
823.63223.63651.000
927.86427.86311.000
1029.21129.2071.000
1129.51429.47111.000
1231.55431.56351.000
1334.01834.02451.000
1434.77834.76381.000
1535.12235.11691.000

Case 1: Envelope spectrum excitation

Table 76: Maximum Displacements and Rotations

Result NodeTargetMechanical APDLRatio
UX at node36 0.61140.60540.990
UY at node51 1.10351.10391.000
UZ at node20 0.00620.00620.999
ROTX at node44 0.00930.00931.000
ROTY at node31 0.0060.0060.997
ROTZ at node530.01330.01331.000

Table 77: Element Forces and Moments

ResultTargetMechanical APDLRatio
FY at node6511.00010.8520.987
FX at node667837.0007783.6390.993
FX at node674472.0004447.9070.995
FY at node758931.0008936.6191.001
FY at node68359.000357.4200.996
FY at node69729.000719.7890.987
FY at node70784.000792.58241.011
FY at node711043.0001025.4130.983
FY at node721378.0001361.2340.988
FY at node733408.0003381.3750.992
FY at node741448.0001435.2960.991
FX at node1011685.0001672.2720.992
FY at node10287.00087.3031.003
FZ at node1031370.0001363.1380.995
FX at node5913031.0002994.2540.988
FY at node59215859.00015871.9621.001
FZ at node593896.000886.9780.990
FX at node1206792.0006773.6520.997
FX at node31011991.00011957.2180.997
FX at node61801.000800.6571.000
FX at node62303.000303.1161.000
FX at node637447.0007420.5090.996

Table 78: Element Forces and Moments

ResultTargetMechanical APDLRatio
Element 1
PX(I)2014.0001997.8250.992
VY(I)86.89087.3031.005
VZ(I)813.200814.4441.002
TX(I)14130.00013970.5550.989
MY(I)58340.00058552.9031.004
MZ(I)3861.0003879.5021.005
 
PX(J)2014.0001997.8250.992
VY(J)86.8900087.3031.005
VZ(J)813.2000814.4441.002
TX(J)14130.00013970.5550.989
MY(J)24430.00024567.0221.006
MZ(J)535.000525.8350.983
Element 17
PX(I)6286.0006272.3400.998
VY(I)752.300742.2620.987
VZ(I)873.300871.7340.998
TX(I)22430.00022143.6240.987
MY(I)8460.0008491.5161.004
MZ(I)29590.00029012.5290.980
 
PX(J)6286.0006272.3400.998
VY(J)752.300742.2620.987
VZ(J)873.300871.7340.998
TX(J)22430.00022143.6240.987
MY(J)43530.00043483.7650.999
MZ(J)23500.00022462.7070.956
Element 50
PX(I)1739.0001726.0480.993
VY(I)395.300387.0950.979
VZ(I)773.000775.1021.003
TX(I)14640.00014416.8880.985
MY(I)22240.00022272.0391.001
MZ(I)16520.00016382.5060.992
 
PX(J)1879.0001868.9240.995
VY(J)395.300387.0950.979
VZ(J)300.000295.2050.984
TX(J)20260.00020011.3740.988
MY(J)29470.00029597.7651.004
MZ(J)16330.00016300.5070.998

Case 2: Independent support excitation with SRSS combination

Table 79: Maximum Displacements and Rotations Obtained from Spectrum Solve

Result NodeTargetMechanical APDLRatio
UX at node36 0.56740.5620 0.990
UY at node51 0.38880.3854 0.991
UZ at node36 0.52190.5163 0.989
ROTX at node22 0.00280.0028 0.989
ROTY at node22 0.00010.0001 0.997
ROTZ at node350.00710.00700.990

Table 80: Reaction forces Obtained from Spectrum Solve

Result NodeTargetMechanical APDLRatio
FY at node654.0003.8380.960
FX at node666845.0006813.7700.995
FX at node673100.0003082.68930.994
FY at node752923.0002900.1090.992
FY at node68524.000521.9040.996
FY at node691144.0001138.8680.996
FY at node701068.0001070.1231.002
FY at node711416.0001405.3680.992
FY at node721666.0001653.0690.992
FY at node732776.0002759.16650.994
FY at node741738.0001725.1000.993
FX at node1013160.0003112.9990.985
FY at node102109.000109.1961.002
FZ at node1032408.0002375.4300.986
FX at node5912834.0002800.7400.988
FY at node5924923.0004890.8700.993
FZ at node593803.000798.0110.994
FX at node1204953.0004890.1780.987
FX at node61831.000826.2120.994
FX at node62312.000309.9440.993
FX at node634411.0004373.3160.991
FX at node3105898.0005860.0600.994

Table 81: Element Forces and Moments Obtained from Spectrum Solve

ResultTargetMechanical APDLRatio
Element 1
PX(I)3807.0003748.9700.985
VY(I)109.100109.1961.001
VZ(I)1139.0001130.7670.993
TX(I)17220.00017067.3180.991
MY(I)77410.00077027.0590.995
MZ(I)5027.0005033.4681.001
 
PX(J)3807.0003748.9700.985
VY(J)109.100109.1961.001
VZ(J)1139.0001130.7670.993
TX(J)17220.00017067.3180.991
MY(J)30930.00030861.3320.998
MZ(J)775.300768.5360.991
Element 17
PX(I)3539.0003507.2540.991
VY(I)933.300925.7050.992
VZ(I)533.100529.4420.993
TX(I)26390.00026106.5830.989
MY(I)9809.0009800.4920.999
MZ(I)41630.00041290.2830.992
 
PX(J)3539.0003507.2540.991
VY(J)933.300925.7050.992
VZ(J)533.100529.4420.993
TX(J)26390.00026106.5830.989
MY(J)29000.00028900.2490.997
MZ(J)41980.00041379.9640.986
Element 50
PX(I)3150.0003101.3220.985
VY(I)649.600645.2860.993
VZ(I)1386.0001379.1090.995
TX(I)17480.00017252.6740.987
MY(I)28130.00027958.2960.994
MZ(I)19150.00018998.1620.992
 
PX(J)3413.0003366.7520.986
VY(J)649.600645.2860.993
VZ(J)444.200430.2590.969
TX(J)23510.00023242.5220.989
MY(J)38990.00038842.2440.996
MZ(J)23530.00023533.2521.000

Case 3: Independent support excitation with absolute sum combination

Table 82: Maximum Displacements and Rotations Obtained from Spectrum Solve

Result NodeTargetMechanical APDLRatio
UX at node36 0.82720.81980.991
UY at node51 0.54750.54520.996
UZ at node36 0.76190.7540.990
ROTX at node12 0.00190.00190.990
ROTY at node12 0.00020.00021.000
ROTZ at node350.01030.01020.990

Table 83: Reaction forces Obtained from Spectrum Solve

ResultTargetMechanical APDLRatio
FY at node495.0005.4321.09
FX at node559479.0009411.9980.99
FX at node414250.0004215.0670.99
FY at node414011.0003999.9621.00
FY at node5832.000828.3541.00
FY at node81828.0001818.0310.99
FY at node141689.0001692.2511.00
FY at node202149.0002131.7340.99
FY at node252467.0002447.6400.99
FY at node2904062.0004039.4420.99
FY at node372537.0002521.3780.99
FX at node14353.0004303.7720.99
FY at node1168.000168.1921.00
FZ at node13376.0003343.4000.99
FX at node593937.0003885.0330.99
FY at node596819.0006813.1231.00
FZ at node591069.0001057.7410.99
FX at node136866.0006796.3370.99
FX at node1401276.0001273.3021.00
FX at node18492.544490.8151.00
FX at node296332.0106286.3160.99
FX at node328415.2858375.5521.00

Table 84: Element Forces and Moments Obtained from Spectrum Solve

ResultTargetMechanical APDLRatio
Element 1
PX(I)5223.0005162.1990.988
VY(I)167.900168.1921.002
VZ(I)1753.0001747.1180.997
TX(I)25590.00025371.8120.991
MY(I)122100.000121964.2240.999
MZ(I)7826.0007836.3101.001
 
PX(J)5223.0005162.1990.988
VY(J)167.900168.1921.002
VZ(J)1753.0001747.1180.997
TX(J)25590.00025371.8120.991
MY(J)49880.00049950.7091.001
MZ(J)1213.0001202.7180.992
Element 17
PX(I)4944.0004905.0120.992
VY(I)1380.0001368.6500.992
VZ(I)741.600737.3910.994
TX(I)38460.00038055.4730.989
MY(I)15200.00015209.5161.001
MZ(I)63740.00063190.0250.991
 
PX(J)4944.0004905.0120.992
VY(J)1380.0001368.6500.992
VZ(J)741.600737.3910.994
TX(J)38460.00038055.4730.989
MY(J)40840.00040736.4520.997
MZ(J)67620.00066625.6700.985
Element 50
PX(I)4365.0004314.2270.988
VY(I)1042.0001034.2890.993
VZ(I)1942.0001939.5150.999
TX(I)25740.00025414.8990.987
MY(I)45220.00045105.7060.997
MZ(I)27970.00027760.2880.993
 
PX(J)4738.0004692.0800.990
VY(J)1042.0001034.2890.993
VZ(J)615.900598.8780.972
TX(J)34210.00033823.2950.989
MY(J)61630.00061625.4121.000
MZ(J)37150.00037130.9220.999


Note:  PX (I) and PX (J) = Section axial force at node I and J.

VY (I) and VY (J) = Section shear forces along Y direction at node I and J.

VZ (I) and VZ (J) = Section shear forces along Z direction at node I and J.

TX (I) and TX (J) = Section torsional moment at node I and J.

MY (I) and MY (J) = Section bending moments along Y direction at node I and J.

MZ (I) and MZ (J) = Section bending moments along Z direction at node I and J.

The element forces and moments along Y and Z directions are flipped between Mechanical APDL and NRC results.