VM248

VM248
Delamination Analysis of Double Cantilever Beam

Overview

Reference:G. Alfano and M. A. CrisfieldFinite Element Interface Models for the Delamination Analysis of Laminated Composites: Mechanical and Computational Issues, International Journal for Numerical Methods in Engineering, Vol. 50, pp. 1701-1736 (2001).
Analysis Type(s):Static analysis (ANTYPE = 0)
Element Type(s):
2D 4-Node Structural Solid Elements(PLANE182)
2D 4-Node Cohesive Zone Elements (INTER202)
2D 8-Node Structural Solid Elements(PLANE183)
2D 6-Node Cohesive Zone Elements (INTER203)
3D 8-Node Structural Solid Elements(SOLID185)
3D 8-Node Cohesive Zone Elements (INTER205)
2D 3-Node Surface-to-Surface Contact Elements (CONTA172)
3D 8-Node Surface-to-Surface Contact Elements (CONTA174)
2D Target Segment (TARGE169)
3D Target Segment (TARGE170)
Input Listing:vm248.dat

Test Case

A double cantilever beam of length l, width w and height h with an initial crack of length a at the free end is subjected to a maximum vertical displacement Umax at top and bottom free end nodes. Determine the vertical reaction at point P based on the vertical displacement for the interface model.

Figure 421: Double Cantilever Beam Sketch

Double Cantilever Beam Sketch

Figure 422: Representative Finite Element Model Using PLANE182 and Interface/Contact Elements

Representative Finite Element Model Using PLANE182 and Interface/Contact Elements

Material Properties Geometric PropertiesLoading
Composite
E11 = 135.3 GPa
E22 = 9.0 GPa
E33 = 9.0 GPa
G12 = 5.2 GPa
ν12 = 0.24
ν13 = 0.24
ν23 = 0.46
L = 100 mm
a = 30 mm
h = 3 mm
w = 20 mm
Umax = 10 mm
Interface
C1 (maximum stress) = 25 MPa
C2 (normal separation) = 0.004 mm
C3 (shear separation) = 1000 mm

Analysis Assumptions and Modeling Notes

Static analysis is performed using regular meshes of 4 x 200 4-node INTER202 elements with PLANE182 elements, 2 x 200 6-node INTER203 elements with PLANE183 elements, 2 x 200 8-node INTER205 elements with SOLID185 elements, 4 x 200 2-node CONTA172 elements with PLANE182 elements, 2 x 200 3-node CONTA172 elements with PLANE183 elements, and 2 x 200 4-node CONTA174 elements with SOLID185 elements. In the 3D model, all the UZ degrees of freedom are constrained to make it behave like a 2D model. An imposed displacement of Uy = 10 mm acts at the top and bottom free nodes. Equivalent material constants of C1 = 25, C2 = 0.004 and C3 = 1000 are used for the interface material, as Mechanical APDL uses the exponential form of the cohesive zone model and the reference uses a bilinear constitutive model.

Results Comparison

INTER202
 TargetMechanical APDLRatio
Max RFORCE and corresponding DISP:
RFORCE FY (N)60.0060.0691.001
DISP UY(mm)1.001.0001.000
End RFORCE and corresponding DISP:
RFORCE FY (N)24.0024.2941.012
DISP UY(mm)10.0010.001.00
INTER203
 TargetMechanical APDLRatio
Max RFORCE and corresponding DISP:
RFORCE FY (N)60.0060.0631.001
DISP UY(mm)1.001.0001.000
End RFORCE and corresponding DISP:
RFORCE FY (N)24.0024.2991.012
DISP UY(mm)10.0010.001.00
INTER205
 TargetMechanical APDLRatio
Max RFORCE and corresponding DISP:
RFORCE FY (N)60.0060.0861.001
DISP UY(mm)1.001.0001.000
End RFORCE and corresponding DISP:
RFORCE FY (N)24.0024.2811.012
DISP UY(mm)10.0010.001.00
CONTA172 (dropped midside nodes)
 TargetMechanical APDLRatio
Max RFORCE and corresponding DISP:
RFORCE FY (N)60.0060.0941.002
DISP UY(mm)1.001.0001.000
End RFORCE and corresponding DISP:
RFORCE FY (N)24.0024.2961.012
DISP UY(mm)10.0010.001.00
CONTA172
 TargetMechanical APDLRatio
Max RFORCE and corresponding DISP:
RFORCE FY (N)60.0060.0881.001
DISP UY(mm)1.001.0001.000
End RFORCE and corresponding DISP:
RFORCE FY (N)24.0024.3011.013
DISP UY(mm)10.0010.001.00
CONTA174 (dropped midside nodes)
 TargetMechanical APDLRatio
Max RFORCE and corresponding DISP:
RFORCE FY (N)60.0060.1101.002
DISP UY(mm)1.001.0001.000
End RFORCE and corresponding DISP:
RFORCE FY (N)24.0024.2831.012
DISP UY(mm)10.0010.001.00