Expand/Collapse all
I. Getting Started
1. Introduction to Ansys Fluent
1.1. The Ansys Product Improvement Program
1.2. Program Capabilities
1.3. Known Limitations in Ansys Fluent 2025 R2
1.4. Supported Third-Party Software
2. Basic Steps for CFD Analysis using Ansys Fluent
2.1. Steps in Solving Your CFD Problem
2.2. Planning Your CFD Analysis
3. Guide to a Successful Simulation Using Ansys Fluent
4. Starting and Executing Ansys Fluent
4.1. Starting Ansys Fluent
4.1.1. Selecting the Licensing Level
4.1.2. Starting Ansys Fluent Using Fluent Launcher
4.1.2.1. Setting General Options in Fluent Launcher
4.1.2.2. Single-Precision and Double-Precision Solvers
4.1.2.3. Setting Parallel Options in Fluent Launcher
4.1.2.4. Setting Remote Options in Fluent Launcher
4.1.2.5. Setting Scheduler Options in Fluent Launcher
4.1.2.6. Setting Environment Options in Fluent Launcher
4.1.3. Starting Ansys Fluent on a Windows System
4.1.4. Starting Ansys Fluent on a Linux System
4.1.5. Command Line Startup Options
4.1.5.1. ACT Option
4.1.5.2. Graphics and Files Options
4.1.5.3. Meshing Mode Option
4.1.5.4. Performance Options
4.1.5.5. Parallel Options
4.1.5.6. Postprocessing Option
4.1.5.7. Remote Visualization Options
4.1.5.8. Scheduler Options
4.1.5.9. Text Command Option
4.1.5.10. Version, Release Options, and Environment Variables
4.1.5.11. System Coupling Options
4.1.5.12. Other Startup Options
4.1.6. Aborting During Startup
4.2. Running Ansys Fluent in Batch Mode
4.2.1. Background Execution on Linux Systems
4.2.2. Background Execution on Windows Systems
4.2.3. Batch Execution Options
4.3. Switching Between Meshing and Solution Modes
4.4. Checkpointing an Ansys Fluent Simulation
4.5. Cleaning Up Processes From an Ansys Fluent Simulation
4.6. Exiting Ansys Fluent
Glossary of Terms
II. Meshing Mode
1. Introduction to Meshing Mode in Fluent
1.1. Meshing Approach
1.2. Meshing Mode Capabilities
1.3. Starting Fluent in Meshing Mode
1.3.1. Starting the Dual Process Build
1.3.2. Dynamically Spawning Processes Between Fluent Meshing and Fluent Solution Modes
1.4. Graphical User Interface
1.4.1. User Interface Components
1.4.1.1. The Ribbon
1.4.1.2. The Workflow Tab
1.4.1.3. The Outline View Tab
1.4.1.4. The Graphics Window
1.4.1.5. Quick Search
1.4.1.6. The Console
1.4.1.7. The Toolbars
1.4.1.7.1. Pointer Tools
1.4.1.7.2. View Tools
1.4.1.7.3. Graphics Effects Tools
1.4.1.7.4. Mesh Display Tools
1.4.1.7.5. Visibility Tools
1.4.1.7.6. Copy Tools
1.4.1.7.7. Object Selection/Display Tools
1.4.1.7.8. Filter Toolbar
1.4.1.7.9. CAD Tools
1.4.1.7.10. Tools
1.4.1.7.11. Context Toolbar
1.4.1.8. ACT Start Page
1.4.2. Customizing the User Interface
1.4.3. Setting User Preferences/Options
1.4.4. Using the Help System
1.4.4.1. Help for Text Interface Commands
1.4.4.2. Obtaining a Listing of Other License Users
1.5. Text User Interface
1.6. Reading and Writing Files
1.6.1. Shortcuts for Reading and Writing Files
1.6.1.1. Binary Files
1.6.1.2. Reading and Writing Compressed Files
1.6.1.2.1. Reading Compressed Files
1.6.1.2.2. Writing Compressed Files
1.6.1.3. Tilde Expansion (LINUX Systems Only)
1.6.1.4. Disabling the Overwrite Confirmation Prompt
1.6.2. Mesh Files
1.6.2.1. Reading Mesh Files
1.6.2.1.1. Reading Multiple Mesh Files
1.6.2.1.2. Reading 2D Mesh Files in the 3D Version of Fluent
1.6.2.2. Reading Boundary Mesh Files
1.6.2.3. Reading Faceted Geometry Files from Ansys Workbench in Fluent
1.6.2.4. Appending Mesh Files
1.6.2.5. Writing Mesh Files
1.6.2.6. Writing Boundary Mesh Files
1.6.3. Case Files
1.6.3.1. Reading Case Files
1.6.3.1.1. Reading Files Using the Legacy Format
1.6.3.2. Writing Case Files
1.6.3.2.1. Writing Files Using the Legacy Format
1.6.4. Reading and Writing Size-Field Files
1.6.5. Reading Scheme Source Files
1.6.6. Creating and Reading Journal Files
1.6.7. Creating Transcript Files
1.6.8. Reading and Writing Domain Files
1.6.9. Importing Files
1.6.9.1. Importing CAD Files
1.6.10. Saving Picture Files
1.6.10.1. Using the Save Picture Dialog Box
2. Getting Started with the Fluent Guided Workflows
2.1. Prerequisites for the Fluent Guided Workflows
2.2. Limitations of the Fluent Guided Workflows
2.3. Customizing Workflows
2.3.1. Customizing Your Journal Files Using Python
2.4. Understanding Task States
2.5. Operating on Tasks
2.6. Grouping Tasks
2.7. Editing Tasks
2.8. Monitoring Task Updates
2.9. Accessing Advanced Options
2.10. Filtering Lists and Using Wildcards
2.11. Saving and Loading Workflows
2.12. Setting Preferences for Workflows
2.13. Getting Help for Workflow Tasks
3. Using the Watertight Geometry Meshing Guided Workflows
3.1. Watertight Geometry Workflow Limitations
3.2. Unified Topology Layer (UTL)
3.3. Importing Geometries
3.4. Importing Body of Influence Geometries
3.5. Adding Local Sizing
3.6. Generating the Surface Mesh
3.7. Setting Up Periodic Boundaries
3.8. Describing the Geometry
3.8.1. Best Practices for Using Non-conformal Interfaces
3.9. Applying Share Topology
3.9.1. Troubleshooting Gap Marking
3.10. Enclosing Fluid Regions
3.11. Creating Regions
3.12. Updating Regions
3.13. Adding Thin Volume Meshing Controls
3.13.1. Thin Volume Meshing of Parallel Zones
3.13.2. Thin Volume Meshing of Stacked Plates
3.13.3. Auto Control Creation of Thin Mesh
3.14. Adding Boundary Layers
3.15. Adding Multizone Controls
3.15.1. Understanding Multizone Meshing
3.15.2. Strategies for Using Multizone Meshing
3.15.3. Working With Boundary Layers in Multizone Meshing
3.16. Generating the Multizone Mesh
3.17. Generating the Volume Mesh
3.18. Updating Boundaries
3.19. Improving the Surface Mesh
3.20. Adding Boundary Types
3.21. Improving the Volume Mesh
3.22. Transforming the Volume Mesh
3.23. Extruding the Volume Mesh
3.24. Adding Linear Mesh Patterns
3.24.1. Creating Custom Patterns Using Scripts
3.24.1.1. Examples of Creating Custom Patterns Using Scripts
3.24.1.1.1. Pattern Example Using Explicit Name Rule
3.24.1.1.2. Pattern Example of Using Both Explicit and Regular Name Rule
3.25. Managing Zones
3.26. Modifying Mesh Refinement
3.27. Creating Local Refinement Regions
3.28. Running Custom Journal Commands
4. Using the Fault-tolerant Meshing Workflow
4.1. Fault-tolerant Meshing Workflow Limitations
4.2. Importing CAD Geometries and Managing CAD Parts
4.2.1. Appending CAD Files
4.2.2. Working with the CAD Model Tree
4.2.3. Working with the Meshing Model Tree
4.2.4. Setting Properties for Meshing Model Objects
4.2.4.1. Creating Automatic Meshing Objects on a Per Part Basis
4.2.4.2. Creating Customized Meshing Objects
4.2.5. Performing Operations on Meshing Model Objects
4.2.5.1. Performing Transformation Operations on Meshing Model Objects
4.2.5.1.1. Applying a Translation Transformation
4.2.5.1.2. Applying a Rotation Transformation
4.2.5.1.3. Applying a Rotation About an Axis Transformation
4.2.5.1.4. Applying a Scaling Transformation
4.2.5.1.5. Applying a Mirror Transformation
4.2.5.2. Performing Refaceting Operations on Meshing Model Objects
4.2.5.3. Performing Object Setting Operations on Meshing Model Objects
4.2.5.4. Listing Meshing Operations
4.2.6. Faceting Considerations
4.2.7. Setting Display Options for CAD Model and Meshing Objects
4.2.8. Using Hot Key Shortcuts in the Model Trees and the Graphics Window
4.3. Describing the Geometry and the Flow
4.4. Enclosing Fluid Regions
4.5. Creating External Flow Boundaries
4.6. Creating Local Refinement Regions
4.7. Identifying Construction Surfaces
4.8. Extracting Edge Features
4.9. Adding Thickness to Your Geometry
4.10. Creating Porous Regions
4.11. Identifying Regions
4.12. Defining Leakage Thresholds
4.13. Updating Your Region Settings
4.14. Choosing Mesh Control Options
4.14.1. Working With Wrap and Target Sizes
4.15. Adding Local Size Controls
4.16. Creating Contact Patches
4.17. Creating Gap Covers
4.18. Generating the Skin Surface Mesh
4.19. Generating the Surface Mesh
4.20. Updating Boundaries
4.21. Describing Overset Features
4.21.1. Creating Collar Meshes
4.21.2. Creating Component Meshes
4.22. Adding Boundary Layers
4.23. Identifying Deviated Faces
4.24. Generating the Volume Mesh
4.25. Creating Overset Mesh Interfaces
4.26. Identifying Orphans
4.27. Transforming the Volume Mesh
4.28. Extruding the Volume Mesh
4.29. Managing Zones
4.30. Separating Contacts
4.31. Choosing Part Replacement Options
4.31.1. Appending Replacement Parts
4.31.2. Applying Part Replacement Settings
4.31.3. Adding Local Sizing for Replacement Parts
4.31.4. Adding Boundary Layers for Replacement Parts
4.31.5. Updating the Volume Mesh
5. Using the 2D Meshing Guided Workflow
5.1. 2D Meshing Workflow
5.1.1. Loading the CAD Geometry
5.1.2. Updating Regions
5.1.3. Updating Boundaries
5.1.4. Defining Global Sizing
5.1.5. Adding Local Sizing
5.1.6. Adding Multizone Controls
5.1.7. Adding 2D Boundary Layers
5.1.8. Generating the Surface Mesh
5.1.9. Exporting the Fluent 2D Mesh
5.1.10. Extruding the Mesh
6. Improving and Examining the Mesh and its Quality
6.1. Improving the Mesh
6.1.1. Smoothing Nodes
6.1.1.1. Laplace Smoothing
6.1.1.2. Variational Smoothing of Tetrahedral Meshes
6.1.1.3. Skewness-Based Smoothing of Tetrahedral Meshes
6.1.2. Swapping
6.1.3. Improving the Mesh
6.1.4. Removing Slivers from a Tetrahedral Mesh
6.1.4.1. Automatic Sliver Removal
6.1.4.2. Removing Slivers Manually
6.1.5. Modifying Cells
6.1.5.1. Using the Modify Cells Dialog Box
6.1.6. Moving Nodes
6.1.6.1. Automatic Correction
6.1.6.2. Semi-Automatic Correction
6.1.6.3. Repairing Negative Volume Cells
6.1.7. Cavity Remeshing
6.1.7.1. Tetrahedral Cavity Remeshing
6.1.7.2. Hexcore Cavity Remeshing
6.1.8. Manipulating Cell Zones
6.1.8.1. Active Zones and Cell Types
6.1.8.2. Copying and Moving Cell Zones
6.1.9. Separating Cell Zones
6.1.10. Manipulating Cell Zone Conditions
6.1.11. Using Domains to Group and Mesh Boundary Faces
6.1.11.1. Using Domains
6.1.11.2. Defining Domains
6.1.12. Checking the Mesh
6.1.13. Selectively Checking the Volume Mesh
6.1.14. Checking the Mesh Quality
6.1.15. Clearing the Mesh
6.2. Examining the Mesh
6.2.1. Displaying the Mesh
6.2.1.1. Generating the Mesh Display using Onscreen Tools
6.2.1.2. Generating the Mesh Display Using the Display Grid Dialog Box
6.2.1.2.1. Mesh Display Attributes
6.2.2. Controlling Display Options
6.2.3. Modifying and Saving the View
6.2.3.1. Mirroring a Non-symmetric Domain
6.2.3.2. Controlling Perspective and Camera Parameters
6.2.4. Composing a Scene
6.2.4.1. Changing the Display Properties
6.2.4.2. Transforming Geometric Entities in a Scene
6.2.4.3. Adding a Bounding Frame
6.2.4.4. Using the Scene Description Dialog Box
6.2.5. Controlling the Mouse Buttons
6.2.6. Controlling the Mouse Probe Function
6.2.7. Annotating the Display
6.2.8. Setting Default Controls
6.3. Determining Mesh Statistics and Quality
6.3.1. Performing Meshing Diagnostics
6.3.1.1. Performing a Mesh Check and Diagnostics
6.3.1.2. Diagnosing the Mesh Quality
6.3.1.3. Using the Diagnostics Tools Dialog Box
6.3.1.4. Setting the Scope of Your Diagnostics
6.3.2. Determining Mesh Statistics
6.3.3. Determining Mesh Quality
6.3.3.1. Determining Surface Mesh Quality
6.3.3.2. Determining Volume Mesh Quality
6.3.3.3. Determining Boundary Cell Quality
6.3.3.4. Quality Measure
6.3.4. Reporting Mesh Information
7. Advanced Meshing Topics
7.1. CAD Assemblies
7.1.1. CAD Assemblies Tree
7.1.1.1. FMDB File
7.1.1.2. CAD Entity Path
7.1.1.3. CAD Assemblies Tree Options
7.1.2. Visualizing CAD Entities
7.1.3. Updating CAD Entities
7.1.4. Manipulating CAD Entities
7.1.4.1. Creating and Modifying Geometry/Mesh Objects
7.1.4.2. Managing Labels
7.1.4.3. Setting CAD Entity States
7.1.4.4. Modifying CAD Entities
7.1.5. CAD Association
7.2. Size Functions and Scoped Sizing
7.2.1. Types of Size Functions or Scoped Sizing Controls
7.2.1.1. Curvature
7.2.1.2. Proximity
7.2.1.3. Meshed
7.2.1.4. Hard
7.2.1.5. Soft
7.2.1.6. Body of Influence
7.2.2. Defining Size Functions
7.2.2.1. Creating Default Size Functions
7.2.3. Defining Scoped Sizing Controls
7.2.3.1. Size Control Files
7.2.4. Computing the Size Field
7.2.4.1. Size Field Files
7.2.4.2. Using Size Field Filters
7.2.4.3. Visualizing Sizes
7.2.5. Using the Size Field
7.3. Objects and Material Points
7.3.1. Objects
7.3.1.1. Object Attributes
7.3.1.1.1. Creating Objects
7.3.1.2. Object Entities
7.3.1.2.1. Using Face Zone Labels
7.3.1.3. Managing Objects
7.3.1.3.1. Using hotkeys and onscreen tools
7.3.1.3.1.1. Creating Objects for CAD Entities
7.3.1.3.1.2. Creating Objects for Unreferenced Zones
7.3.1.3.1.3. Creating Multiple Objects
7.3.1.3.1.4. Easy Object Creation and Modification
7.3.1.3.1.5. Changing Object Properties
7.3.1.3.1.6. Automatic Alignment of Objects
7.3.1.3.1.7. Remeshing Geometry Objects
7.3.1.3.1.8. Creating Edge Zones
7.3.1.3.2. Using the Manage Objects Dialog Box
7.3.1.3.2.1. Defining Objects
7.3.1.3.2.2. Object Manipulation Operations
7.3.1.3.2.3. Object Transformation Operations
7.3.2. Material Points
7.3.2.1. Creating Material Points
7.4. Object-Based Surface Meshing
7.4.1. Surface Mesh Processes
7.4.2. Preparing the Geometry
7.4.2.1. Using a Bounding Box
7.4.2.2. Closing Annular Gaps in the Geometry
7.4.2.3. Patching Tools
7.4.2.3.1. Using the Patch Options Dialog Box
7.4.2.3.2. Using the Loop Selection Tool
7.4.2.4. Using User-Defined Groups
7.4.3. Diagnostic Tools
7.4.3.1. Geometry Issues
7.4.3.2. Face Connectivity Issues
7.4.3.3. Quality Checking
7.4.3.4. Summary
7.4.4. Connecting Objects
7.4.4.1. Using the Join/Intersect Dialog Box
7.4.4.2. Using the Join Dialog Box
7.4.4.3. Using the Intersect Dialog Box
7.4.5. Advanced Options
7.4.5.1. Object Management
7.4.5.2. Removing Gaps Between Mesh Objects
7.4.5.3. Removing Thickness in Mesh Objects
7.4.5.4. Sewing Objects
7.4.5.4.1. Resolving Thin Regions
7.4.5.4.2. Processing Slits
7.4.5.4.3. Removing Voids
7.5. Object-Based Volume Meshing
7.5.1. Volume Mesh Process
7.5.2. Volumetric Region Management
7.5.2.1. Computing and Verifying Regions
7.5.2.2. Volumetric Region Operations
7.5.3. Generating the Volume Mesh
7.5.3.1. Meshing All Regions Collectively Using Auto Mesh
7.5.3.2. Meshing Regions Selectively Using Auto Fill Volume
7.5.4. Cell Zone Options
7.6. Manipulating the Boundary Mesh
7.6.1. Manipulating Boundary Nodes
7.6.1.1. Free and Isolated Nodes
7.6.2. Intersecting Boundary Zones
7.6.2.1. Intersecting Zones
7.6.2.2. Joining Zones
7.6.2.3. Stitching Zones
7.6.2.4. Using the Intersect Boundary Zones Dialog Box
7.6.2.5. Using Shortcut Keys/Icons
7.6.3. Modifying the Boundary Mesh
7.6.3.1. Using the Modify Boundary Dialog Box
7.6.3.2. Operations Performed: Modify Boundary Dialog Box
7.6.3.3. Locally Remeshing a Boundary Zone or Faces
7.6.3.4. Moving Nodes
7.6.4. Improving Boundary Surfaces
7.6.4.1. Improving the Boundary Surface Quality
7.6.4.2. Smoothing the Boundary Surface
7.6.4.3. Swapping Face Edges
7.6.5. Refining the Boundary Mesh
7.6.5.1. Procedure for Refining Boundary Zones
7.6.6. Creating and Modifying Features
7.6.6.1. Creating Edge Zones
7.6.6.2. Modifying Edge Zones
7.6.6.3. Using the Feature Modify Dialog Box
7.6.7. Remeshing Boundary Zones
7.6.7.1. Creating Edge Zones
7.6.7.2. Modifying Edge Zones
7.6.7.3. Remeshing Boundary Face Zones
7.6.7.4. Using the Surface Retriangulation Dialog Box
7.6.8. Faceted Stitching of Boundary Zones
7.6.9. Triangulating Boundary Zones
7.6.10. Separating Boundary Zones
7.6.10.1. Separating Face Zones using Hotkeys
7.6.10.2. Using the Separate Face Zones dialog box
7.6.11. Projecting Boundary Zones
7.6.12. Creating Groups
7.6.13. Manipulating Boundary Zones
7.6.14. Manipulating Boundary Conditions
7.6.15. Creating Surfaces
7.6.15.1. Creating a Bounding Box
7.6.15.1.1. Using the Bounding Box Dialog Box
7.6.15.1.2. Using the Construct Geometry Tool
7.6.15.2. Creating a Planar Surface Mesh
7.6.15.2.1. Using the Plane Surface Dialog Box
7.6.15.3. Creating a Cylinder/Frustum
7.6.15.3.1. Using the Cylinder Dialog Box
7.6.15.3.2. Using the Construct Geometry Tool
7.6.15.4. Creating a Swept Surface
7.6.15.4.1. Using the Swept Surface Dialog Box
7.6.15.5. Creating a Revolved Surface
7.6.15.5.1. Using the Revolved Surface Dialog Box
7.6.15.6. Creating Periodic Boundaries
7.6.16. Removing Gaps Between Boundary Zones
7.6.17. Using the Loop Selection Tool
7.7. Wrapping Objects
7.7.1. The Wrapping Process
7.7.1.1. Extract Edge Zones
7.7.1.2. Create Intersection Loops
7.7.1.2.1. Individually
7.7.1.2.2. Collectively
7.7.1.3. Setting Geometry Recovery Options
7.7.1.4. Fixing Holes in Objects
7.7.1.5. Shrink Wrapping the Objects
7.7.1.6. Improving the Mesh Objects
7.7.1.7. Object Wrapping Options
7.7.1.7.1. Resolving Thin Regions During Object Wrapping
7.7.1.7.2. Detecting Holes in the Object
7.7.1.7.3. Improving Feature Capture For Mesh Objects
7.8. Creating a Mesh
7.8.1. Choosing the Meshing Strategy
7.8.1.1. Boundary Mesh Containing Only Triangular Faces
7.8.1.2. Mixed Boundary Mesh
7.8.1.3. Hexcore Mesh
7.8.1.4. Rapid Octree Mesh
7.8.1.5. Additional Meshing Tasks
7.8.1.6. Inserting Isolated Nodes into a Tet Mesh
7.8.2. Using the Auto Mesh Dialog Box
7.8.3. Generating a Thin Volume Mesh
7.8.4. Generating Pyramids
7.8.4.1. Creating Pyramids
7.8.4.2. Zones Created During Pyramid Generation
7.8.4.3. Pyramid Meshing Problems
7.8.5. Creating a Non-Conformal Interface
7.8.5.1. Separating the Non-Conformal Interface Between Cell Zones
7.8.6. Creating a Heat Exchanger Zone
7.8.7. Parallel Meshing
7.8.7.1. Auto Partitioning
7.8.7.1.1. Availability of Graphical User Interface Options After Parallel Meshing
7.8.7.1.2. Availability of Text Interface Options After Parallel Meshing
7.8.7.2. Controlling the Threads
7.9. Generating Prisms
7.9.1. The Prism Generation Process
7.9.1.1. Zones Created During Prism Generation
7.9.2. Procedure for Creating Zone-based Prisms
7.9.3. Prism Meshing Options for Zone-Specific Prisms
7.9.3.1. Growth Options for Zone-Specific Prisms
7.9.3.1.1. Growing Prisms Simultaneously from Multiple Zones
7.9.3.1.2. Growing Prisms on a Two-Sided Wall
7.9.3.1.3. Ignoring Invalid Normals
7.9.3.1.4. Detecting Proximity and Collision
7.9.3.1.5. Splitting Prism Layers
7.9.3.1.6. Preserving Orthogonality
7.9.3.2. Offset Distances
7.9.3.3. Direction Vectors
7.9.3.4. Using Adjacent Zones as the Sides of Prisms
7.9.3.5. Post Prism Mesh Quality Improvement
7.9.3.5.1. Improving the Prism Cell Quality
7.9.3.5.2. Removing Poor Quality Cells
7.9.3.5.3. Improving Warp
7.9.4. Prism Meshing Options for Scoped Prisms
7.9.5. Prism Meshing Problems
7.10. Generating Tetrahedral Meshes
7.10.1. Automatically Creating a Tetrahedral Mesh
7.10.1.1. Automatic Meshing Procedure for Tetrahedral Meshes
7.10.1.2. Using the Auto Mesh Tool
7.10.1.3. Automatic Meshing of Multiple Cell Zones
7.10.1.4. Automatic Meshing for Hybrid Meshes
7.10.1.5. Further Mesh Improvements
7.10.2. Manually Creating a Tetrahedral Mesh
7.10.2.1. Manual Meshing Procedure for Tetrahedral Meshes
7.10.3. Initializing the Tetrahedral Mesh
7.10.3.1. Initializing Using the Tet Dialog Box
7.10.4. Refining the Tetrahedral Mesh
7.10.4.1. Using Local Refinement Regions
7.10.4.2. Refinement Using the Tet Dialog Box
7.10.5. Common Tetrahedral Meshing Problems
7.11. Generating the Hexcore Mesh
7.11.1. Hexcore Meshing Procedure
7.11.2. Using the Hexcore Dialog Box
7.11.3. Controlling Hexcore Parameters
7.11.3.1. Maximum or Minimum Cell Length
7.11.3.2. Buffer Layers
7.11.3.3. Peel Layers
7.11.3.4. Defining Hexcore Extents
7.11.3.4.1. Hexcore to Selected Boundaries
7.11.3.5. Local Refinement Regions
7.12. Generating Polyhedral Meshes
7.12.1. Meshing Process for Polyhedral Meshes
7.12.2. Steps for Creating the Polyhedral Mesh
7.12.2.1. Further Mesh Improvements
7.12.2.2. Transferring the Poly Mesh to Solution Mode
7.13. Generating Poly-Hexcore Meshes
7.13.1. Steps for Creating the Poly-Hexcore Mesh
7.14. Generating Rapid Octree Meshes
7.14.1. Using the Rapid Octree Mesher
7.14.1.1. Geometry
7.14.1.1.1. Specifying the Input Object
7.14.1.1.2. Specifying the Volume
7.14.1.1.3. Defining the Bounding Box
7.14.1.1.4. Defining the Reference Size
7.14.1.2. Boundary Treatment
7.14.1.2.1. Improve Geometry Resolution
7.14.1.2.2. Boundary Mesh Optimization
7.14.1.3. Mesh Parameters
7.14.1.3.1. Refinement Regions
7.14.1.3.2. Custom Boundary Sizes
7.14.1.3.2.1. Creating Size Functions
7.14.1.3.2.2. Draw, Change, and Delete Functions
7.14.1.3.3. Boundary Layer Mesh
7.14.2. Limitations of the Rapid Octree Mesher
A. Importing Boundary and Volume Meshes
A.1. GAMBIT Meshes
A.2. TetraMesher Volume Mesh
A.3. Meshes from Third-Party CAD Packages
A.3.1. I-deas Universal Files
A.3.1.1. Recognized I-deas Datasets
A.3.1.2. Grouping Elements to Create Zones for a Surface Mesh
A.3.1.3. Grouping Nodes to Create Zones for a Volume Mesh
A.3.1.4. Periodic Boundaries
A.3.1.5. Deleting Duplicate Nodes
A.3.2. PATRAN Neutral Files
A.3.2.1. Recognized PATRAN Datasets
A.3.2.2. Grouping Elements to Create Zones
A.3.2.3. Periodic Boundaries
A.3.3. ANSYS Files
A.3.3.1. Recognized Datasets
A.3.3.2. Periodic Boundaries
A.3.4. ARIES Files
A.3.5. NASTRAN Files
A.3.5.1. Recognized NASTRAN Bulk Data Entries
A.3.5.2. Periodic Boundaries
A.3.5.3. Deleting Duplicate Nodes
B. Mesh File Format
B.1. Guidelines
B.2. Formatting Conventions in Binary Files and Formatted Files
B.3. Grid Sections
B.3.1. Comment
B.3.2. Header
B.3.3. Dimensions
B.3.4. Nodes
B.3.5. Periodic Shadow Faces
B.3.6. Cells
B.3.7. Faces
B.3.8. Edges
B.3.9. Face Tree
B.3.10. Cell Tree
B.3.11. Interface Face Parents
B.4. Non-Grid Sections
B.4.1. Zone
B.5. Example Files
C. Shortcut Keys
C.1. Shortcut Key Actions
C.1.1. Entity Information
Bibliography
III. Solution Mode
Using This Manual
1. Typographical Conventions
2. Mathematical Conventions
1. Graphical User Interface (GUI)
1.1. GUI Components
1.1.1. The Ribbon
1.1.2. The Outline View
1.1.2.1. Drag and Drop, Copy and Paste, Setting Import and Export
1.1.3. Graphics Windows
1.1.4. Quick Search
1.1.5. Toolbars
1.1.5.1. The Standard Toolbar
1.1.5.2. The Graphics Toolbars
1.1.5.2.1. Mesh Display
1.1.5.2.2. Pointer Tools
1.1.5.2.3. View Tools
1.1.5.2.4. Visibility Tools
1.1.5.2.5. Copy Tools
1.1.5.2.6. Object Selection/Display Tools
1.1.5.2.7. Graphics Effects Tools
1.1.5.2.8. Additional Display Options
1.1.6. Task Pages
1.1.7. The Console
1.1.8. Dialog Boxes
1.1.8.1. Input Controls
1.1.8.1.1. Tabs
1.1.8.1.2. Buttons
1.1.8.1.3. Check Boxes
1.1.8.1.4. Radio Buttons
1.1.8.1.5. Text Entry Boxes
1.1.8.1.6. Integer Number Entry Boxes
1.1.8.1.7. Real Number Entry Boxes
1.1.8.1.8. Filter Text Entry Boxes
1.1.8.1.9. Single-Selection Lists
1.1.8.1.10. Multiple-Selection Lists
1.1.8.1.11. Drop-Down Lists
1.1.8.1.12. Scales
1.1.8.2. Types of Dialog Boxes
1.1.8.2.1. Information Dialog Boxes
1.1.8.2.2. Warning Dialog Boxes
1.1.8.2.3. Error Dialog Boxes
1.1.8.2.4. The Working Dialog Box
1.1.8.2.5. Question Dialog Box
1.1.8.2.6. The Select File Dialog Box
1.1.9. Quick Property Editor for Boundaries
1.2. Customizing the Graphical User Interface
1.3. Setting User Preferences/Options
1.4. Fluent Graphical User Interface Other Languages
1.5. Having the Session Close After Sitting Idle
1.5.1. Timeout Using the Set Idle Timeout Dialog Box
1.5.2. Timeout Using FLUENT_MAX_IDLE_TIMEOUT
1.5.3. Idle Timeout Limitations
1.6. Using the Help System
1.6.1. Learning and Support
1.6.2. Task Page and Dialog Box Help
1.6.3. Obtaining License Use Information
1.6.4. Version and Release Information
2. Text User Interface (TUI)
3. Reading and Writing Files
3.1. Shortcuts for Reading and Writing Files
3.1.1. Default File Suffixes
3.1.2. Binary Files
3.1.3. Detecting File Format
3.1.4. Recent File List
3.1.5. Reading and Writing Compressed Files
3.1.5.1. Reading Compressed Files
3.1.5.2. Writing Compressed Files
3.1.6. Tilde Expansion (Linux Systems Only)
3.1.7. Automatic Numbering of Files
3.1.8. Disabling the Overwrite Confirmation Prompt
3.2. Reading Mesh Files
3.3. Reading and Writing Case and Data Files
3.3.1. Reading and Writing Case Files
3.3.2. Reading and Writing Data Files
3.3.3. Reading and Writing Case and Data Files Together
3.3.4. Reading and Writing Files in the Legacy Format
3.3.5. Automatic Saving of Case and Data Files
3.4. Reading the Lightweight Data of Mesh or Case Files
3.5. Exporting, Copying, and Importing Case Settings in TSV, Text, HTML Format
3.6. Reading Fluent/UNS and RAMPANT Case and Data Files
3.7. Reading and Writing Profile Files
3.7.1. Reading Profile Files
3.7.2. Writing Profile Files
3.7.2.1. Writing Circumferential-Averaged Profiles
3.8. Reading Files in Tabular Format
3.8.1. Matrix Table Files
3.8.2. Real Gas Property (RGP) Table Files
3.9. Reading and Writing Boundary Conditions
3.10. Writing a Boundary Mesh
3.11. Reading Scheme Source Files
3.12. Creating and Reading Journal Files
3.12.1. Procedure
3.12.2. Multiple Journal Files
3.13. Creating Transcript Files
3.14. Importing Files
3.14.1. ABAQUS Files
3.14.2. CFX Files
3.14.3. Meshes and Data in CGNS Format
3.14.4. EnSight Files
3.14.5. GAMBIT and GeoMesh Mesh Files
3.14.6. HYPERMESH ASCII Files
3.14.7. NASTRAN Files
3.14.8. PLOT3D Files
3.14.9. Tecplot Files
3.14.10. Partition Files
3.14.11. CHEMKIN Mechanism
3.15. Exporting Solution Data
3.15.1. Exporting Limitations
3.16. Exporting Solution Data after a Calculation
3.16.1. ABAQUS Files
3.16.2. Mechanical APDL Input Files
3.16.3. ASCII Files
3.16.4. CDAT for CFD-Post and EnSight
3.16.5. CGNS Files
3.16.6. Common Fluids Format - Post Files
3.16.7. EnSight Case Gold Files
3.16.8. EnSight DVS
3.16.9. FAST Files
3.16.10. FAST Solution Files
3.16.11. FieldView Unstructured Files
3.16.12. NASTRAN Files
3.16.13. TAITherm Files
3.16.14. Tecplot Files
3.17. Exporting Steady-State Particle History Data
3.18. Exporting Data During a Transient Calculation
3.18.1. Creating Automatic Export Definitions for Solution Data
3.18.2. Creating Automatic Export Definitions for Transient Particle History Data
3.19. Exporting to Ansys CFD-Post
3.20. Parallel Exporting to Ansys EnSight
3.21. Managing Solution Files
3.22. Mesh-to-Mesh Solution Interpolation
3.22.1. Performing Mesh-to-Mesh Solution Interpolation
3.22.2. Format of the Interpolation File
3.23. Mapping Data for Fluid-Structure Interaction (FSI) Applications
3.23.1. FEA File Formats
3.23.2. Using the FSI Mapping Dialog Boxes
3.24. Saving Picture Files
3.24.1. Using the Save Picture Dialog Box
3.24.1.1. Choosing the Picture File Format
3.24.1.2. Specifying the Color Mode
3.24.1.3. Choosing the File Type
3.24.1.4. Defining the Resolution
3.24.1.5. Picture Options
3.24.2. Picture Options for PostScript Files
3.24.2.1. Window Dumps (Linux Systems Only)
3.24.2.2. Previewing the Picture Image
3.25. Setting Data File Quantities
3.26. The .fluent File
3.27. Coupled Simulations in Ansys Fluent with Functional Mock-up Unit (FMU) Files
4. Unit Systems
4.1. Restrictions on Units
4.2. Units in Mesh Files
4.3. Built-In Unit Systems in Ansys Fluent
4.4. Customizing Units
4.4.1. Listing Current Units
4.4.2. Changing the Units for a Quantity
4.4.3. Defining a New Unit
4.4.3.1. Determining the Conversion Factor
5. Fluent Expressions Language
5.1. Introduction to Expressions
5.1.1. Expression Syntax
5.1.1.1. Expression Data Types
5.1.1.2. Expression Values
5.1.1.3. Expression Operations and Functions
5.1.2. Units Validation
5.2. Expression Sources
5.2.1. Field Variables
5.2.2. Solution Variables
5.2.3. Scientific Constants
5.2.4. Aliases
5.2.5. Profiles
5.3. Creating and Using Expressions
5.3.1. Directly Applied Expressions
5.3.1.1. Expressions for Cell Zones and Boundary Conditions
5.3.1.2. Expressions for Material Properties
5.3.1.3. Expressions in the Console
5.3.2. Named Expressions
5.3.3. Context Specification
5.3.4. Plotting Expressions
5.3.5. Postprocessing Expressions
5.3.6. Expression Manager
5.4. Expression Examples
5.4.1. Parabolic Inflow Profile
5.4.2. Time-Varied Parabolic Inflow
5.4.3. Controlled Outlet Temperature
5.4.4. Computing Forces with Parameterized Angle of Attack
5.5. Appendix: Supported Field Variables
6. Model Topology
6.1. Introduction
6.1.1. Benefits of the Model Topology Approach
6.1.2. Conceptual Overview of Model Topology, Physics, and Interfaces
6.1.3. Limitations
6.2. Enabling the Unified Topology Layer
6.3. Meshing in the Model Topology Environment
6.4. Case Setup in the Model Topology Environment
6.4.1. Starting from Geometry
6.4.2. Defining Physics Volumes, Boundaries and Setting Their Locations
6.4.2.1. New Physics Volumes
6.4.2.2. New Physics Boundaries
6.4.3. Default Volumes and Boundaries
6.4.4. Case Checking, Messages, and Visual Cues
6.4.5. Mesh Display, Solution Monitors, Reporting, and Postprocessing
6.5. Important Considerations
7. Reading and Manipulating Meshes
7.1. Mesh Topologies
7.1.1. Examples of Acceptable Mesh Topologies
7.1.2. Face-Node Connectivity in Ansys Fluent
7.1.2.1. Face-Node Connectivity for Triangular Cells
7.1.2.2. Face-Node Connectivity for Quadrilateral Cells
7.1.2.3. Face-Node Connectivity for Tetrahedral Cells
7.1.2.4. Face-Node Connectivity for Wedge Cells
7.1.2.5. Face-Node Connectivity for Pyramidal Cells
7.1.2.6. Face-Node Connectivity for Hex Cells
7.1.2.7. Face-Node Connectivity for Polyhedral Cells
7.1.3. Choosing the Appropriate Mesh Type
7.1.3.1. Setup Time
7.1.3.2. Computational Expense
7.1.3.3. Numerical Diffusion
7.2. Mesh Requirements and Considerations
7.2.1. Geometry/Mesh Requirements
7.2.2. Mesh Quality
7.2.2.1. Mesh Element Distribution
7.2.2.2. Cell Quality
7.2.2.3. Smoothness
7.2.2.4. Flow-Field Dependency
7.3. Mesh Sources
7.3.1. Ansys Meshing Mesh Files
7.3.2. Fluent Meshing Mode Mesh Files
7.3.3. Fluent Meshing Mesh Files
7.3.4. GAMBIT Mesh Files
7.3.5. GeoMesh Mesh Files
7.3.6. NASTRAN Files
7.3.6.1. Recognized NASTRAN Bulk Data Entries
7.3.6.2. Deleting Duplicate Nodes
7.3.7. CFX Files
7.3.8. Using the fe2ram Filter to Convert Files
7.3.9. Removing Hanging Nodes / Edges
7.3.9.1. Limitations
7.3.10. Fluent/UNS and RAMPANT Case Files
7.3.11. Ansys FIDAP Neutral Files
7.3.12. Reading Multiple Mesh/Case/Data Files
7.3.12.1. Reading Multiple Mesh Files via the Solution Mode of Fluent
7.3.12.2. Reading Multiple Mesh Files via the Meshing Mode of Fluent
7.3.12.3. Reading Multiple Mesh Files via tmerge
7.3.13. Reading Surface Mesh Files
7.4. Reference Frames
7.4.1. Creating and Using Reference Frames
7.5. Curvilinear Coordinate Systems
7.5.1. Defining a Curvilinear Coordinate System
7.5.2. Curvilinear Coordinate System Example
7.5.3. Limitations of Curvilinear Coordinate Systems
7.5.4. Limitations with Jump Boundary
7.6. Non-Conformal Meshes
7.6.1. Non-Conformal Mesh Calculations
7.6.1.1. The Periodic Boundary Condition Option
7.6.1.2. The Periodic Repeats Option
7.6.1.3. The Coupled Wall Option
7.6.1.4. Matching Option
7.6.1.5. The Mapped Option
7.6.1.6. The Static Option
7.6.1.7. Interface Zones Automatic Naming Conventions
7.6.1.7.1. Default (No Options Enabled)
7.6.1.7.2. Periodic Boundary Condition
7.6.1.7.3. Periodic Repeats
7.6.1.7.4. Coupled Wall
7.6.1.7.5. Matching
7.6.1.7.6. Mapped
7.6.1.7.7. Static
7.6.2. Non-Conformal Interface Algorithm
7.6.3. Requirements and Limitations of Non-Conformal Meshes
7.6.4. Using a Non-Conformal Mesh in Ansys Fluent
7.6.4.1. Manually Creating Many-to-Many Mesh Interfaces
7.6.4.2. Manually Creating One-to-One Mesh Interfaces
7.6.4.3. Transferring Motion Across a Mesh Interface
7.7. Overset Meshes
7.7.1. Introduction
7.7.2. Overset Topologies
7.7.3. Overset Domain Connectivity
7.7.3.1. Hole Cutting
7.7.3.1.1. Hole Cutting Control
7.7.3.1.2. Defining Collar Meshes
7.7.3.2. Overlap Minimization
7.7.3.3. Donor Search
7.7.4. Diagnosing Overset Interface Issues
7.7.4.1. Flood Filling Fails During Hole Cutting
7.7.4.1.1. Incorrect Seed Cells
7.7.4.1.2. Leakage Between Overlapping Boundaries
7.7.4.2. Donor Search Fails Due to Orphan Cells
7.7.5. Overset Mesh Adaption
7.7.5.1. Marking for Orphan Adaption
7.7.5.2. Marking for Size Adaption
7.7.5.3. Marking for Gap Adaption
7.7.5.4. Using Manual Overset Adaption
7.7.5.5. Using Automatic Overset Adaption
7.7.5.6. Overset Adaption Controls
7.7.6. Overset Meshing Best Practices
7.7.7. Overset Meshing Limitations and Compatibilities
7.7.7.1. Limitations
7.7.7.2. Compatibilities
7.7.8. Setting up an Overset Interface
7.7.9. Postprocessing Overset Meshes
7.7.9.1. Overset Mesh Display
7.7.9.2. Overset Field Functions
7.7.9.3. Overset Cell Marks
7.7.9.4. Overset Interface Listing
7.7.9.5. Overset Postprocessing Limitations
7.7.10. Writing and Reading Overset Files
7.8. Controlling Flow in Narrow Gaps for Valves and Pumps
7.8.1. The Gap Model Approach
7.8.2. Limitations of the Gap Model
7.8.3. Recommendations for the Setup of a Simulation with Gaps
7.8.4. Using the Gap Model
7.9. Checking the Mesh
7.9.1. Mesh Check Report
7.9.2. Repairing Meshes
7.10. Reporting Mesh Statistics
7.10.1. Mesh Size
7.10.2. Memory Usage
7.10.2.1. Linux Systems
7.10.2.2. Windows Systems
7.10.3. Mesh Zone Information
7.10.4. Partition Statistics
7.11. Converting the Mesh to a Polyhedral Mesh
7.11.1. Converting the Domain to a Polyhedra
7.11.1.1. Limitations
7.11.2. Converting Skewed Cells to Polyhedra
7.11.2.1. Limitations
7.11.3. Converting Cells with Hanging Nodes / Edges to Polyhedra
7.11.3.1. Limitations
7.12. Modifying the Mesh
7.12.1. Merging Zones
7.12.1.1. When to Merge Zones
7.12.1.2. Using the Merge Zones Dialog Box
7.12.2. Separating A Single Zone Into Multiple Zones
7.12.2.1. Separating A Face Zone Into Multiple Face Zones
7.12.2.1.1. Methods for Separating A Face Zone Into Multiple Face Zones
7.12.2.1.2. Inputs for Separating A Face Zone Into Multiple Face Zones
7.12.2.2. Separating A Cell Zone Into Multiple Cell Zones
7.12.2.2.1. Methods for Separating A Cell Zone Into Multiple Cell Zones
7.12.2.2.2. Inputs for Separating A Cell Zone Into Multiple Cell Zones
7.12.3. Disconnecting Cell Zones
7.12.4. Fusing Face Zones
7.12.4.1. Inputs for Fusing Face Zones
7.12.4.1.1. Fusing Zones on Branch Cuts
7.12.5. Creating Periodic Zones and Interfaces
7.12.6. Decoupling Periodic Zones
7.12.7. Slitting Face Zones
7.12.7.1. Inputs for Slitting Face Zones
7.12.8. Orienting Face Zones
7.12.9. Extruding Face Zones
7.12.9.1. Specifying Extrusion by Displacement Distances
7.12.9.2. Specifying Extrusion by Parametric Coordinates
7.12.10. Replacing, Deleting, Deactivating, and Activating Zones
7.12.10.1. Replacing Zones
7.12.10.2. Deleting Zones
7.12.10.3. Deactivating Zones
7.12.10.4. Activating Zones
7.12.11. Copying Cell Zones
7.12.12. Replacing the Mesh
7.12.12.1. Inputs for Replacing the Mesh
7.12.12.2. Limitations
7.12.13. Managing Adjacent Zones
7.12.13.1. Renaming Zones Using the Adjacency Dialog Box
7.12.14. Reordering the Domain
7.12.15. Scaling the Mesh
7.12.15.1. Scaling the Entire Mesh
7.12.15.1.1. Changing the Unit of Length
7.12.15.1.2. Unscaling the Mesh
7.12.15.1.3. Changing the Physical Size of the Mesh
7.12.15.2. Scaling Individual Cell Zones
7.12.16. Translating the Mesh
7.12.16.1. Translating the Entire Mesh
7.12.16.2. Translating Individual Cell Zones
7.12.17. Rotating the Mesh
7.12.17.1. Rotating the Entire Mesh
7.12.17.2. Rotating Individual Cell Zones
7.12.18. Improving the Mesh by Smoothing and Swapping
7.12.18.1. Smoothing
7.12.18.1.1. Quality-Based Smoothing
7.12.18.1.2. Laplacian Smoothing
7.12.18.1.3. Skewness-Based Smoothing
7.12.18.2. Face Swapping
7.12.18.2.1. Triangular Meshes
7.12.18.2.2. Tetrahedral Meshes
7.12.18.3. Combining Skewness-Based Smoothing and Face Swapping
7.12.19. Boundary Layer Redistribution
7.12.20. Deleting Cells
8. Cell Zone and Boundary Conditions
8.1. Overview
8.1.1. Available Cell Zone and Boundary Types
8.1.2. The Cell Zone and Boundary Conditions Task Pages
8.1.3. Changing Cell and Boundary Zone Types
8.1.4. Setting Cell Zone and Boundary Conditions
8.1.5. Copying Cell Zone and Boundary Conditions
8.1.6. Exporting Boundary Surface Mesh in CSV Format
8.1.7. Changing Cell or Boundary Zone Names
8.1.8. Defining Non-Uniform Cell Zone and Boundary Conditions
8.1.9. Defining and Viewing Parameters
8.1.9.1. Creating a New Parameter
8.1.9.2. Working With Advanced Parameter Options
8.1.9.2.1. Defining Scheme Procedures With Input Parameters
8.1.9.2.2. Defining UDFs With Input Parameters
8.1.9.2.3. Using the Text User Interface to Define UDFs and Scheme Procedures With Input Parameters
8.1.10. Selecting Cell or Boundary Zones in the Graphics Display
8.1.11. Operating and Periodic Conditions
8.1.12. Saving and Reusing Cell Zone and Boundary Conditions
8.2. Cell Zone Conditions
8.2.1. Fluid Conditions
8.2.1.1. Inputs for Fluid Zones
8.2.1.1.1. Defining the Fluid Material
8.2.1.1.2. Defining Sources
8.2.1.1.3. Defining Fixed Values
8.2.1.1.4. Specifying a Laminar Zone
8.2.1.1.5. Specifying a Reaction Mechanism
8.2.1.1.6. Specifying the Rotation Axis
8.2.1.1.7. Defining Zone Motion
8.2.1.1.8. Defining Radiation Parameters
8.2.2. Solid Conditions
8.2.2.1. Inputs for Solid Zones
8.2.2.1.1. Defining the Solid Material
8.2.2.1.2. Defining a Heat Source
8.2.2.1.3. Defining a Fixed Temperature
8.2.2.1.4. Specifying the Rotation Axis for Boundary Zones
8.2.2.1.5. Defining Zone Motion
8.2.2.1.6. Defining Radiation Parameters
8.2.3. Porous Media Conditions
8.2.3.1. Limitations and Assumptions of the Porous Media Model
8.2.3.2. Momentum Equations for Porous Media
8.2.3.2.1. Darcy’s Law in Porous Media
8.2.3.2.2. Inertial Losses in Porous Media
8.2.3.3. Relative Viscosity in Porous Media
8.2.3.4. Treatment of the Energy Equation in Porous Media
8.2.3.4.1. Equilibrium Thermal Model Equations
8.2.3.4.2. Non-Equilibrium Thermal Model Equations
8.2.3.5. Treatment of Turbulence in Porous Media
8.2.3.6. Effect of Porosity on Transient Scalar Equations
8.2.3.7. Modeling Porous Media Based on Physical Velocity
8.2.3.7.1. Single Phase Porous Media
8.2.3.7.2. Multiphase Porous Media
8.2.3.7.2.1. The Continuity Equation
8.2.3.7.2.2. The Momentum Equation
8.2.3.7.2.3. The Energy Equation
8.2.3.8. User Inputs for Porous Media
8.2.3.8.1. Defining the Porous Zone
8.2.3.8.2. Defining the Porous Velocity Formulation
8.2.3.8.3. Defining the Fluid Passing Through the Porous Medium
8.2.3.8.4. Enabling Reactions in a Porous Zone
8.2.3.8.5. Including the Relative Velocity Resistance Formulation
8.2.3.8.6. Defining the Viscous and Inertial Resistance Coefficients
8.2.3.8.7. Deriving Porous Media Inputs Based on Superficial Velocity, Using a Known Pressure Loss
8.2.3.8.8. Using the Ergun Equation to Derive Porous Media Inputs for a Packed Bed
8.2.3.8.9. Using an Empirical Equation to Derive Porous Media Inputs for Turbulent Flow Through a Perforated Plate
8.2.3.8.10. Using Tabulated Data to Derive Porous Media Inputs for Laminar Flow Through a Fibrous Mat
8.2.3.8.11. Deriving the Porous Coefficients Based on Experimental Pressure and Velocity Data
8.2.3.8.12. Using the Power-Law Model
8.2.3.8.13. Defining Porosity
8.2.3.8.14. Specifying the Heat Transfer Settings
8.2.3.8.14.1. Using the Equilibrium Thermal Model
8.2.3.8.14.2. Using the Non-Equilibrium Thermal Model
8.2.3.8.15. Specifying the Relative Viscosity
8.2.3.8.16. Specifying the Relative Permeability
8.2.3.8.17. Specifying the Capillary Pressure
8.2.3.8.17.1. Brooks-Corey Model
8.2.3.8.17.2. Van-Genuchten Model
8.2.3.8.17.3. Leverett J-Function
8.2.3.8.17.4. Skjaeveland Model
8.2.3.8.17.5. Capillary Pressure Data in a Tabular Format
8.2.3.8.17.6. Capillary Pressure Usage
8.2.3.8.17.7. Modeling Capillary Pressure as Diffusion
8.2.3.8.18. Defining Sources
8.2.3.8.19. Defining Fixed Values
8.2.3.8.20. Suppressing the Turbulent Viscosity in the Porous Region
8.2.3.8.21. Specifying the Rotation Axis and Defining Zone Motion
8.2.3.9. Solution Strategies for Porous Media
8.2.3.10. Postprocessing for Porous Media
8.2.4. 3D Fan Zones
8.2.4.1. Momentum Equations for 3D Fan Zones
8.2.4.2. User Inputs for 3D Fan Zones
8.2.4.2.1. Defining the Geometry of a 3D Fan Zone
8.2.4.2.2. Defining the Properties of a 3D Fan Zone
8.2.4.3. 3D Fan Zone Limitations
8.2.5. Fixing the Values of Variables
8.2.5.1. Overview of Fixing the Value of a Variable
8.2.5.1.1. Variables That Can Be Fixed
8.2.5.2. Procedure for Fixing Values of Variables in a Zone
8.2.5.2.1. Fixing Velocity Components
8.2.5.2.2. Fixing Temperature and Enthalpy
8.2.5.2.3. Fixing Species Mass Fractions
8.2.5.2.4. Fixing Turbulence Quantities
8.2.5.2.5. Fixing User-Defined Scalars
8.2.6. Locking the Temperature for Solid and Shell Zones
8.2.7. Defining Mass, Momentum, Energy, and Other Sources
8.2.7.1. Sign Conventions and Units
8.2.7.2. Procedure for Defining Sources
8.2.7.2.1. Mass Sources
8.2.7.2.2. Momentum Sources
8.2.7.2.3. Energy Sources
8.2.7.2.4. Turbulence Sources
8.2.7.2.4.1. Turbulence Sources for the k- ε Model
8.2.7.2.4.2. Turbulence Sources for the Spalart-Allmaras Model
8.2.7.2.4.3. Turbulence Sources for the k- ω Model
8.2.7.2.4.4. Turbulence Sources for the Reynolds Stress Model
8.2.7.2.5. Mean Mixture Fraction and Variance Sources
8.2.7.2.6. P-1 Radiation Sources
8.2.7.2.7. Progress Variable Sources
8.2.7.2.8. NO, HCN, and NH3 Sources for the NOx Model
8.2.7.2.9. Discrete Bin Fraction Sources for the Population Balance Model
8.2.7.2.10. User-Defined Scalar (UDS) Sources
8.3. Operating Conditions
8.3.1. Buoyancy-Driven Flows and Natural Convection
8.3.1.1. Modeling Natural Convection in a Closed Domain
8.3.1.2. The Boussinesq Model
8.3.1.3. Limitations of the Boussinesq Model
8.3.1.4. Steps in Solving Buoyancy-Driven Flow Problems
8.3.1.5. If you are using the incompressible ideal gas law, check the Operating Density
8.3.1.5.1. Setting the Operating Density for a Single Phase Flow
8.3.1.5.2. Setting the Operating Density for a Multiphase Flow
8.3.1.6. Solution Strategies for Buoyancy-Driven Flows
8.3.1.6.1. Guidelines for Solving High-Rayleigh-Number Flows
8.4. Boundary Conditions
8.4.1. Flow Inlet and Exit Boundary Conditions
8.4.2. Using Flow Boundary Conditions
8.4.2.1. Determining Turbulence Parameters
8.4.2.1.1. Specification of Turbulence Quantities Using Profiles
8.4.2.1.2. Uniform Specification of Turbulence Quantities
8.4.2.1.3. Turbulence Intensity
8.4.2.1.4. Turbulence Length Scale and Hydraulic Diameter
8.4.2.1.5. Turbulent Viscosity Ratio
8.4.2.1.6. Relationships for Deriving Turbulence Quantities
8.4.2.1.7. Estimating Modified Turbulent Viscosity from Turbulence Intensity and Length Scale
8.4.2.1.8. Estimating Turbulent Kinetic Energy from Turbulence Intensity
8.4.2.1.9. Estimating Turbulent Dissipation Rate from a Length Scale
8.4.2.1.10. Estimating Turbulent Dissipation Rate from Turbulent Viscosity Ratio
8.4.2.1.11. Estimating Turbulent Dissipation Rate for Decaying Turbulence
8.4.2.1.12. Estimating Specific Dissipation Rate from a Length Scale
8.4.2.1.13. Estimating Specific Dissipation Rate from Turbulent Viscosity Ratio
8.4.2.1.14. Estimating Reynolds Stress Components from Turbulent Kinetic Energy
8.4.2.1.15. Specifying Inlet Turbulence for Scale Resolving Simulations
8.4.3. Pressure Inlet Boundary Conditions
8.4.3.1. Inputs at Pressure Inlet Boundaries
8.4.3.1.1. Summary
8.4.3.1.1.1. Pressure Inputs and Hydrostatic Head
8.4.3.1.1.2. Defining Total Pressure and Temperature
8.4.3.1.1.3. Defining the Flow Direction
8.4.3.1.1.4. Defining Static Pressure
8.4.3.1.1.5. Prevent Reverse Flow
8.4.3.1.1.6. Defining Turbulence Parameters
8.4.3.1.1.7. Defining Radiation Parameters
8.4.3.1.1.8. Defining Species Mass or Mole Fractions
8.4.3.1.1.9. Defining Non-Premixed Combustion Parameters
8.4.3.1.1.10. Defining Premixed Combustion Boundary Conditions
8.4.3.1.1.11. Defining Discrete Phase Boundary Conditions
8.4.3.1.1.12. Defining Multiphase Boundary Conditions
8.4.3.1.1.13. Defining Open Channel Boundary Conditions
8.4.3.2. Default Settings at Pressure Inlet Boundaries
8.4.3.3. Calculation Procedure at Pressure Inlet Boundaries
8.4.3.3.1. Incompressible Flow Calculations at Pressure Inlet Boundaries
8.4.3.3.2. Compressible Flow Calculations at Pressure Inlet Boundaries
8.4.4. Velocity Inlet Boundary Conditions
8.4.4.1. Inputs at Velocity Inlet Boundaries
8.4.4.1.1. Summary
8.4.4.1.2. Defining the Velocity
8.4.4.1.3. Setting the Velocity Magnitude and Direction
8.4.4.1.4. Setting the Velocity Magnitude Normal to the Boundary
8.4.4.1.5. Setting the Velocity Components
8.4.4.1.6. Setting the Angular Velocity
8.4.4.1.7. Defining Static Pressure
8.4.4.1.8. Defining the Temperature
8.4.4.1.9. Defining Outflow Gauge Pressure
8.4.4.1.10. Defining Turbulence Parameters
8.4.4.1.11. Defining Radiation Parameters
8.4.4.1.12. Defining Species Mass or Mole Fractions
8.4.4.1.13. Defining Non-Premixed Combustion Parameters
8.4.4.1.14. Defining Premixed Combustion Boundary Conditions
8.4.4.1.15. Defining Discrete Phase Boundary Conditions
8.4.4.1.16. Defining Multiphase Boundary Conditions
8.4.4.2. Default Settings at Velocity Inlet Boundaries
8.4.4.3. Calculation Procedure at Velocity Inlet Boundaries
8.4.4.3.1. Treatment of Velocity Inlet Conditions at Flow Inlets
8.4.4.3.2. Treatment of Velocity Inlet Conditions at Flow Exits
8.4.4.3.3. Density Calculation
8.4.5. Mass-Flow Inlet Boundary Conditions
8.4.5.1. Limitations and Special Considerations
8.4.5.2. Inputs at Mass-Flow Inlet Boundaries
8.4.5.2.1. Summary
8.4.5.2.2. Selecting the Reference Frame
8.4.5.2.3. Defining the Mass Flow Rate or Mass Flux
8.4.5.2.4. More About Mass Flux and Average Mass Flux
8.4.5.2.5. Defining the Total Temperature
8.4.5.2.6. Defining Static Pressure
8.4.5.2.7. Defining the Flow Direction
8.4.5.2.8. Defining Turbulence Parameters
8.4.5.2.9. Defining Radiation Parameters
8.4.5.2.10. Defining Species Mass or Mole Fractions
8.4.5.2.11. Defining Non-Premixed Combustion Parameters
8.4.5.2.12. Defining Premixed Combustion Boundary Conditions
8.4.5.2.13. Defining Discrete Phase Boundary Conditions
8.4.5.2.14. Defining Open Channel Boundary Conditions
8.4.5.3. Default Settings at Mass-Flow Inlet Boundaries
8.4.5.4. Calculation Procedure at Mass-Flow Inlet Boundaries
8.4.5.4.1. Flow Calculations at Mass Flow Boundaries for Ideal Gases
8.4.5.4.2. Flow Calculations at Mass Flow Boundaries for Incompressible Flows
8.4.5.4.3. Flux Calculations at Mass Flow Boundaries
8.4.6. Mass-Flow Outlet Boundary Conditions
8.4.6.1. Limitations
8.4.6.2. Inputs at Mass-Flow Outlet Boundaries
8.4.6.2.1. Summary
8.4.6.2.2. Selecting the Reference Frame
8.4.6.2.3. Defining the Mass Flow Rate or Mass Flux
8.4.6.2.4. Defining Radiation Parameters
8.4.6.2.5. Defining Discrete Phase Boundary Conditions
8.4.6.3. Calculation Procedure at Mass-Flow Outlet Boundaries
8.4.6.3.1. Exit Corrected Mass Flow Rate
8.4.7. Inlet Vent Boundary Conditions
8.4.7.1. Inputs at Inlet Vent Boundaries
8.4.7.1.1. Specifying the Loss Coefficient
8.4.8. Intake Fan Boundary Conditions
8.4.8.1. Inputs at Intake Fan Boundaries
8.4.8.1.1. Specifying the Pressure Jump
8.4.9. Pressure Outlet Boundary Conditions
8.4.9.1. Inputs at Pressure Outlet Boundaries
8.4.9.1.1. Summary
8.4.9.1.2. Defining Static Pressure
8.4.9.1.3. Defining Backflow Conditions
8.4.9.1.3.1. Prevent Reverse Flow
8.4.9.1.4. Defining Radiation Parameters
8.4.9.1.5. Defining Discrete Phase Boundary Conditions
8.4.9.1.6. Defining Open Channel Boundary Conditions
8.4.9.2. Default Settings at Pressure Outlet Boundaries
8.4.9.3. Calculation Procedure at Pressure Outlet Boundaries
8.4.9.3.1. Average Pressure Specification
8.4.9.3.1.1. Strong Averaging
8.4.9.3.1.2. Weak Averaging
8.4.9.4. Other Optional Inputs at Pressure Outlet Boundaries
8.4.9.4.1. Non-Reflecting Boundary Conditions Option
8.4.9.4.2. Target Mass Flow Rate Option
8.4.10. Pressure Far-Field Boundary Conditions
8.4.10.1. Limitations
8.4.10.2. Inputs at Pressure Far-Field Boundaries
8.4.10.2.1. Summary
8.4.10.2.2. Defining Static Pressure, Mach Number, and Static Temperature
8.4.10.2.3. Defining the Flow Direction
8.4.10.2.4. Defining Turbulence Parameters
8.4.10.2.5. Defining Radiation Parameters
8.4.10.2.6. Defining Species Transport Parameters
8.4.10.3. Defining Discrete Phase Boundary Conditions
8.4.10.4. Default Settings at Pressure Far-Field Boundaries
8.4.10.5. Calculation Procedure at Pressure Far-Field Boundaries
8.4.10.6. Flux-based Pressure Far-Field
8.4.10.7. Tangency Correction
8.4.11. Outflow Boundary Conditions
8.4.11.1. Ansys Fluent’s Treatment at Outflow Boundaries
8.4.11.2. Using Outflow Boundaries
8.4.11.3. Mass Flow Split Boundary Conditions
8.4.11.4. Other Inputs at Outflow Boundaries
8.4.11.4.1. Radiation Inputs at Outflow Boundaries
8.4.11.4.2. Defining Discrete Phase Boundary Conditions
8.4.12. Outlet Vent Boundary Conditions
8.4.12.1. Inputs at Outlet Vent Boundaries
8.4.12.1.1. Specifying the Loss Coefficient
8.4.13. Exhaust Fan Boundary Conditions
8.4.13.1. Inputs at Exhaust Fan Boundaries
8.4.13.1.1. Specifying the Pressure Jump
8.4.14. Degassing Boundary Conditions
8.4.14.1. Limitations
8.4.14.2. Inputs at Degassing Boundaries
8.4.15. Wall Boundary Conditions
8.4.15.1. Inputs at Wall Boundaries
8.4.15.1.1. Summary
8.4.15.2. Stationary Wall
8.4.15.3. Wall Roughness Effects in Turbulent Wall-Bounded Flows
8.4.15.3.1. Setting the Roughness Parameters
8.4.15.3.2. Additional Roughness Models for Icing Simulations
8.4.15.3.2.1. Specified Roughness
8.4.15.3.2.2. NASA Correlation
8.4.15.3.2.3. Shin-et-al
8.4.15.3.2.4. ICE3D Roughness File
8.4.15.4. Wall Motion
8.4.15.4.1. Velocity Conditions for Moving Walls
8.4.15.4.2. Shear Conditions at Walls
8.4.15.4.3. No-Slip Walls
8.4.15.4.4. Specified Shear
8.4.15.4.5. Specularity Coefficient
8.4.15.4.6. Marangoni Stress
8.4.15.4.7. Partial Slip for Rarefied Gases
8.4.15.5. Thermal Boundary Conditions at Walls
8.4.15.5.1. Heat Flux Boundary Conditions
8.4.15.5.2. Temperature Boundary Conditions
8.4.15.5.3. Convective Heat Transfer Boundary Conditions
8.4.15.5.4. External Radiation Boundary Conditions
8.4.15.5.5. Combined Convection and External Radiation Boundary Conditions
8.4.15.5.6. Augmented Heat Transfer
8.4.15.5.7. Thin-Wall Thermal Resistance Parameters
8.4.15.5.8. Thermal Conditions for Two-Sided Walls
8.4.15.5.8.1. Orthogonality-Based Secondary Gradient Limiting at Coupled Two-Sided Walls
8.4.15.5.9. Boundary Advection for Solid Motion
8.4.15.5.10. Shell Conduction
8.4.15.5.11. Heat Transfer Boundary Conditions Through System Coupling
8.4.15.5.12. Heat Transfer Boundary Conditions Across a Mapped Interface
8.4.15.5.13. Temperature Jump for Rarefied Gases
8.4.15.6. Species Boundary Conditions for Walls
8.4.15.6.1. Partial Catalytic Boundary Conditions for Walls
8.4.15.7. Radiation Boundary Conditions for Walls
8.4.15.8. Discrete Phase Model (DPM) Boundary Conditions for Walls
8.4.15.9. Wall Adhesion Contact Angle for VOF Model
8.4.15.10. User-Defined Scalar (UDS) Boundary Conditions for Walls
8.4.15.11. Wall Film Conditions for Walls
8.4.15.12. Structural Model Conditions for Walls
8.4.15.13. Default Settings at Wall Boundaries
8.4.15.14. Shear-Stress Calculation Procedure at Wall Boundaries
8.4.15.14.1. Shear-Stress Calculation in Laminar Flow
8.4.15.14.2. Shear-Stress Calculation in Turbulent Flows
8.4.15.15. Heat Transfer Calculations at Wall Boundaries
8.4.15.15.1. Temperature Boundary Conditions
8.4.15.15.2. Heat Flux Boundary Conditions
8.4.15.15.3. Convective Heat Transfer Boundary Conditions
8.4.15.15.4. External Radiation Boundary Conditions
8.4.15.15.5. Combined External Convection and Radiation Boundary Conditions
8.4.15.15.6. Calculation of the Fluid-Side Heat Transfer Coefficient
8.4.16. Perforated Wall Boundary Conditions
8.4.16.1. Overview and Limitations
8.4.16.2. Modeling Concept
8.4.16.3. Setting Perforated Walls
8.4.16.4. Procedure for Manual Setup of Perforated Walls
8.4.16.5. Perforated Wall File Format
8.4.16.6. Postprocessing for Perforated Walls
8.4.17. Symmetry Boundary Conditions
8.4.17.1. Examples of Symmetry Boundaries
8.4.17.2. Calculation Procedure at Symmetry Boundaries
8.4.18. Periodic Boundary Conditions
8.4.18.1. Examples of Periodic Boundaries
8.4.18.2. Inputs for Periodic Boundaries
8.4.18.3. Default Settings at Periodic Boundaries
8.4.18.4. Calculation Procedure at Periodic Boundaries
8.4.19. Axis Boundary Conditions
8.4.19.1. Calculation Procedure at Axis Boundaries
8.4.20. Fan Boundary Conditions
8.4.20.1. Limitations of Fan Boundary Conditions
8.4.20.2. Fan Equations
8.4.20.2.1. Modeling the Pressure Rise Across the Fan
8.4.20.2.2. Modeling the Fan Swirl Velocity
8.4.20.3. User Inputs for Fans
8.4.20.3.1. Identifying the Fan Zone
8.4.20.3.2. Defining the Pressure Jump
8.4.20.3.2.1. Polynomial, Piecewise-Linear, or Piecewise-Polynomial Function
8.4.20.3.2.2. Constant Value
8.4.20.3.2.3. User-Defined Function or Profile
8.4.20.3.2.4. Example: Determining the Pressure Jump Function
8.4.20.3.3. Defining Discrete Phase Boundary Conditions for the Fan
8.4.20.3.4. Defining the Fan Swirl Velocity
8.4.20.3.4.1. Polynomial Function
8.4.20.3.4.2. Constant Value
8.4.20.3.4.3. User-Defined Function or Profile
8.4.20.4. Postprocessing for Fans
8.4.20.4.1. Reporting the Pressure Rise Through the Fan
8.4.20.4.2. Graphical Plots
8.4.21. Radiator Boundary Conditions
8.4.21.1. Radiator Equations
8.4.21.1.1. Modeling the Pressure Loss Through a Radiator
8.4.21.1.2. Modeling the Heat Transfer Through a Radiator
8.4.21.1.2.1. Calculating the Heat Transfer Coefficient
8.4.21.2. User Inputs for Radiators
8.4.21.2.1. Identifying the Radiator Zone
8.4.21.2.2. Defining the Pressure Loss Coefficient Function
8.4.21.2.2.1. Polynomial, Piecewise-Linear, or Piecewise-Polynomial Function
8.4.21.2.2.2. Constant Value
8.4.21.2.2.3. Example: Calculating the Loss Coefficient
8.4.21.2.3. Defining the Heat Flux Parameters
8.4.21.2.3.1. Polynomial, Piecewise-Linear, or Piecewise-Polynomial Function
8.4.21.2.3.2. Constant Value
8.4.21.2.3.3. Example: Determining the Heat Transfer Coefficient Function
8.4.21.2.4. Defining Discrete Phase Boundary Conditions for the Radiator
8.4.21.3. Postprocessing for Radiators
8.4.21.3.1. Reporting the Radiator Pressure Drop
8.4.21.3.2. Reporting Heat Transfer in the Radiator
8.4.21.3.3. Graphical Plots
8.4.22. Porous Jump Boundary Conditions
8.4.22.1. User Inputs for the Porous Jump Model
8.4.22.1.1. Identifying the Porous Jump Zone
8.4.22.1.2. Defining Discrete Phase Boundary Conditions for the Porous Jump
8.4.22.2. Postprocessing for the Porous Jump
8.5. Editing Multiple Boundary Conditions at Once
8.6. Transient Cell Zone and Boundary Conditions
8.6.1. Standard Transient Profiles
8.6.2. Tabular Transient Profiles
8.6.3. Profiles for Moving and Deforming Meshes
8.7. Boundary Acoustic Wave Models
8.7.1. Turbo-Specific Non-Reflecting Boundary Conditions
8.7.1.1. Overview
8.7.1.2. Limitations
8.7.1.3. Theory
8.7.1.3.1. Equations in Characteristic Variable Form
8.7.1.3.2. Inlet Boundary
8.7.1.3.3. Outlet Boundary
8.7.1.3.4. Updated Flow Variables
8.7.1.4. Using Turbo-Specific Non-Reflecting Boundary Conditions
8.7.1.4.1. Using the NRBCs with the Mixing-Plane Model
8.7.1.4.2. Using the NRBCs in Parallel Ansys Fluent
8.7.2. General Non-Reflecting Boundary Conditions
8.7.2.1. Overview
8.7.2.2. Restrictions and Limitations
8.7.2.3. Theory
8.7.2.4. Using the General Non-Reflecting Boundary Condition
8.7.3. Impedance Boundary Conditions
8.7.3.1. Restrictions and Limitations
8.7.3.2. Theory
8.7.3.3. Using the Impedance Boundary Condition
8.7.3.4. Calculating Impedance Parameters
8.7.4. Transparent Flow Forcing Boundary Conditions
8.7.4.1. Restrictions and Limitations
8.7.4.2. Theory
8.7.4.3. Using the Transparent Flow Forcing Boundary Condition
8.8. User-Defined Fan Model
8.8.1. Steps for Using the User-Defined Fan Model
8.8.2. Example of a User-Defined Fan
8.8.2.1. Setting the User-Defined Fan Parameters
8.8.2.2. Sample User-Defined Fan Program
8.8.2.3. Initializing the Flow Field and Profile Files
8.8.2.4. Selecting the Profiles
8.8.2.5. Performing the Calculation
8.8.2.6. Results
8.9. Profiles
8.9.1. Profile Specification Types
8.9.2. Profile File Formats
8.9.2.1. Standard Profiles
8.9.2.1.1. Example
8.9.2.2. CSV Profiles
8.9.3. Using Profiles
8.9.3.1. Checking and Deleting Profiles
8.9.3.2. Viewing Profile Data
8.9.3.3. Example
8.9.3.4. Reorienting Profiles
8.9.3.4.1. Steps for Changing the Profile Orientation
8.9.3.4.2. Profile Orienting Example
8.9.3.5. Replicating Profiles
8.9.3.5.1. Steps for Replicating a Profile
8.9.3.5.2. Complex Mode Shape Profile Replication
8.9.3.5.2.1. Steps for Replicating a Complex Mode Shape Profile
8.10. Coupling Boundary Conditions with GT-POWER
8.10.1. Requirements and Restrictions
8.10.2. User Inputs
8.10.3. Torque-Speed Coupling with GT-POWER
8.11. Coupling Boundary Conditions with WAVE
8.11.1. Requirements and Restrictions
8.11.2. User Inputs
9. Physical Properties
9.1. Defining Materials
9.1.1. Physical Properties for Solid Materials
9.1.2. Material Types and Databases
9.1.3. Using the Create/Edit Materials Dialog Box
9.1.3.1. Modifying Properties of an Existing Material
9.1.3.2. Renaming an Existing Material
9.1.3.3. Copying Materials from the Ansys Fluent Database
9.1.3.4. Copying Materials from the Ansys GRANTA MDS Database
9.1.3.5. Creating a New Material
9.1.3.6. Saving Materials and Properties
9.1.3.7. Deleting a Material
9.1.3.8. Changing the Order of the Materials List
9.1.4. Using a User-Defined Materials Database
9.1.4.1. Opening a User-Defined Database
9.1.4.2. Viewing Materials in a User-Defined Database
9.1.4.3. Copying Materials from a User-Defined Database
9.1.4.4. Copying Materials from the Case to a User-Defined Database
9.1.4.5. Modifying Properties of an Existing Material
9.1.4.6. Creating a New Materials Database and Materials
9.1.4.7. Deleting Materials from a Database
9.2. Defining Properties Using Temperature-Dependent Functions
9.2.1. Inputs for Polynomial Functions
9.2.2. Inputs for Piecewise-Linear Functions
9.2.3. Inputs for Piecewise-Polynomial Functions
9.2.4. Inputs for NASA-9-Piecewise-Polynomial Functions
9.2.5. Checking and Modifying Existing Profiles
9.3. Density
9.3.1. Defining Density for Various Flow Regimes
9.3.1.1. Mixing Density Relationships in Multiple-Zone Models
9.3.2. Input of Constant Density
9.3.3. Inputs for the Boussinesq Approximation
9.3.4. Compressible Liquid Density Method
9.3.4.1. Compressible Liquid Inputs
9.3.4.2. Compressible Liquid Density Method Availability
9.3.5. Density as a Profile Function of Temperature
9.3.6. Incompressible Ideal Gas Law
9.3.6.1. Density Inputs for the Incompressible Ideal Gas Law
9.3.7. Ideal Gas Law for Compressible Flows
9.3.7.1. Density Inputs for the Ideal Gas Law for Compressible Flows
9.3.8. Composition-Dependent Density for Multicomponent Mixtures
9.4. Viscosity
9.4.1. Input of Constant Viscosity
9.4.2. Viscosity as a Function of Temperature
9.4.2.1. Sutherland Viscosity Law
9.4.2.1.1. Inputs for Sutherland’s Law
9.4.2.2. Power-Law Viscosity Law
9.4.2.2.1. Inputs for the Power Law
9.4.3. Defining the Viscosity Using Kinetic Theory
9.4.4. Defining Viscosity Using Gupta Curve Fits
9.4.5. Composition-Dependent Viscosity for Multicomponent Mixtures
9.4.6. Viscosity for Non-Newtonian Fluids
9.4.6.1. Temperature Dependent Viscosity
9.4.6.2. Power Law for Non-Newtonian Viscosity
9.4.6.2.1. Inputs for the Non-Newtonian Power Law
9.4.6.3. The Carreau Model for Pseudo-Plastics
9.4.6.3.1. Inputs for the Carreau Model
9.4.6.4. Cross Model
9.4.6.4.1. Inputs for the Cross Model
9.4.6.5. Herschel-Bulkley Model for Bingham Plastics
9.4.6.5.1. Inputs for the Herschel-Bulkley Model
9.5. Thermal Conductivity
9.5.1. Constant Thermal Conductivity
9.5.2. Thermal Conductivity as a Function of Temperature
9.5.3. Thermal Conductivity Using Kinetic Theory
9.5.4. Defining Thermal Conductivity Using Gupta Curve Fits
9.5.5. Composition-Dependent Thermal Conductivity for Multicomponent Mixtures
9.5.6. Anisotropic Thermal Conductivity for Solids
9.5.6.1. Anisotropic Thermal Conductivity
9.5.6.2. Biaxial Thermal Conductivity
9.5.6.3. Orthotropic Thermal Conductivity
9.5.6.4. Cylindrical Orthotropic Thermal Conductivity
9.5.6.5. Principal Axes and Principal Values
9.5.6.6. User-Defined Anisotropic Thermal Conductivity
9.6. User-Defined Scalar (UDS) Diffusivity
9.6.1. Isotropic Diffusion
9.6.2. Anisotropic Diffusion
9.6.2.1. Anisotropic Diffusivity
9.6.2.2. Orthotropic Diffusivity
9.6.2.3. Cylindrical Orthotropic Diffusivity
9.6.3. User-Defined Anisotropic Diffusivity
9.7. Electrical Conductivity
9.7.1. Constant Electrical Conductivity
9.7.2. Electrical Conductivity as a Function of Temperature
9.7.3. Anisotropic Electrical Conductivity for Solids
9.7.3.1. Anisotropic Electrical Conductivity
9.7.3.2. Orthotropic Electrical Conductivity
9.7.3.3. Cylindrical Orthotropic Electrical Conductivity
9.8. Specific Heat Capacity
9.8.1. Input of Constant Specific Heat Capacity
9.8.2. Specific Heat Capacity as a Function of Temperature
9.8.3. Defining Specific Heat Capacity Using Kinetic Theory
9.8.4. Specific Heat Capacity as a Function of Composition
9.9. Radiation Properties
9.9.1. Absorption Coefficient
9.9.1.1. Inputs for a Constant Absorption Coefficient
9.9.1.2. Inputs for a Composition-Dependent Absorption Coefficient
9.9.1.2.1. Path Length Inputs
9.9.1.2.1.1. Inputs for a Non-Gray Radiation Absorption Coefficient
9.9.1.2.1.2. Effect of Particles and Soot on the Absorption Coefficient
9.9.2. Scattering Coefficient
9.9.2.1. Inputs for a Constant Scattering Coefficient
9.9.2.2. Inputs for the Scattering Phase Function
9.9.2.2.1. Isotropic Phase Function
9.9.2.2.2. Linear-Anisotropic Phase Function
9.9.2.2.3. Delta-Eddington Phase Function
9.9.2.2.4. User-Defined Phase Function
9.9.3. Refractive Index
9.9.4. Reporting the Radiation Properties
9.10. Mass Diffusion Coefficients
9.10.1. Mass Diffusion Coefficient Inputs
9.10.1.1. Constant Dilute Approximation Inputs
9.10.1.2. Dilute Approximation Inputs
9.10.1.3. Multicomponent Method Inputs
9.10.2. Mass Diffusion Coefficient Inputs for Turbulent Flow
9.10.3. Anisotropic Species Diffusion
9.10.4. Thermal Diffusion Coefficient Inputs
9.11. Standard State Enthalpies
9.12. Standard State Entropies
9.13. Unburnt Thermal Diffusivity
9.14. Kinetic Theory Parameters
9.14.1. Inputs for Kinetic Theory
9.15. Operating Pressure
9.15.1. The Significance of Operating Pressure
9.15.2. Operating Pressure, Gauge Pressure, and Absolute Pressure
9.15.3. Setting the Operating Pressure
9.16. Using a Reference Pressure to Adjust the Gauge Pressure Field
9.17. Real Gas Models
9.17.1. Introduction
9.17.2. Choosing a Real Gas Model
9.17.3. Cubic Equation of State Models
9.17.3.1. Overview and Limitations
9.17.3.2. Equation of State
9.17.3.3. Enthalpy, Entropy, and Specific Heat Calculations
9.17.3.4. Critical Constants for Pure Components
9.17.3.5. Calculations for Mixtures
9.17.3.5.1. Using the Cubic Equation of State Real Gas Models
9.17.3.5.2. Solution Strategies and Considerations for Cubic Equations of State Real Gas Models
9.17.3.5.3. Using the Cubic Equation of State Models with the Lagrangian Dispersed Phase Models
9.17.3.5.4. Postprocessing the Cubic Equations of State Real Gas Model
9.17.4. The NIST Real Gas Models
9.17.4.1. Limitations of the NIST Real Gas Models
9.17.4.2. The REFPROP v10.0 Database
9.17.4.3. Using the NIST Real Gas Models
9.17.4.3.1. Creating NIST Look-up Tables
9.17.4.3.1.1. Capabilities and Limitations with NIST Look-up Tables
9.17.4.4. Legacy TUI for the NIST Real Gas Models
9.17.4.4.1. Limitations of the Legacy TUI NIST Real Gas Models
9.17.4.4.2. Activating the NIST Real Gas Model
9.17.4.4.3. Creating Full NIST Look-up Tables
9.17.4.4.4. Creating Binary Mixture Saturation Tables for Binary Mixtures
9.17.4.5. Solution Strategies and Considerations for NIST Real Gas Model Simulation
9.17.4.5.1. Writing Your Case File
9.17.4.5.2. Postprocessing
9.17.5. The User-Defined Real Gas Model
9.17.5.1. Limitations of the User-Defined Real Gas Model
9.17.5.2. Writing the UDRGM C Function Library
9.17.5.3. Compiling Your UDRGM C Functions and Building a Shared Library File
9.17.5.3.1. Compiling the UDRGM Using the Graphical Interface
9.17.5.3.2. Compiling the UDRGM Using the Text Interface
9.17.5.3.3. Loading the UDRGM Shared Library File
9.17.5.4. UDRGM Example: Ideal Gas Equation of State
9.17.5.4.1. Ideal Gas UDRGM Code Listing
9.17.5.5. Additional UDRGM Examples
9.17.6. Using Real Gas Property (RGP) Table Files
9.17.6.1. Overview
9.17.6.2. Defining Material Properties Using RGP Tables
9.17.6.3. Defining Saturation Properties via RGP Tables
9.17.6.4. Continuity Transient Term Linearization
10. Modeling Basic Fluid Flow
10.1. User-Defined Scalar (UDS) Transport Equations
10.1.1. Introduction
10.1.2. UDS Theory
10.1.2.1. Single Phase Flow
10.1.2.2. Multiphase Flow
10.1.3. Setting Up UDS Equations in Ansys Fluent
10.1.3.1. Single Phase Flow
10.1.3.2. Multiphase Flow
10.2. Periodic Flows
10.2.1. Overview and Limitations
10.2.1.1. Overview
10.2.1.2. Limitations for Modeling Streamwise-Periodic Flow
10.2.2. User Inputs for the Pressure-Based Solver
10.2.2.1. Setting Parameters for the Calculation of β
10.2.3. User Inputs for the Density-Based Solvers
10.2.4. Monitoring the Value of the Pressure Gradient
10.2.5. Postprocessing for Streamwise-Periodic Flows
10.3. Swirling and Rotating Flows
10.3.1. Overview of Swirling and Rotating Flows
10.3.1.1. Axisymmetric Flows with Swirl or Rotation
10.3.1.1.1. Momentum Conservation Equation for Swirl Velocity
10.3.1.2. Three-Dimensional Swirling Flows
10.3.1.3. Flows Requiring a Moving Reference Frame
10.3.2. Turbulence Modeling in Swirling Flows
10.3.3. Mesh Setup for Swirling and Rotating Flows
10.3.3.1. Coordinate System Restrictions
10.3.3.2. Mesh Sensitivity in Swirling and Rotating Flows
10.3.4. Modeling Axisymmetric Flows with Swirl or Rotation
10.3.4.1. Problem Setup for Axisymmetric Swirling Flows
10.3.4.2. Solution Strategies for Axisymmetric Swirling Flows
10.3.4.2.1. Step-By-Step Solution Procedures for Axisymmetric Swirling Flows
10.3.4.2.2. Improving Solution Stability by Gradually Increasing the Rotational or Swirl Speed
10.3.4.2.2.1. Postprocessing for Axisymmetric Swirling Flows
10.4. Compressible Flows
10.4.1. When to Use the Compressible Flow Model
10.4.2. Physics of Compressible Flows
10.4.2.1. Basic Equations for Compressible Flows
10.4.2.2. The Compressible Form of the Gas Law
10.4.3. Modeling Inputs for Compressible Flows
10.4.3.1. Boundary Conditions for Compressible Flows
10.4.4. Floating Operating Pressure
10.4.4.1. Limitations
10.4.4.2. Theory
10.4.4.3. Enabling Floating Operating Pressure
10.4.4.4. Setting the Initial Value for the Floating Operating Pressure
10.4.4.5. Storage and Reporting of the Floating Operating Pressure
10.4.4.6. Monitoring Absolute Pressure
10.4.5. Solution Strategies for Compressible Flows
10.4.6. Reporting of Results for Compressible Flows
10.5. Inviscid Flows
10.5.1. Setting Up an Inviscid Flow Model
10.5.2. Solution Strategies for Inviscid Flows
10.5.3. Postprocessing for Inviscid Flows
11. Modeling Flows with Moving Reference Frames
11.1. Introduction
11.2. Flow in Single Moving Reference Frames (SRF)
11.2.1. Mesh Setup for a Single Moving Reference Frame
11.2.2. Setting Up a Single Moving Reference Frame Problem
11.2.2.1. Choosing the Relative or Absolute Velocity Formulation
11.2.2.1.1. Example
11.2.3. Solution Strategies for a Single Moving Reference Frame
11.2.3.1. Gradual Increase of the Rotational Speed to Improve Solution Stability
11.2.4. Postprocessing for a Single Moving Reference Frame
11.3. Flow in Multiple Moving Reference Frames
11.3.1. The Multiple Reference Frame Model
11.3.1.1. Overview
11.3.1.2. Limitations
11.3.2. Mesh Setup for a Multiple Moving Reference Frame
11.3.3. Setting Up a Multiple Moving Reference Frame Problem
11.3.3.1. Setting Up Multiple Reference Frames
11.3.4. Solution Strategies for MRF and Problems
11.3.5. Postprocessing for MRF Problems
12. Managing Motion Definitions
13. Managing Auxiliary Geometry Definitions
14. Modeling Flows Using Sliding and Dynamic Meshes
14.1. Introduction
14.2. Sliding Mesh Examples
14.3. The Sliding Mesh Technique
14.4. Sliding Mesh Interface Shapes
14.5. Using Sliding Meshes
14.5.1. Requirements, Constraints, and Considerations
14.5.2. Setting Up the Sliding Mesh Problem
14.5.3. Solution Strategies for Sliding Meshes
14.5.3.1. Saving Case and Data Files
14.5.3.2. Time-Periodic Solutions
14.5.4. Postprocessing for Sliding Meshes
14.6. Using Dynamic Meshes
14.6.1. Setting Dynamic Mesh Modeling Parameters
14.6.2. Dynamic Mesh Update Methods
14.6.2.1. Smoothing Methods
14.6.2.1.1. Diffusion-Based Smoothing
14.6.2.1.1.1. Diffusivity Based on Boundary Distance
14.6.2.1.1.2. Diffusivity Based on Cell Volume
14.6.2.1.1.3. Applicability of the Diffusion-Based Smoothing Method
14.6.2.1.2. Spring-Based Smoothing
14.6.2.1.2.1. Applicability of the Spring-Based Smoothing Method
14.6.2.1.3. Linearly Elastic Solid Based Smoothing Method
14.6.2.1.3.1. Applicability of the Linearly Elastic Solid Based Smoothing Method
14.6.2.1.4. Radial Basis Function Smoothing
14.6.2.1.4.1. Local Smoothing with the Radial Basis Function Smoothing Method
14.6.2.1.5. Smoothing from a Reference Position
14.6.2.1.6. Laplacian Smoothing Method
14.6.2.1.7. Boundary Layer Smoothing Method
14.6.2.2. Dynamic Layering
14.6.2.2.1. Applicability of the Dynamic Layering Method
14.6.2.3. Remeshing
14.6.2.3.1. Methods-Based Remeshing
14.6.2.3.1.1. Local Remeshing Method
14.6.2.3.1.1.1. Local Cell Remeshing Method
14.6.2.3.1.1.2. Local Face Remeshing Method
14.6.2.3.1.1.3. Local Remeshing Based on Sizing Function
14.6.2.3.1.2. Cell Zone Remeshing Method
14.6.2.3.1.2.1. Limitations of the Cell Zone Remeshing Method
14.6.2.3.1.3. Face Region Remeshing Method
14.6.2.3.1.3.1. Face Region Remeshing with Wedge Cells in Prism Layers
14.6.2.3.1.3.2. Applicability of the Face Region Remeshing Method
14.6.2.3.1.4. 2.5D Surface Remeshing Method
14.6.2.3.1.4.1. Applicability of the 2.5D Surface Remeshing Method
14.6.2.3.1.4.2. Using the 2.5D Model
14.6.2.3.2. Unified Remeshing
14.6.2.3.2.1. Sizing Controls
14.6.2.3.2.2. Prism Controls
14.6.2.4. Volume Mesh Update Procedure
14.6.2.5. Transient Considerations for Remeshing and Layering
14.6.3. Feature Detection
14.6.3.1. Applicability of Feature Detection
14.6.4. In-Cylinder Settings
14.6.4.1. Using the In-Cylinder Option
14.6.4.1.1. Overview
14.6.4.1.2. Defining the Mesh Topology
14.6.4.1.3. Defining Motion/Geometry Attributes of Mesh Zones
14.6.4.1.4. Defining Valve Opening and Closure
14.6.5. Six DOF Solver Settings
14.6.5.1. Setting Rigid Body Motion Attributes for the Six DOF Solver
14.6.6. Implicit Update Settings
14.6.7. Contact Detection Settings
14.6.7.1. Flow Control Using Contact Zones
14.6.7.2. Flow Control Using Contact Marks
14.6.7.2.1. Selecting Parameters for Flow Control
14.6.7.2.2. Modifying and Displaying Contact Cell Marks
14.6.8. Defining Dynamic Mesh Events
14.6.8.1. Procedure for Defining Events
14.6.8.2. Defining Events for In-Cylinder Applications
14.6.8.2.1. Events
14.6.8.2.2. Changing the Zone Type
14.6.8.2.3. Copying Zone Boundary Conditions
14.6.8.2.4. Activating a Cell Zone
14.6.8.2.5. Deactivating a Cell Zone
14.6.8.2.6. Creating a Sliding Interface
14.6.8.2.7. Deleting a Sliding Interface
14.6.8.2.8. Changing the Motion Attribute of a Dynamic Zone
14.6.8.2.9. Changing the Time Step Size
14.6.8.2.10. Changing the Under-Relaxation Factor
14.6.8.2.11. Inserting a Boundary Zone Layer
14.6.8.2.12. Removing a Boundary Zone Layer
14.6.8.2.13. Inserting an Interior Zone Layer
14.6.8.2.14. Removing an Interior Zone Layer
14.6.8.2.15. Inserting a Cell Layer
14.6.8.2.16. Removing a Cell Layer
14.6.8.2.17. Executing a Command
14.6.8.2.18. Replacing the Mesh
14.6.8.2.19. Resetting Inert EGR
14.6.8.2.20. Diesel Unsteady Flamelet Reset
14.6.8.3. Exporting and Importing Events
14.6.9. Specifying the Motion of Dynamic Zones
14.6.9.1. General Procedure
14.6.9.1.1. Creating a Dynamic Zone
14.6.9.1.2. Modifying a Dynamic Zone
14.6.9.1.3. Checking the Center of Gravity
14.6.9.1.4. Deleting a Dynamic Zone
14.6.9.2. Stationary Zones
14.6.9.3. Rigid Body Motion
14.6.9.4. Deforming Motion
14.6.9.5. User-Defined Motion
14.6.9.5.1. Specifying Boundary Layer Deformation Smoothing
14.6.9.6. System Coupling Motion
14.6.9.7. Intrinsic FSI Motion
14.6.9.8. Solution Stabilization for Dynamic Mesh Boundary Zones
14.6.9.9. Solid-Body Kinematics
14.6.10. Previewing the Dynamic Mesh
14.6.10.1. Previewing Zone Motion
14.6.10.2. Previewing Mesh Motion
14.6.11. Steady-State Dynamic Mesh Applications
14.6.11.1. An Example of Steady-State Dynamic Mesh Usage
15. Modeling Turbomachinery Flows
15.1. Using the Turbomachinery Setup Guided Workflow
15.1.1. Describing the Components of the Turbo Machine
15.1.2. Defining Your Blade Row Scope
15.1.3. Importing Your Mesh
15.1.4. Associating Your Mesh
15.1.5. Mapping Your Regions
15.1.6. Creating the CFD Model
15.1.7. Defining the Turbomachinery Physics
15.1.8. Defining the Turbomachinery Regions and Zones
15.1.9. Defining the Turbomachinery Topology
15.1.10. Defining Turbomachinery Surfaces
15.1.11. Creating Turbomachinery Report Definitions and Monitors
15.1.12. Text Command List for the Turbo Setup Workflow
15.1.13. Editing Tasks in the Turbo Setup Workflow
15.1.14. Saving and Loading Turbo Setup Workflows
15.1.15. Applying Preferences to the Turbo Setup Workflow
15.2. Frozen Gust / Inlet Disturbance Flow Modeling
15.3. Blade Row Interaction Modeling
15.3.1. Pitch-Change Models
15.3.1.1. Pitch-Scale interface
15.3.1.2. No Pitch-Scale interface
15.3.1.3. Mixing-Plane interface
15.3.2. Modeling an Ensemble of Blades Per Row using GTI
15.3.3. Creating and Editing General Turbo Interfaces
15.3.4. Legacy Mixing Plane Model
15.3.4.1. Limitations
15.3.4.2. Setting Up the Legacy Mixing Plane Model
15.3.4.2.1. Modeling Options
15.3.4.2.1.1. Fixing the Pressure Level for an Incompressible Flow
15.3.4.2.1.2. Conserving Swirl Across the Mixing Plane
15.3.4.2.1.3. Conserving Total Enthalpy Across the Mixing Plane
15.3.4.3. Solution Strategies for Mixing Plane Problems
15.4. Aerodynamic Damping (Blade Flutter Analysis)
15.4.1. Common Settings for a Blade Flutter Case
15.4.1.1. Reading the Mode Shapes
15.4.1.2. Configuring Run Calculation Settings
15.4.1.3. Using Dynamic Mesh Zones in a Blade Flutter Simulation
15.4.1.3.1. Turning on Dynamic Mesh
15.4.1.3.2. Defining the Periodic Displacement of the Blades
15.4.1.3.3. Creating and Applying Dynamic Mesh Zones
15.4.2. Traveling Wave Method (TWM)
15.4.2.1. Setup Specific to the TWM Method
15.4.2.2. Visualizing and Exporting Blade Flutter Harmonics with TWM
15.4.2.3. TWM Method Post-processing
15.4.3. Influence Coefficient Method (ICM)
15.4.3.1. Setup Specific to the ICM Method
15.4.3.1.1. Limitations of the ICM Method
15.4.3.2. ICM Method Post-processing
15.4.4. Common Postprocessing for a Blade Flutter Case
15.5. Phase-lag Method
15.5.1. Phase-lag Theory
15.5.2. Phase-lag Capabilities and Limitations
15.5.3. Using the Phase-lag Method
15.5.3.1. Pre-requisites and Recommendations
15.5.3.2. Creating the Phase-lag Interface
15.5.3.3. Phase-lag Spectral Description
15.5.3.3.1. Inlet/Outlet Disturbance Specific Phase-lag Method Workflow
15.5.3.3.2. Blade Flutter (TWM) Specific Phase-lag Workflow
15.5.3.3.3. Additional Commands for Phase-lag Spectral Descriptions
15.5.3.4. Initializing and Running Phase-lag Simulations
15.5.3.5. 21.2.3.6. Fourier Coefficient Postprocessing for Inlet/Outlet Disturbance and Blade Flutter Use-Cases
15.6. Non-equilibrium Wet Steam Model for Steam Turbines
15.7. Blade Film Cooling for Gas Turbines
15.7.1. Specifying the Virtual Hole Geometry
15.7.2. Specifying the Boundary Interface
15.7.2.1. Hole Locations for Rotationally Periodic Interface Pairs
15.7.3. Boundary Interface Definitions
15.7.4. Specifying Overlap Boundary Conditions
15.7.5. Limitations for Boundary Interfaces and their Geometries
15.8. Turbomachinery Description
15.9. Turbomachinery-Specific Numerics
15.10. Turbomachinery Postprocessing
15.10.1. Defining the Turbomachinery Topology
15.10.1.1. Boundary Types
15.10.1.2. Turbomachinery-Specific Variables
15.10.2. Contours and Vectors Visualization for Turbomachinery
15.10.2.1. Creating Turbo Surfaces
15.10.2.2. Periodic Instancing
15.10.3. General Fourier Coefficient Postprocessing for Turbomachinery Cases
15.10.3.1. Fourier Coefficient Postprocessing Theory
15.10.3.2. Fourier Coefficient Postprocessing Pre-requisites
15.10.3.3. Fourier Coefficient Postprocessing Use-Cases
15.10.3.4. Creating Graphics Spectral Content
15.10.3.5. Extra Settings
15.10.3.6. Graphical Postprocessing of Fourier Coefficients
15.10.4. Circumferential-Averaged Profile Extraction
15.10.5. Turbo Post
15.10.5.1. Generating Reports of Turbomachinery Data
15.10.5.1.1. Computing Turbomachinery Quantities
15.10.5.1.1.1. Mass Flow
15.10.5.1.1.2. Swirl Number
15.10.5.1.1.3. Average Total Pressure
15.10.5.1.1.4. Average Total Temperature
15.10.5.1.1.5. Average Flow Angles
15.10.5.1.1.6. Passage Loss Coefficient
15.10.5.1.1.7. Axial Force
15.10.5.1.1.8. Torque
15.10.5.1.1.9. Efficiencies for Pumps and Compressors
15.10.5.1.1.9.1. Incompressible Flows
15.10.5.1.1.9.2. Compressible Flows
15.10.5.1.1.10. Efficiencies for Turbines
15.10.5.1.1.10.1. Incompressible Flows
15.10.5.1.1.10.2. Compressible Flows
15.10.5.2. Displaying Turbomachinery Averaged Contours
15.10.5.2.1. Steps for Generating Turbomachinery Averaged Contour Plots
15.10.5.2.2. Contour Plot Options
15.10.5.3. Displaying Turbomachinery 2D Contours
15.10.5.3.1. Steps for Generating Turbo 2D Contour Plots
15.10.5.3.2. Contour Plot Options
15.10.5.4. Generating Averaged XY Plots of Turbomachinery Solution Data
15.10.5.4.1. Steps for Generating Turbo Averaged XY Plots
15.10.5.5. Globally Setting the Turbomachinery Topology
15.10.6. Calculating Turbomachine Performance
15.10.6.1. Turbo Performance
15.10.6.2. Calculating Efficiency using Named Expressions
15.10.6.2.1. Limitations
15.10.6.3. Calculating Efficiency using Turbo Report
15.10.6.4. Calculating Total Pressure and Total Temperature Ratios using Named Expressions
15.10.6.5. Calculating Mass Flow Rates using Named Expressions
16. Modeling Turbulence
16.1. Introduction
16.2. Choosing a Turbulence Model
16.2.1. Reynolds Averaged Navier-Stokes (RANS) Turbulence Models
16.2.1.1. Spalart-Allmaras One-Equation Model
16.2.1.2. k-ε Models
16.2.1.3. k-ω Models
16.2.1.4. Generalized k-ω (GEKO) Model
16.2.1.5. Reynold Stress Models
16.2.1.6. Laminar-Turbulent Transition Models
16.2.1.7. Curvature Correction for the Spalart-Allmaras and Two-Equation Models
16.2.1.8. Corner Flow Correction
16.2.1.9. Production Limiters for Two-Equation Models
16.2.1.10. Model Enhancements
16.2.1.11. Wall Treatment for RANS Models
16.2.1.12. Grid Resolution for RANS Models
16.2.2. Scale-Resolving Simulation (SRS) Models
16.2.2.1. Large Eddy Simulation (LES)
16.2.2.2. Hybrid RANS-LES Models
16.2.2.2.1. Scale-Adaptive Simulation (SAS)
16.2.2.2.2. Detached Eddy Simulation (DES)
16.2.2.2.3. Shielded Detached Eddy Simulation (SDES) and Stress-Blended Eddy Simulation (SBES)
16.2.2.3. Zonal Modeling and Embedded LES (ELES)
16.2.3. Grid Resolution SRS Models
16.2.3.1. Wall Boundary Layers
16.2.3.2. Free Shear Flows
16.2.4. Numerics Settings for SRS Models
16.2.4.1. Time Discretization
16.2.4.2. Spatial Discretization
16.2.4.3. Iterative Scheme
16.2.4.3.1. Convergence Control
16.2.5. Model Hierarchy
16.3. Steps in Using a Turbulence Model
16.4. Setting Up the Spalart-Allmaras Model
16.5. Setting Up the k-ε Model
16.5.1. Setting Up the Standard or Realizable k-ε Model
16.5.2. Setting Up the RNG k-ε Model
16.6. Setting Up the k-ω Model
16.6.1. Setting Up the Standard k-ω Model
16.6.2. Setting up the Generalized k-ω (GEKO) Model
16.6.3. Setting Up the Baseline (BSL) k-ω Model
16.6.4. Setting Up the Shear-Stress Transport k-ω Model
16.6.5. Setting up the WJ-BSL-EARSM Model
16.7. Setting Up the Transition k-kl-ω Model
16.8. Setting Up the Transition SST Model
16.9. Setting Up the Algebraic or Intermittency Transition Model
16.10. Setting Up the Reynolds Stress Model
16.11. Setting Up Scale-Adaptive Simulation (SAS) Modeling
16.12. Setting Up the Detached Eddy Simulation Model
16.12.1. Setting Up DES with the Spalart-Allmaras Model
16.12.2. Setting Up DES with the Realizable k-ε Model
16.12.3. Setting Up DES with the SST k-ω Model
16.12.4. Setting Up DES with the BSL k-ω Model
16.12.5. Setting Up DES with the Transition SST Model
16.13. Setting Up the Large Eddy Simulation Model
16.14. Model Constants
16.15. Setting Up the Embedded Large Eddy Simulation (ELES) Model
16.16. Setup Options for All Turbulence Modeling
16.16.1. Including the Viscous Work Effects
16.16.2. Including Buoyancy Effects on Turbulence
16.16.3. Including the Curvature Correction for the Spalart-Allmaras and Two-Equation Turbulence Models
16.16.4. Including Corner Flow Correction
16.16.5. Including the Compressibility Effects Option
16.16.6. Including Production Limiters for Two-Equation Models
16.16.7. Vorticity- and Strain/Vorticity-Based Production
16.16.8. Delayed Detached Eddy Simulation (DDES)
16.16.9. Differential Viscosity Modification
16.16.10. Swirl Modification
16.16.11. Low-Re Corrections
16.16.12. Shear Flow Corrections
16.16.13. Turbulence Damping
16.16.14. Including Pressure Gradient Effects
16.16.15. Including Thermal Effects
16.16.16. Including the Wall Reflection Term
16.16.17. Solving the k Equation to Obtain Wall Boundary Conditions
16.16.18. Quadratic Pressure-Strain Model
16.16.19. Stress-Omega and Stress-BSL Models
16.16.20. Subgrid-Scale Model
16.16.21. Customizing the Turbulent Viscosity
16.16.22. Customizing the Turbulent Prandtl and Schmidt Numbers
16.16.23. Modeling Turbulence with Non-Newtonian Fluids
16.16.24. Including Scale-Adaptive Simulation with ω-Based URANS Models
16.16.25. Including Detached Eddy Simulation with the Transition SST Model
16.16.26. Including the SDES or SBES Model with RANS Models
16.16.27. Shielding Functions for the BSL / SST / Transition SST Detached Eddy Simulation Model
16.17. Defining Turbulence Boundary Conditions
16.17.1. Wall Roughness Effects
16.17.2. The Spalart-Allmaras Model
16.17.3. k-ε Models and k-ω Models
16.17.4. Reynolds Stress Model
16.17.5. Scale Resolving Simulations
16.18. Providing an Initial Guess for k and ε (or k and ω)
16.19. Solution Strategies for Turbulent Flow Simulations
16.19.1. Mesh Generation
16.19.2. Accuracy
16.19.3. Convergence
16.19.4. RSM-Specific Solution Strategies
16.19.4.1. Under-Relaxation of the Reynolds Stresses
16.19.4.2. Disabling Calculation Updates of the Reynolds Stresses
16.19.4.3. Residual Reporting for the RSM
16.19.5. LES-Specific Solution Strategies
16.19.5.1. Temporal Discretization
16.19.5.2. Spatial Discretization
16.20. Postprocessing for Turbulent Flows
16.20.1. Custom Field Functions for Turbulence
16.20.2. Postprocessing Turbulent Flow Statistics
16.20.3. Troubleshooting
17. Modeling Thermal Energy
17.1. Introduction
17.2. Modeling Conductive and Convective Heat Transfer
17.2.1. Solving Heat Transfer Problems
17.2.1.1. Limiting the Predicted Temperature Range
17.2.1.2. Modeling Heat Transfer in Two Separated Fluid Regions
17.2.2. Solution Strategies for Heat Transfer Modeling
17.2.2.1. Under-Relaxation of the Energy Equation
17.2.2.2. Under-Relaxation of Temperature When the Enthalpy Equation is Solved
17.2.2.3. Disabling the Species Diffusion Term
17.2.2.4. Setting the Reference Temperature for Enthalpy
17.2.2.5. Step-by-Step Solutions
17.2.2.5.1. Decoupled Flow and Heat Transfer Calculations
17.2.2.5.2. Coupled Flow and Heat Transfer Calculations
17.2.2.6. Conjugate Heat Transfer
17.2.2.6.1. Specifying the Solid Time Step Size
17.2.2.6.1.1. Automatic Time Step Size Calculation
17.2.2.6.2. Loosely Coupled Conjugate Heat Transfer
17.2.2.6.3. Time Averaged Explicit Thermal Coupling
17.2.2.6.4. Settings for Anisotropic Solid Zones
17.2.3. Postprocessing Heat Transfer Quantities
17.2.3.1. Available Variables for Postprocessing
17.2.3.2. Definition of Enthalpy and Energy in Reports and Displays
17.2.3.3. Reporting Heat Transfer Through Boundaries
17.2.3.4. Reporting Heat Transfer Through a Surface
17.2.3.5. Reporting Averaged Heat Transfer Coefficients
17.2.3.6. Exporting Heat Flux Data
17.2.4. Natural Convection
17.2.5. Shell Conduction
17.2.5.1. Introduction
17.2.5.2. Physical Treatment
17.2.5.3. Limitations of Shell Conduction Walls
17.2.5.4. Managing Conduction Walls
17.2.5.5. Initializing Shells
17.2.5.6. Locking the Temperature for Shells
17.2.5.7. Postprocessing Shells
17.2.6. Anisotropic Thermal Conductivity with Curvilinear Coordinate System (CCS)
17.2.6.1. Workflow for Anisotropic Thermal Conductivity with CCS
17.3. Modeling Radiation
17.3.1. Using the Radiation Models
17.3.2. Setting Up the P-1 Model with Non-Gray Radiation
17.3.3. Setting Up the DTRM
17.3.3.1. Defining the Rays
17.3.3.2. Controlling the Clusters
17.3.3.3. Controlling the Rays
17.3.3.4. Writing and Reading the DTRM Ray File
17.3.3.5. Displaying the Clusters
17.3.4. Setting Up the S2S Model
17.3.4.1. View Factors and Clustering Settings
17.3.4.1.1. Forming Surface Clusters
17.3.4.1.1.1. Setting the Split Angle for Clusters
17.3.4.1.2. Setting Up the View Factor Calculation
17.3.4.1.2.1. Selecting the Basis for Computing View Factors
17.3.4.1.2.2. Selecting the Method for Computing View Factors
17.3.4.1.2.3. Accounting for Blocking Surfaces
17.3.4.1.2.4. Specifying Boundary Zone Participation
17.3.4.2. Computing View Factors
17.3.4.3. Reading View Factors into Ansys Fluent
17.3.4.4. Using the S2S Radiation with the Fluent GPU Solver
17.3.4.4.1. Clustering with the GPU Solver
17.3.5. Setting Up the DO Model
17.3.5.1. Angular Discretization
17.3.5.2. Defining Non-Gray Radiation for the DO Model
17.3.5.3. Enabling DO/Energy Coupling
17.3.6. Setting Up the MC Model
17.3.7. Defining Material Properties for Radiation
17.3.7.1. Absorption Coefficient for a Non-Gray Model
17.3.7.2. Refractive Index for a Non-Gray Model
17.3.8. Defining Boundary Conditions for Radiation
17.3.8.1. Inlet and Outlet Boundary Conditions
17.3.8.1.1. Emissivity
17.3.8.1.2. Black Body Temperature
17.3.8.1.3. Inlet and Outlet Boundary Conditions for the DO and MC Models
17.3.8.2. Wall Boundary Conditions for the DTRM, P-1, S2S, and Rosseland Models
17.3.8.2.1. Boundary Conditions for the S2S Model
17.3.8.3. Wall Boundary Conditions for the DO Model
17.3.8.3.1. Opaque Wall for the DO Model
17.3.8.3.2. Semi-Transparent Walls for the DO Model
17.3.8.4. Wall Boundary Conditions for the MC Model
17.3.8.4.1. Opaque Walls for the MC Model
17.3.8.4.2. Semi-Transparent Walls for the MC Model
17.3.8.5. Solid Cell Zones Conditions for the DO or MC Models
17.3.8.6. Thermal Boundary Conditions
17.3.9. Solution Strategies for Radiation Modeling
17.3.9.1. P-1 Model Solution Parameters
17.3.9.2. DTRM Solution Parameters
17.3.9.3. S2S Solution Parameters
17.3.9.4. DO Solution Parameters
17.3.9.5. MC Solution Parameters
17.3.9.6. Iteration Parameters For Radiation Solve Frequency
17.3.9.7. Running the Calculation
17.3.9.7.1. Residual Reporting for the P-1 Model
17.3.9.7.2. Residual Reporting for the DO Model
17.3.9.7.3. Residual Reporting for the DTRM
17.3.9.7.4. Residual Reporting for the S2S Model
17.3.9.7.5. Disabling the Update of the Radiation Fluxes
17.3.10. Postprocessing Radiation Quantities
17.3.10.1. Available Variables for Postprocessing
17.3.10.2. Reporting Radiative Heat Transfer Through Boundaries
17.3.10.3. Overall Heat Balances When Using the DTRM
17.3.10.4. Displaying Rays and Clusters for the DTRM
17.3.10.4.1. Displaying Clusters
17.3.10.4.2. Displaying Rays
17.3.10.4.3. Including the Mesh in the Display
17.3.10.5. Reporting Radiation in the S2S Model
17.3.11. Solar Load Model
17.3.11.1. Introduction
17.3.11.2. Solar Ray Tracing
17.3.11.2.1. Shading Algorithm
17.3.11.2.2. Glazing Materials
17.3.11.2.3. Inputs
17.3.11.3. Solar Irradiation
17.3.11.4. Solar Calculator
17.3.11.4.1. Inputs/Outputs
17.3.11.4.2. Theory
17.3.11.4.3. Computation of Load Distribution
17.3.11.5. Using the Solar Load Model
17.3.11.5.1. User-Defined Functions (UDFs) for Solar Load
17.3.11.5.2. Setting Up the Solar Load Model
17.3.11.5.3. Setting Boundary Conditions for Solar Loading
17.3.11.5.4. Solar Ray Tracing
17.3.11.5.5. Solar Irradiation
17.3.11.5.6. Text Interface-Only Commands
17.3.11.5.6.1. Aligning the Camera Direction With the Position of the Sun
17.3.11.5.6.2. Specifying the Scattering Fraction
17.3.11.5.6.3. Applying the Solar Load on Adjacent Fluid Cells
17.3.11.5.6.4. Specifying Quad Tree Refinement Factor
17.3.11.5.6.5. Specifying Ground Reflectivity
17.3.11.5.6.6. Reverting to Single Band Implementation of DO Model
17.3.11.5.6.7. Additional Text Interface Commands
17.3.11.6. Postprocessing Solar Load Quantities
17.3.11.6.1. Solar Load Animation at Different Sun Positions
17.3.11.6.2. Reporting and Displaying Solar Load Quantities
17.4. Modeling Periodic Heat Transfer
17.4.1. Overview and Limitations
17.4.1.1. Overview
17.4.1.2. Constraints for Periodic Heat Transfer Predictions
17.4.2. Theory
17.4.2.1. Definition of the Periodic Temperature for Constant-Temperature Wall Conditions
17.4.2.2. Definition of the Periodic Temperature Change σ for Specified Heat Flux Conditions
17.4.3. Using Periodic Heat Transfer
17.4.4. Solution Strategies for Periodic Heat Transfer
17.4.5. Monitoring Convergence
17.4.6. Postprocessing for Periodic Heat Transfer
17.5. Modeling Heat Exchangers
17.5.1. Choosing a Heat Exchanger Model
17.5.2. The Dual Cell Model
17.5.2.1. Restrictions
17.5.2.2. Using the Dual Cell Heat Exchanger Model
17.5.3. The Macro Heat Exchanger Models
17.5.3.1. Restrictions
17.5.3.2. Using the Ungrouped Macro Heat Exchanger Model
17.5.3.2.1. Selecting the Zone for the Heat Exchanger
17.5.3.2.2. Specifying Heat Exchanger Performance Data
17.5.3.2.3. Specifying the Auxiliary Fluid Inlet and Pass-to-Pass Directions
17.5.3.2.4. Defining the Macros
17.5.3.2.4.1. Viewing the Macros
17.5.3.2.5. Specifying the Auxiliary Fluid Properties and Conditions
17.5.3.2.6. Setting the Pressure-Drop Parameters and Effectiveness
17.5.3.2.6.1. Using the Default Core Porosity Model
17.5.3.2.6.2. Defining a New Core Porosity Model
17.5.3.2.6.3. Reading Heat Exchanger Parameters from an External File
17.5.3.2.6.4. Viewing the Parameters for an Existing Core Model
17.5.3.3. Using the Grouped Macro Heat Exchanger Model
17.5.3.3.1. Selecting the Fluid Zones for the Heat Exchanger Group
17.5.3.3.2. Selecting the Upstream Heat Exchanger Group
17.5.3.3.3. Specifying the Auxiliary Fluid Inlet and Pass-to-Pass Directions
17.5.3.3.4. Specifying the Auxiliary Fluid Properties
17.5.3.3.5. Specifying Supplementary Auxiliary Fluid Streams
17.5.3.3.6. Initializing the Auxiliary Fluid Temperature
17.5.4. Postprocessing for the Heat Exchanger Model
17.5.4.1. Heat Exchanger Reporting
17.5.4.1.1. Computed Heat Rejection
17.5.4.1.2. Inlet/Outlet Temperature
17.5.4.1.3. Mass Flow Rate
17.5.4.1.4. Specific Heat
17.5.4.2. Total Heat Rejection Rate
17.5.5. Useful Reporting TUI Commands
17.6. Thermal Analysis of Printed Circuit Boards
17.6.1. PCB Model Workflow with ECAD File
17.6.1.1. Using the PCB Model with ECAD File
17.6.2. PCB Model Workflow with Board Configuration File
17.6.2.1. Using the PCB Model with Board Configuration File
17.6.3. Postprocessing for the PCB Model
17.6.4. Limitations for the PCB Model
18. Modeling Hypersonic Flow
18.1. Introduction to Hypersonic Flows
18.2. High Speed Numerics
18.3. Modeling Non-Equilibrium Gas Dissociation Using Finite Rate Chemistry
18.4. Modeling Transport Properties Using Gupta Curve Fits
18.4.1. Using Gupta Curve Fits
18.5. Modeling Hypersonic Flows Using the Two-Temperature Model
18.5.1. Using the Two-Temperature Model
18.6. Partial Slip for Rarefied Gases
18.7. Temperature Jump for Rarefied Gases
18.8. Partial Catalytic Boundary Condition for Walls
18.9. The Ablation Condition at Wall Boundaries
18.10. Best Practices
18.10.1. Setting Up Gas Properties
18.10.2. Solver Settings
18.10.3. Solution Initialization
18.10.4. Solution Monitoring and Postprocessing
19. Fluent’s Virtual Blade Model
19.1. Introduction
19.2. The Virtual Blade Model (VBM)
19.2.1. VBM Mode
19.2.2. Rotor Disks
19.2.3. Blade Geometry
19.2.4. Blade Pitch
19.2.5. Blade Flapping
19.2.6. Rotor Trimming
19.2.7. Tip Losses
19.3. Meshing Guidelines and Creating the VBM Disk
19.3.1. Embedded Disk
19.3.2. Floating Disk
19.3.3. General Considerations
19.4. Airfoil File Format
19.5. Enabling the VBM
19.6. VBM Configuration
19.7. VBM Field Variables
19.8. VBM Monitoring and Report Definition
19.9. References
20. Modelling with Finite-Rate Chemistry
20.1. Modeling Species Transport and Finite-Rate Chemistry
20.1.1. Volumetric Reactions
20.1.1.1. Overview of User Inputs for Modeling Species Transport and Reactions
20.1.1.1.1. Mixture Materials
20.1.1.2. Enabling Species Transport and Reactions and Choosing the Mixture Material
20.1.1.3. Importing a Volumetric Kinetic Mechanism in CHEMKIN Format
20.1.1.3.1. Using Ansys Encrypted Mechanisms
20.1.1.3.2. Procedure for Importing Volumetric CHEMKIN Mechanisms
20.1.1.3.3. CHEMKIN Mechanisms Included with Ansys Fluent
20.1.1.4. Defining Properties for the Mixture and Its Constituent Species
20.1.1.4.1. Defining the Species in the Mixture
20.1.1.4.1.1. Overview of the Species Dialog Box
20.1.1.4.1.2. Adding Species to the Mixture
20.1.1.4.1.3. Removing Species from the Mixture
20.1.1.4.1.4. Assigning the Last Species
20.1.1.4.1.5. The Naming and Ordering of Species
20.1.1.4.2. Defining Reactions
20.1.1.4.2.1. Inputs for Reaction Definition
20.1.1.4.2.2. Defining Species and Reactions for Fuel Mixtures
20.1.1.4.3. Defining Zone-Based Reaction Mechanisms
20.1.1.4.3.1. Inputs for Reaction Mechanism Definition
20.1.1.4.4. Defining Physical Properties for the Mixture
20.1.1.4.5. Defining Physical Properties for the Species in the Mixture
20.1.1.5. Setting up Coal Simulations with the Coal Calculator Dialog Box
20.1.1.6. Defining Cell Zone and Boundary Conditions for Species
20.1.1.6.1. Diffusion at Inlets with the Pressure-Based Solver
20.1.1.7. Defining Other Sources of Chemical Species
20.1.1.8. Solution Procedures for Chemical Mixing and Finite-Rate Chemistry
20.1.1.8.1. Stability and Convergence in Reacting Flows
20.1.1.8.2. Two-Step Solution Procedure (Steady-state Only)
20.1.1.8.3. Density Under-Relaxation
20.1.1.8.4. Ignition in Steady-State Combustion Simulations
20.1.1.8.5. Solution of Stiff Chemistry Systems
20.1.1.8.6. Eddy-Dissipation Concept Model Solution Procedure
20.1.1.9. Postprocessing for Species Calculations
20.1.1.9.1. Averaged Species Concentrations
20.1.2. Wall Surface Reactions and Chemical Vapor Deposition
20.1.2.1. Overview of Surface Species and Wall Surface Reactions
20.1.2.2. Importing a Surface Kinetic Mechanism in CHEMKIN Format
20.1.2.2.1. Compatibility and Limitations for Gas Phase Reactions
20.1.2.2.2. Compatibility and Limitations for Surface Reactions
20.1.2.3. Manual Inputs for Wall Surface Reactions
20.1.2.4. Including Mass Transfer To Surfaces in the Continuity Equation
20.1.2.5. Wall Surface Mass Transfer Effects in the Energy Equation
20.1.2.6. Modeling the Heat Release Due to Wall Surface Reactions
20.1.2.7. Solution Procedures for Wall Surface Reactions
20.1.2.8. Postprocessing for Surface Reactions
20.1.3. Particle Reactions
20.1.3.1. Limitations
20.1.3.2. Combusting Particle Surface Reactions
20.1.3.2.1. User Inputs for Particle Surface Reactions
20.1.3.2.2. Modeling Gaseous Solid Catalyzed Reactions
20.1.3.2.3. Using the Multiple Surface Reactions Model for Discrete-Phase Particle Combustion
20.1.3.3. Multicomponent Particles with Chemical Reactions
20.1.4. Electrochemical Reactions
20.1.4.1. Overview and Limitation of Electrochemical Reactions
20.1.4.2. User Inputs for Electrochemical Reactions
20.1.4.3. Electrochemical Reaction Effects in the Energy Equation
20.1.4.4. Electrochemical Reaction Effects in the Species Transport Equation
20.1.4.5. Including Mass Transfer in Continuity
20.1.4.6. Solution Procedures for Electrochemical Reactions
20.1.4.7. Assigning Zones for the Dual Potential Equations
20.1.4.8. Modeling Corrosion with the Water Corrosion Pre Tool
20.1.4.8.1. Background
20.1.4.8.2. Procedure for Setting Corrosion Simulations using the Water Corrosion Pre Tool
20.1.5. Species Transport Without Reactions
20.1.6. Reacting Channel Model
20.1.6.1. Overview and Limitations of the Reacting Channel Model
20.1.6.2. Enabling the Reacting Channel Model
20.1.6.3. Boundary Conditions for Channel Walls
20.1.6.4. Postprocessing for Reacting Channel Model Calculations
20.1.7. Reactor Network Model
20.1.7.1. Overview and Limitations of the Reactor Network Model
20.1.7.2. Solving Reactor Networks
20.1.7.3. Postprocessing Reactor Network Calculations
20.2. Modeling a Composition PDF Transport Problem
20.2.1. Limitation
20.2.2. Steps for Using the Composition PDF Transport Model
20.2.3. Enabling the Lagrangian Composition PDF Transport Model
20.2.4. Enabling the Eulerian Composition PDF Transport Model
20.2.4.1. Defining Species Boundary Conditions
20.2.4.1.1. Equilibrating Inlet Streams
20.2.5. Initializing the Solution
20.2.6. Monitoring the Solution
20.2.6.1. Running Unsteady Composition PDF Transport Simulations
20.2.6.2. Running Compressible Lagrangian PDF Transport Simulations
20.2.6.3. Running Lagrangian PDF Transport Simulations with Conjugate Heat Transfer
20.2.7. Postprocessing for Lagrangian PDF Transport Calculations
20.2.7.1. Reporting Options
20.2.7.2. Particle Tracking Options
20.2.8. Postprocessing for Eulerian PDF Transport Calculations
20.2.8.1. Reporting Options
20.3. Using Chemistry Acceleration
20.3.1. Using ISAT
20.3.1.1. ISAT Parameters
20.3.1.2. Monitoring ISAT
20.3.1.3. Using ISAT Efficiently
20.3.1.4. Reading and Writing ISAT Tables
20.3.2. Using Dynamic Mechanism Reduction
20.3.2.1. Mechanism Reduction Parameters
20.3.2.2. Monitoring and Postprocessing Dynamic Mechanism Reduction
20.3.2.3. Using Dynamic Mechanism Reduction Effectively
20.3.3. Using Chemistry Agglomeration
20.3.4. Dimension Reduction
20.3.5. Using Dynamic Cell Clustering
20.3.6. Using Dynamic Adaptive Chemistry with Ansys Fluent CHEMKIN-CFD Solver
21. Modelling of Turbulent Combustion With Reduced Order
21.1. Modeling Non-Premixed Combustion
21.1.1. Steps in Using the Non-Premixed Model
21.1.1.1. Preliminaries
21.1.1.2. Defining the Problem Type
21.1.1.3. Overview of the Problem Setup Procedure
21.1.2. Setting Up the Equilibrium Chemistry Model
21.1.2.1. Choosing Adiabatic or Non-Adiabatic Options
21.1.2.2. Specifying the Operating Pressure for the System
21.1.2.3. Enabling a Secondary Inlet Stream
21.1.2.4. Choosing to Define the Fuel Stream(s) Empirically
21.1.2.5. Enabling the Rich Flammability Limit (RFL) Option
21.1.3. Setting Up the Steady and Unsteady Diffusion Flamelet Models
21.1.3.1. Choosing Adiabatic or Non-Adiabatic Options
21.1.3.2. Specifying the Operating Pressure for the System
21.1.3.3. Specifying a Chemical Mechanism File for Flamelet Generation
21.1.3.4. Importing a Flamelet
21.1.3.5. Using the Unsteady Diffusion Flamelet Model
21.1.3.6. Using the Diesel Unsteady Laminar Flamelet Model
21.1.3.6.1. Recommended Settings for Internal Combustion Engines
21.1.3.7. Resetting Diesel Unsteady Flamelets
21.1.4. Defining the Stream Compositions
21.1.4.1. Setting Boundary Stream Species
21.1.4.1.1. Including Condensed Species
21.1.4.2. Modifying the Database
21.1.4.3. Composition Inputs for Empirically-Defined Fuel Streams
21.1.4.4. Modeling Liquid Fuel Combustion Using the Non-Premixed Model
21.1.4.5. Modeling Coal Combustion Using the Non-Premixed Model
21.1.4.5.1. Defining the Coal Composition: Single-Mixture-Fraction Models
21.1.4.5.2. Defining the Coal Composition: Two-Mixture-Fraction Models
21.1.4.5.3. Additional Coal Modeling Inputs in Ansys Fluent
21.1.4.5.4. Postprocessing Non-Premixed Models of Coal Combustion
21.1.4.5.5. The Coal Calculator
21.1.5. Setting Up Control Parameters
21.1.5.1. Forcing the Exclusion and Inclusion of Equilibrium Species
21.1.5.2. Defining the Flamelet Controls
21.1.5.3. Zeroing Species in the Initial Unsteady Flamelet
21.1.6. Calculating the Flamelets
21.1.6.1. Steady Diffusion Flamelet
21.1.6.2. Unsteady Diffusion Flamelet
21.1.6.3. Saving the Flamelet Data
21.1.6.4. Postprocessing the Flamelet Data
21.1.7. Calculating the Look-Up Tables
21.1.7.1. Full Tabulation of the Two-Mixture-Fraction Model
21.1.7.2. Stability Issues in Calculating Chemical Equilibrium Look-Up Tables
21.1.7.3. Saving the Look-Up Tables
21.1.7.4. Postprocessing the Look-Up Table Data
21.1.8. Standard Files for Diffusion Flamelet Modeling
21.1.8.1. Sample Standard Diffusion Flamelet File
21.1.8.2. Missing Species
21.1.9. Setting Up the Inert Model
21.1.9.1. Setting Boundary Conditions for Inert Transport
21.1.9.2. Initializing the Inert Stream
21.1.9.2.1. Inert Fraction
21.1.9.2.2. Inert Composition
21.1.9.3. Resetting Inert EGR
21.1.10. Defining Non-Premixed Boundary Conditions
21.1.10.1. Input of Mixture Fraction Boundary Conditions
21.1.10.2. Diffusion at Inlets
21.1.10.3. Input of Thermal Boundary Conditions and Fuel Inlet Velocities
21.1.11. Defining Non-Premixed Physical Properties
21.1.12. Solution Strategies for Non-Premixed Modeling
21.1.12.1. Single-Mixture-Fraction Approach
21.1.12.2. Two-Mixture-Fraction Approach
21.1.12.3. Starting a Non-Premixed Calculation From a Previous Case File
21.1.12.3.1. Retrieving the PDF File During Case File Reads
21.1.12.4. Solving the Flow Problem
21.1.12.4.1. Under-Relaxation Factors for PDF Equations
21.1.12.4.2. Density Under-Relaxation
21.1.12.4.3. Tuning the PDF Parameters for Two-Mixture-Fraction Calculations
21.1.13. Enabling Robust Numerics for Combustion with a PDF Table
21.1.14. Postprocessing the Non-Premixed Model Results
21.1.14.1. Postprocessing for Inert Calculations
21.2. Modeling Premixed Combustion
21.2.1. Limitations of the Premixed Combustion Model
21.2.2. Using the Premixed Combustion Model
21.2.2.1. Enabling the Premixed Combustion Model
21.2.2.2. Choosing an Adiabatic or Non-Adiabatic Model
21.2.3. Setting Up the C-Equation and G-Equation Models
21.2.3.1. Modifying the Constants for the Zimont Flame Speed Model
21.2.3.2. Modifying the Constants for the Peters Flame Speed Model
21.2.3.3. Additional Options for the G-Equation Model
21.2.3.4. Defining Physical Properties for the Unburnt Mixture
21.2.3.5. Setting Boundary Conditions for the Progress Variable
21.2.3.6. Initializing the Progress Variable
21.2.4. Postprocessing for Premixed Combustion Calculations
21.2.4.1. Computing Species Concentrations
21.3. Modeling Partially Premixed Combustion
21.3.1. Limitations
21.3.2. Using the Partially Premixed Combustion Model
21.3.2.1. Setup and Solution Procedure
21.3.2.2. Importing a Flamelet
21.3.2.3. Flamelet Generated Manifold
21.3.2.3.1. Premixed Flamelet Generated Manifolds
21.3.2.3.1.1. Editing the Flamelet Grid Distribution
21.3.2.3.2. Diffusion Flamelet Generated Manifolds
21.3.2.3.3. Using the Heat Loss Modeling Capability for Nonadiabatic FGM
21.3.2.4. Calculating the Look-Up Tables
21.3.2.4.1. Postprocessing the Look-Up Tables with Flamelet Generated Manifolds
21.3.2.5. Standard Files for Flamelet Generated Manifold Modeling
21.3.2.5.1. Sample Standard FGM File
21.3.2.6. Setting Premix Flame Propagation Parameters
21.3.2.7. Modifying the Unburnt Mixture Property Polynomials
21.3.2.8. Modeling Strained Laminar Flame Speed
21.3.2.9. Modeling In Cylinder Combustion
21.3.2.10. Postprocessing for FGM Scalar Transport Calculations
21.3.2.11. Postprocessing for FGM with the GPU Solver
22. Modeling Engine Ignition
22.1. Using the Spark Model
22.2. Using the Autoignition Models
22.3. Using the Crevice Model
22.3.1. Setup Procedure
22.3.2. Crevice Model Solution Details
22.3.3. Postprocessing for the Crevice Model
22.3.3.1. Using the Crevice Output File
23. Modeling Pollutant Formation
23.1. NOx Formation
23.1.1. Using the NOx Model
23.1.1.1. Decoupled Analysis: Overview
23.1.1.2. Enabling the NOx Models
23.1.1.3. Defining the Fuel Streams
23.1.1.4. Specifying a User-Defined Function for the NOx Rate
23.1.1.5. Setting Thermal NOx Parameters
23.1.1.6. Setting Prompt NOx Parameters
23.1.1.7. Setting Fuel NOx Parameters
23.1.1.7.1. Setting Gaseous and Liquid Fuel NOx Parameters
23.1.1.7.2. Setting Solid (Coal) Fuel NOx Parameters
23.1.1.8. Setting N2O Pathway Parameters
23.1.1.9. Setting Parameters for NOx Reburn
23.1.1.10. Setting SNCR Parameters
23.1.1.11. Setting Turbulence Parameters
23.1.1.12. Defining Boundary Conditions for the NOx Model
23.1.2. Solution Strategies
23.1.3. Postprocessing
23.2. Soot Formation
23.2.1. Using the Soot Models
23.2.1.1. Setting Up the One-Step Model
23.2.1.2. Setting Up the Two-Step Model
23.2.1.3. Setting Up the Moss-Brookes Model and the Hall Extension
23.2.1.3.1. Specifying a User-Defined Function for the Soot Oxidation Rate
23.2.1.3.2. Specifying a User-Defined Function for the Soot Precursor Concentration
23.2.1.3.3. Species Definition for the Moss-Brookes Model with a User-Defined Precursor Correlation
23.2.1.4. Setting Up the Method of Moments Soot Model
23.2.1.5. Defining Boundary Conditions for the Soot Model
23.2.1.6. Reporting Soot Quantities
23.3. Using the Decoupled Detailed Chemistry Model
24. Predicting Aerodynamically Generated Noise
24.1. Overview
24.1.1. Direct Method
24.1.2. Integral Method by Ffowcs Williams and Hawkings
24.1.3. Method Based on Wave Equation
24.1.4. Broadband Noise Source Models
24.2. Using the Ffowcs Williams and Hawkings Acoustics Model
24.2.1. Enabling the FW-H Acoustics Model
24.2.1.1. Setting Model Constants
24.2.1.2. Computing Sound “on the Fly”
24.2.1.3. Writing Source Data Files
24.2.1.3.1. Exporting Source Data Without Enabling the FW-H Model: Using the Ansys Fluent ASD Format
24.2.1.3.2. Exporting Source Data Without Enabling the FW-H Model: Using the CGNS Format
24.2.2. Specifying Source Surfaces
24.2.2.1. Saving Source Data
24.2.3. Specifying Acoustic Receivers
24.2.4. Specifying the Time Step Size
24.2.5. Postprocessing the FW-H Acoustics Model Data
24.2.5.1. Writing Acoustic Signals
24.2.5.2. Reading Unsteady Acoustic Source Data
24.2.5.2.1. Pruning the Signal Data Automatically
24.2.5.3. Reporting the Static Pressure Time Derivative
24.2.5.4. Using the FFT Capabilities for Sound Pressure Signals
24.2.6. FFT of Acoustic Sources: Band Analysis and Export of Surface Pressure Spectra
24.2.6.1. Using the FFT of Acoustic Sources
24.2.7. Using the FW-H Model with the Fluent GPU Solver
24.3. Using the Acoustics Wave Equation Model
24.3.1. Specifying Source Mask and Sponge Regions
24.3.2. Solution Controls for the Acoustics Wave Equation
24.3.3. Solution Initialization
24.3.4. Postprocessing
24.3.5. Using the Kirchhoff Integral Model
24.4. Using the Broadband Noise Source Models
24.4.1. Enabling the Broadband Noise Source Models
24.4.1.1. Setting Model Constants
24.4.2. Postprocessing the Broadband Noise Source Model Data
24.5. Sponge Layers
25. Modeling Discrete Phase
25.1. Introduction
25.1.1. Concepts
25.1.1.1. Uncoupled vs. Coupled DPM
25.1.1.2. Steady vs. Unsteady Tracking
25.1.1.3. Parcels
25.1.2. Limitations
25.1.2.1. Limitation on the Particle Volume Fraction
25.1.2.2. Limitation on the Particle Knudsen Number
25.1.2.3. Limitation on Modeling Continuous Suspensions of Particles
25.1.2.4. Limitations on Modeling Particle Rotation
25.1.2.5. Limitations on Using the Discrete Phase Model with Other Ansys Fluent Models
25.1.2.6. Limitations on Using the Hybrid Parallel Method
25.2. Steps for Using the Discrete Phase Models
25.2.1. Options for Interaction with the Continuous Phase
25.2.2. Steady/Transient Treatment of Particles
25.2.3. Tracking Settings for the Discrete Phase Model
25.2.4. Drag Laws
25.2.5. Physical Models for the Discrete Phase Model
25.2.5.1. Including Radiation Heat Transfer Effects on the Particles
25.2.5.2. Including Thermophoretic Force Effects on the Particles
25.2.5.3. Including Saffman Lift Force Effects on the Particles
25.2.5.4. Including the Virtual Mass Force and Pressure Gradient Effects on Particles
25.2.5.5. Monitoring Erosion/Accretion of Particles at Walls
25.2.5.6. Pressure Options for Vaporization Models
25.2.5.7. Considering Pressure Dependence in Boiling
25.2.5.8. Including the Effect of Droplet Temperature on Latent Heat
25.2.5.9. Including the Effect of Particles on Turbulent Quantities
25.2.5.10. Including Collision and Droplet Coalescence
25.2.5.11. Including the DEM Collision Model
25.2.5.12. Including Droplet Breakup
25.2.5.13. Modeling Collision Using the DEM Model
25.2.5.13.1. Limitations
25.2.5.13.2. Numeric Recommendations
25.2.5.14. Including the Volume Displacement of Particles
25.2.6. User-Defined Functions
25.2.7. Numerics of the Discrete Phase Model
25.2.7.1. Numerics for Tracking of the Particles
25.2.7.2. Including Coupled Heat-Mass Solution Effects on the Particles
25.2.7.3. Tracking in a Reference Frame
25.2.7.4. Node Based Averaging of Particle Data
25.2.7.5. Linearized Source Terms
25.2.7.6. Using the Dynamic Interaction Range
25.2.7.7. Staggering of Particles in Space and Time
25.2.7.8. Packing Limit
25.2.7.9. Under-Relaxing Lagrangian Wall Film Height
25.3. Setting Initial Conditions for the Discrete Phase
25.3.1. Injection Types
25.3.2. Particle Types
25.3.3. Point Properties for Single Injections
25.3.4. Point Properties for Group Injections
25.3.5. Point Properties for Cone Injections
25.3.6. Point Properties for Surface Injections
25.3.6.1. Using the Rosin-Rammler Diameter Distribution Method for Surface Injections
25.3.6.2. Injecting Wall Film Particles
25.3.7. Point Properties for Volume Injections
25.3.7.1. Using the Rosin-Rammler Diameter Distribution Method for Volume Injections
25.3.8. Point Properties for Plain-Orifice Atomizer Injections
25.3.9. Point Properties for Pressure-Swirl Atomizer Injections
25.3.10. Point Properties for Air-Blast/Air-Assist Atomizer Injections
25.3.11. Point Properties for Flat-Fan Atomizer Injections
25.3.12. Point Properties for Effervescent Atomizer Injections
25.3.13. Point Properties for File Injections
25.3.13.1. Steady File Format
25.3.13.1.1. No Header
25.3.13.1.2. Two-Line Header Format
25.3.13.2. Unsteady File Format
25.3.13.3. User Input for File Injections
25.3.14. Point Properties for Condensate Injections
25.3.15. Using the Rosin-Rammler Diameter Distribution Method
25.3.15.1. The Stochastic Rosin-Rammler Diameter Distribution Method
25.3.16. Using the Tabulated (Discrete) Diameter Distribution
25.3.17. Creating and Modifying Injections
25.3.17.1. Creating Injections
25.3.17.2. Modifying Injections
25.3.17.3. Copying Injections
25.3.17.4. Deleting Injections
25.3.17.5. Listing Injection Initial Conditions
25.3.17.6. Listing Injection Properties
25.3.17.7. Reading and Writing Injections
25.3.18. Defining Injection Properties
25.3.19. Specifying Injection-Specific Physical Models
25.3.19.1. Drag Laws
25.3.19.2. Heat Transfer Coefficient
25.3.19.3. Particle Rotation
25.3.19.4. Rough Wall Model
25.3.19.5. Brownian Motion Effects
25.3.19.6. Breakup
25.3.20. Specifying Turbulent Dispersion of Particles
25.3.20.1. Stochastic Tracking
25.3.21. Custom Particle Laws
25.3.22. Defining Properties Common to More than One Injection
25.3.22.1. Modifying Properties
25.3.22.2. Modifying Properties Common to a Subset of Selected Injections
25.3.23. Point Properties for Transient Injections
25.4. Setting Boundary Conditions for the Discrete Phase
25.4.1. Discrete Phase Boundary Condition Types
25.4.1.1. The reflect Boundary Condition
25.4.1.2. The trap Boundary Condition
25.4.1.3. The escape Boundary Condition
25.4.1.4. The wall-jet Boundary Condition
25.4.1.5. The wall-film Boundary Condition
25.4.1.6. The interior Boundary Condition
25.4.1.7. The reinject Boundary Condition
25.4.1.8. The user-defined Boundary Condition
25.4.2. Default Discrete Phase Boundary Conditions
25.4.3. Coefficients of Restitution
25.4.4. Friction Coefficient
25.4.5. Particle-Wall Impingement Heat Transfer
25.4.6. Setting Particle Erosion and Accretion Parameters
25.5. Particle Erosion Coupled with Dynamic Meshes
25.5.1. Preliminaries
25.5.2. Limitations
25.5.3. Procedure for the Erosion Coupled with Dynamic Mesh Setup and Solution
25.5.4. Postprocessing for Erosion Dynamic Mesh Calculations
25.6. Modeling Lagrangian Wall Films
25.6.1. Limitations on Using the Lagrangian Wall Film Model
25.6.2. Setting the Lagrangian Wall Film Model
25.6.2.1. Setting the Film-to-Wall Heat Transfer Model
25.6.2.2. Removing the Wall Temperature Limiter for Lagrangian Wall-Film Walls
25.6.3. Film Condensation Model
25.6.4. Gas-Side Boundary Layer Model
25.6.5. In Situ Data Reduction
25.6.6. Patching the Wall Film
25.7. Setting Material Properties for the Discrete Phase
25.7.1. Summary of Property Inputs
25.7.2. Setting Discrete-Phase Physical Properties
25.7.2.1. The Concept of Discrete-Phase Materials
25.7.2.1.1. Defining Additional Discrete-Phase Materials
25.7.2.2. Description of the Properties
25.8. Solution Strategies for the Discrete Phase
25.8.1. Performing Trajectory Calculations
25.8.1.1. Uncoupled Calculations
25.8.1.2. Coupled Calculations
25.8.1.2.1. Procedures for a Coupled Two-Phase Flow
25.8.1.2.2. Stochastic Tracking in Coupled Calculations
25.8.1.2.3. Under-Relaxation of the Interphase Exchange Terms
25.8.2. Resetting the Interphase Exchange Terms
25.8.3. Random Trajectories
25.9. Postprocessing for the Discrete Phase
25.9.1. Displaying of Trajectories
25.9.1.1. Options for Particle Trajectory Plots
25.9.1.2. Controlling the Particle Tracking Style
25.9.1.3. Controlling the Vector Style of Particle Tracks
25.9.1.4. Importing Particle Data
25.9.1.5. Particle Filtering
25.9.1.6. Graphical Display for Axisymmetric Geometries
25.9.2. Particle Tracking Statistics
25.9.3. Summary Reports
25.9.3.1. Trajectory Fates
25.9.3.2. Elapsed Time
25.9.3.3. Mass Transfer Summary
25.9.3.4. Energy Transfer Summary
25.9.3.5. Heat Rate and Energy Reporting
25.9.3.5.1. Change of Heat and Change of Energy Reporting
25.9.3.6. Combusting Particles
25.9.3.7. Combusting Particles with the Multiple Surface Reaction Model
25.9.3.8. Multicomponent Particles
25.9.3.9. Reinjected Particles
25.9.3.10. Evaporated Mass
25.9.4. Step-by-Step Reporting of Trajectories
25.9.5. Reporting of Current Positions for Unsteady Tracking
25.9.6. Reporting of Interphase Exchange Terms (Discrete Phase Sources)
25.9.7. Reporting of Particle Variables
25.9.8. Reporting of Discrete Phase Variables
25.9.9. Reporting of Unsteady DPM Statistics
25.9.10. Sampling of Trajectories
25.9.11. Histogram Reporting of Samples
25.9.11.1. Analysis, Investigation, and Reporting of Samples
25.9.11.2. Data Reduction of Samples
25.9.12. Contour Plots of DPM Particle Sampling Results on a Planar Surface
25.9.13. Summary Reporting of Current Particles
25.9.14. Computing and Postprocessing of Erosion/Accretion Rates
25.9.15. Assessing the Risk for Solids Deposit Formation During Selective Catalytic Reduction Process
25.9.15.1. Level-based Risk Assessment
25.9.15.2. Weighting-based Risk Assessment
25.10. Parallel Processing for the Discrete Phase Model
26. Modeling Macroscopic Particles
26.1. Overview and Limitations
26.2. Loading the MPM add-on Module
26.3. Setting up Macroscopic Particle Model Simulations
26.4. Modeling Macroscopic Particles
26.4.1. Specifying Particle Tracking Parameters
26.4.2. Specifying the Drag Law
26.4.3. Defining Parameters for Particle-Particle and Particle-Wall Collisions
26.4.4. Specifying Deposition Parameters
26.4.5. Specifying Injection Parameters
26.4.5.1. Defining MPM Injection Properties
26.4.5.2. Inputs for point Injections
26.4.5.3. Inputs for plane Injections
26.4.5.4. Inputs for packing Injections
26.4.5.5. Inputs for from-file Injections
26.4.6. Defining Field Forces
26.4.7. Initializing the MPM
27. Modeling Multiphase Flows
27.1. Introduction
27.2. Steps for Using a Multiphase Model
27.2.1. Enabling the Multiphase Model
27.2.1.1. Inputs for the VOF Model
27.2.1.2. Inputs for the Mixture Multiphase Model
27.2.1.3. Inputs for the Eulerian Multiphase Model
27.2.2. Choosing Volume Fraction Formulation
27.2.2.1. Interface Modeling Type
27.2.2.2. Spatial Discretization Schemes for Volume Fraction
27.2.2.3. Volume Fraction Limits
27.2.2.4. Expert Options
27.2.3. Solving a Homogeneous Multiphase Flow
27.2.4. Modeling Buoyancy-Driven Multiphase Flow
27.2.4.1. Setting the Operating Density for a Buoyancy-Driven Multiphase Flow
27.2.4.2. The Boussinesq Approximation in a Multiphase Flow
27.2.5. Modeling Compressible Flows
27.2.6. Defining the Phases
27.2.7. Including Body Forces
27.2.8. Modeling Multiphase Species Transport
27.2.9. Specifying Heterogeneous Reactions
27.2.10. Including Mass Transfer Effects
27.2.10.1. Alternative Modeling of Energy Sources
27.2.10.2. Mass Transfer Mechanisms
27.2.10.2.1. Constant-Rate Option
27.2.10.2.2. User-Defined Option
27.2.10.2.3. Population-Balance Mechanism
27.2.10.2.4. Cavitation Mechanism
27.2.10.2.5. Evaporation-Condensation Mechanism
27.2.10.2.6. Species-Mass-Transfer Mechanism
27.2.10.2.7. Boiling Mechanism
27.2.11. Defining Multiphase Cell Zone and Boundary Conditions
27.2.11.1. Steps for Setting Boundary Conditions
27.2.11.2. Steps for Setting Cell Zone Conditions
27.2.11.3. Boundary and Cell Zone Conditions for the Mixture and the Individual Phases
27.2.11.3.1. VOF Model
27.2.11.3.2. Mixture Model
27.2.11.3.3. Eulerian Model
27.2.11.4. Steps for Copying Cell Zone and Boundary Conditions
27.2.12. Setting Initial Conditions
27.2.12.1. Setting Initial Volume Fractions
27.2.12.1.1. Options for Patching Volume Fraction
27.2.12.2. Setting the Initial Turbulence Field
27.3. Setting Up the VOF Model
27.3.1. Solving Steady-State VOF Problems
27.3.2. Guidelines for Using the Multiphase Pseudo Time Method
27.3.3. Including Coupled Level Set with the VOF Model
27.3.4. Mesh Adaption with the VOF Model
27.3.5. Modeling Open Channel Flows
27.3.5.1. Defining Inlet Groups
27.3.5.2. Defining Outlet Groups
27.3.5.3. Setting the Inlet Group
27.3.5.4. Setting the Outlet Group
27.3.5.5. Determining the Free Surface Level
27.3.5.6. Determining the Bottom Level
27.3.5.7. Specifying the Total Height
27.3.5.8. Determining the Velocity Magnitude
27.3.5.9. Determining the Secondary Phase for the Inlet
27.3.5.10. Determining the Secondary Phase for the Outlet
27.3.5.11. Choosing the Pressure Specification Method
27.3.5.12. Choosing the Density Interpolation Method
27.3.5.13. Open Channel Flow Compatibility with Velocity Inlet
27.3.5.13.1. Velocity Inlet, Open Channel Flow, Steady-State
27.3.5.13.2. Velocity Inlet, Open Channel Flow, Transient
27.3.5.14. Limitations
27.3.5.15. Recommendations for Setting Up an Open Channel Flow Problem
27.3.6. Modeling Open Channel Wave Boundary Conditions
27.3.6.1. Summary Report and Regime Check
27.3.6.2. Transient Profile Support for Wave Inputs
27.3.6.3. Alternative Stokes Wave Theory Variant
27.3.7. Recommendations for Open Channel Initialization
27.3.7.1. Reporting Parameters for Open Channel Wave BC Option
27.3.8. Numerical Beach Treatment for Open Channels
27.3.8.1. Solution Strategies
27.3.9. Defining the Phases for the VOF Model
27.3.9.1. Defining the Primary Phase
27.3.9.2. Defining a Secondary Phase
27.3.10. Defining Phase Interaction Terms
27.3.10.1. Including Surface Tension and Adhesion Effects
27.3.10.2. Discretizing Using the Phase Localized Compressive Scheme
27.3.11. Setting Time-Dependent Parameters for the Explicit Volume Fraction Formulation
27.3.12. Modeling Solidification/Melting
27.3.13. Using the VOF-to-DPM Model Transition for Dispersion of Liquid in Gas
27.3.13.1. Limitations on Using the VOF-to-DPM Model Transition
27.3.13.2. Setting up the VOF-to-DPM Model Transition
27.3.13.3. Best Practice Guidelines for Considering Diffuse Lumps
27.3.13.4. Postprocessing for VOF-to-DPM Model Transition Calculations
27.3.14. Using the DPM-to-VOF Model Transition
27.3.14.1. Setting up the DPM-to-VOF Model Transition
27.3.14.2. Limitations
27.4. Setting Up the Mixture Model
27.4.1. Defining the Phases for the Mixture Model
27.4.1.1. Defining the Primary Phase
27.4.1.2. Defining a Non-Granular Secondary Phase
27.4.1.3. Defining a Granular Secondary Phase
27.4.1.4. Defining the Interfacial Area Concentration via the Transport Equation
27.4.1.5. Defining the Algebraic Interfacial Area Concentration
27.4.1.6. Defining Drag Between Phases
27.4.1.7. Defining the Slip Velocity
27.4.1.8. Including Surface Tension and Wall Adhesion Effects
27.4.2. Including Mixture Drift Force
27.4.3. Using the Flow Regime Modeling
27.4.3.1. Limitations for the Flow Regime Modeling
27.4.3.2. Setting the Flow Regime Modeling
27.4.3.3. Solution Strategies
27.4.3.4. Postprocessing for Flow Regime Modeling Simulations
27.4.4. Using the Singhal et al. Expert Cavitation Model
27.4.5. Including Semi-Mechanistic Boiling
27.4.5.1. Overview and Limitations for the Semi-Mechanistic Boiling Model
27.4.5.2. Using the Semi-Mechanistic Boiling Model
27.4.5.3. Cell Zone Specific Boiling
27.4.5.4. Solution Strategies for the Semi-Mechanistic Boiling Model
27.5. Setting Up the Eulerian Model
27.5.1. Additional Guidelines for Eulerian Multiphase Simulations
27.5.2. Defining the Phases for the Eulerian Model
27.5.2.1. Defining the Primary Phase
27.5.2.2. Defining a Non-Granular Secondary Phase
27.5.2.3. Defining a Granular Secondary Phase
27.5.2.4. Defining the Interfacial Area Concentration
27.5.2.5. Defining the Interaction Between Phases
27.5.2.5.1. Specifying the Drag Function
27.5.2.5.1.1. Drag Modification
27.5.2.5.2. Specifying the Restitution Coefficients (Granular Flow Only)
27.5.2.5.3. Including the Lift Force
27.5.2.5.4. Including the Lift Correlation
27.5.2.5.5. Including the Wall Lubrication Force
27.5.2.5.6. Including the Turbulent Dispersion Force
27.5.2.5.7. Including Surface Tension and Wall Adhesion Effects
27.5.2.5.8. Including the Virtual Mass Force
27.5.3. Modeling Turbulence
27.5.3.1. Including Turbulence Interaction Source Terms
27.5.3.2. Customizing the k- ε Multiphase Turbulent Viscosity
27.5.4. Including Heat Transfer Effects
27.5.5. Using an Algebraic Interfacial Area Model
27.5.6. Using the Algebraic Interfacial Area Density (AIAD) Model
27.5.6.1. Limitations
27.5.6.2. Procedure for Setting the AIAD Model
27.5.6.3. Solution Strategies
27.5.7. Using the Generalized Two Phase Flow (GENTOP) Model
27.5.7.1. Limitations
27.5.7.2. Steps for Using the GENTOP Model
27.5.7.3. Solution Strategies
27.5.8. Including the Dense Discrete Phase Model
27.5.8.1. Defining a Granular Discrete Phase
27.5.9. Including the Boiling Model
27.5.9.1. Limitations of the Boiling Model
27.5.9.2. Procedure for Setting the Boiling Model
27.5.9.3. Postprocessing for the Boiling Model
27.5.10. Setting Up Polydisperse Boiling
27.5.11. Including the Multi-Fluid VOF Model
27.6. Population Balance Model
27.6.1. Population Balance Model Setup
27.6.1.1. Enabling the Population Balance Model
27.6.1.1.1. Setting the Aggregation Kernel
27.6.1.1.2. Setting the Breakage Kernel
27.6.1.1.3. Expert Parameters for the QBMM
27.6.1.1.4. Generated DQMOM Values
27.6.1.2. Defining Population Balance Boundary Conditions
27.6.1.2.1. Initializing Bin Fractions With a Log-Normal Distribution
27.6.1.3. Defining Population Balance Cell Zones Conditions
27.6.1.4. Specifying Population Balance Solution Controls
27.6.1.5. Coupling With Fluid Dynamics
27.6.1.6. Specifying Interphase Mass Transfer Due to Nucleation and Growth
27.6.1.7. Size Calculator
27.6.2. Solution Strategies
27.6.3. Postprocessing for the Population Balance Model
27.6.3.1. Population Balance Solution Variables
27.6.3.2. Reporting Derived Population Balance Variables
27.6.3.2.1. Computing Moments
27.6.3.2.2. Displaying a Number Density Function
27.6.4. UDFs for Population Balance Modeling
27.6.4.1. Population Balance Variables
27.6.4.2. Population Balance DEFINE Macros
27.6.4.2.1. DEFINE_PB_BREAK_UP_RATE_FREQ
27.6.4.2.1.1. Usage
27.6.4.2.1.2. Example
27.6.4.2.2. DEFINE_PB_BREAK_UP_RATE_PDF
27.6.4.2.2.1. Usage
27.6.4.2.2.2. Example
27.6.4.2.3. DEFINE_PB_COALESCENCE_RATE
27.6.4.2.3.1. Usage
27.6.4.2.3.2. Example
27.6.4.2.4. DEFINE_PB_NUCLEATION_RATE
27.6.4.2.4.1. Usage
27.6.4.2.4.2. Example
27.6.4.2.5. DEFINE_PB_GROWTH_RATE
27.6.4.2.5.1. Usage
27.6.4.2.5.2. Example
27.6.4.3. Hooking a Population Balance UDF to Ansys Fluent
27.7. Setting Up the Wet Steam Model
27.7.1. Using User-Defined Thermodynamic Wet Steam Properties
27.7.2. Writing the User-Defined Wet Steam Property Functions (UDWSPF)
27.7.3. Compiling Your UDWSPF and Building a Shared Library File
27.7.4. Loading the UDWSPF Shared Library File
27.7.5. UDWSPF Example
27.8. Solution Strategies for Multiphase Modeling
27.8.1. General Solution Strategies
27.8.1.1. Coupled Solution for Eulerian Multiphase Flows
27.8.1.2. Coupled Solution for VOF and Mixture Multiphase Flows
27.8.1.3. Selecting the Pressure-Velocity Coupling Method
27.8.1.3.1. Limitations and Recommendations of the Coupled with Volume Fraction Options for the VOF and Mixture Models
27.8.1.3.2. Solving N-Phase Volume Fraction Equations
27.8.1.4. Controlling the Volume Fraction Coupled Solution
27.8.1.5. Default and Stability Controls
27.8.1.5.1. Default Controls
27.8.1.5.2. VOF Solution Stability Controls
27.8.1.5.3. Text User Interface for VOF Stability Controls
27.8.1.6. Heat Transfer and Radiative Flux Distribution for Non-Eulerian Multiphase Models
27.8.1.7. Steady-State Solution Strategies
27.8.2. Model-Specific Solution Strategies
27.8.2.1. VOF Model
27.8.2.1.1. Setting the Reference Pressure Location
27.8.2.1.2. Pressure Interpolation Scheme
27.8.2.1.3. Discretization Scheme Selection
27.8.2.1.4. High-Order Rhie-Chow Face Flux Interpolation
27.8.2.1.5. Treatment of Unsteady Terms in Rhie-Chow Face Flux Interpolation
27.8.2.1.6. Pressure-Velocity Coupling and Under-Relaxation for the Time-dependent Formulations
27.8.2.1.7. Under-Relaxation for the Steady-State Formulation
27.8.2.2. Mixture Model
27.8.2.2.1. Setting the Under-Relaxation Factor for the Slip Velocity
27.8.2.2.2. Calculating an Initial Solution
27.8.2.3. Eulerian Model
27.8.2.3.1. Calculating an Initial Solution
27.8.2.3.2. Temporarily Ignoring Lift and Virtual Mass Forces
27.8.2.3.3. Using W-Cycle Multigrid
27.8.2.3.4. Including the Anisotropic Drag Law
27.8.2.3.5. Using Reference Density
27.8.2.3.6. Controlling NITA Solution Options via the Text Interface
27.8.2.4. Wet Steam Model
27.8.2.4.1. Boundary Conditions, Initialization, and Patching
27.8.2.4.2. Solution Limits for the Wet Steam Model
27.8.2.4.3. Solution Strategies for the Wet Steam Model
27.9. Multiphase Case Check
27.10. Postprocessing for Multiphase Modeling
27.10.1. Model-Specific Variables
27.10.1.1. VOF Model
27.10.1.2. Mixture Model
27.10.1.3. Eulerian Model
27.10.1.4. Multiphase Species Transport
27.10.1.5. Wet Steam Model
27.10.1.6. Dense Discrete Phase Model
27.10.2. Displaying Velocity Vectors
27.10.3. Reporting Fluxes
27.10.4. Reporting Forces on Walls
27.10.5. Reporting Flow Rates
27.10.6. Reporting Phase Volume Integrals
28. Modeling Solidification and Melting
28.1. Setup Procedure
28.2. Procedures for Modeling Continuous Casting
28.3. Modeling Thermal and Solutal Buoyancy
28.4. Solution Procedure
28.5. Postprocessing
29. Modeling Fluid-Structure Interaction (FSI) Within Fluent
29.1. Overview and Limitations
29.2. Setting Up an Intrinsic Fluid-Structure Interaction (FSI) Simulation
29.2.1. Using Intrinsic FSI With Non-Conformal Interfaces
30. Modeling Eulerian Wall Films
30.1. Limitations
30.2. Overview of Using the Eulerian Wall Film Model
30.3. Setting Eulerian Wall Film Model Options
30.4. Setting Eulerian Wall Film Solution Controls
30.5. Setting Eulerian Wall Film Boundary, Initial, and Source Term Conditions
30.5.1. Specifying the Boundary Type
30.5.2. Setting the Source Terms
30.5.3. Setting the Phase Change
30.5.4. Setting the Surface Contact
30.5.5. Setting the DPM interaction
30.5.6. Setting the VOF interaction
30.6. Coupling of Eulerian Wall Film with the VOF Multiphase Model
30.7. Postprocessing the Eulerian Wall Film
31. Modeling Electric Potential Field and Electrochemistry Models
31.1. Simulating the Electric Potential Field
31.1.1. Limitation of the Electric Potential Model
31.1.2. Setting Up the Electric Potential Model
31.2. Simulating the Lithium-ion Battery
31.2.1. Limitations of the Detailed Lithium-ion Battery Model
31.2.2. Setting Up the Lithium-ion Battery Model
31.3. Setting the Electrolysis and H2 Pump Model
31.3.1. Geometry Definition for the Electrolysis and H2 Pump Model
31.3.2. Workflow for Using the Electrolysis and H2 Pump Model
31.3.3. Setting up the Electrolysis and H2 Pump Model
31.3.3.1. Specifying Model Options (Model Tab)
31.3.3.2. Specifying Model Parameters (Parameters Tab)
31.3.3.3. Specifying Anode Properties (Anode Tab)
31.3.3.3.1. Specifying Current Collector Properties for the Anode
31.3.3.3.2. Specifying Flow Channel Properties for the Anode
31.3.3.3.3. Specifying Porous Layer Properties for the Anode
31.3.3.3.4. Specifying Catalyst Layer Properties for the Anode
31.3.3.4. Specifying Electrolyte/Membrane Properties (Electrolyte Tab)
31.3.3.4.1. Resolved MEA Layer Method
31.3.3.4.2. Unresolved MEA Layer Method
31.3.3.5. Specifying Cathode Properties (Cathode Tab)
31.3.3.6. Setting the External Electrical Tabs (Electrical Tabs Tab)
31.3.3.7. (Customization Tab)
31.3.3.8. Setting Advanced Options (Advanced Tab)
31.3.4. Solution Strategies for the Electrolysis and H2 Pump Model
31.4. Postprocessing Electric Potential Field and Li-ion Battery Quantities
32. Modeling Batteries
32.1. Introduction
32.1.1. Overview
32.1.2. General Procedure
32.2. Using the MSMD-Based Battery Models
32.2.1. Limitations
32.2.2. Geometry Definition
32.2.3. Setting up the Battery Model
32.2.3.1. Specifying Battery Model Options
32.2.3.1.1. Setting the Life Model
32.2.3.1.2. Specifying a Profile or Data Table
32.2.3.1.3. Using Tables in the Battery Model
32.2.3.2. Specifying Conductive Zones
32.2.3.3. Specifying Electric Contacts
32.2.3.4. Specifying Battery Model Parameters
32.2.3.4.1. Inputs for the CHT Coupling Method
32.2.3.4.2. Inputs for the FMU-CHT Coupling Method
32.2.3.4.3. Inputs for the NTGK/DCIR Model
32.2.3.4.4. Inputs for the Equivalent Circuit Model
32.2.3.4.4.1. The HPPC Library
32.2.3.4.5. Inputs for the Newman’s P2D Model
32.2.3.4.6. Input for the User-Defined E-Model
32.2.3.5. Hooking User-Defined Functions
32.2.3.6. Specifying Advanced Options
32.2.3.6.1. Running the Standalone Echem Model
32.2.3.6.2. Simulating the Aging Process of a Battery (Standalone Mode)
32.2.3.6.3. Using the Battery Pack Builder Tool
32.2.3.6.4. Using the Battery ROM Tool Kit
32.2.3.6.4.1. Create ROM Training Data (ROM Data Creator Tab)
32.2.3.6.4.2. Computing Coefficient Matrices of the State Space Equations (LTI-ROM Generation Tab)
32.2.3.6.4.3. Postprocessing of the SVD-ROM Data (SVD-ROM Post-Processing Tab)
32.2.3.6.5. Defining Orthotropic Thermal Conductivity
32.2.3.6.6. Using the Empirical-Based Battery Swelling Model
32.2.3.6.7. Battery Venting Model
32.2.3.6.8. Including the Entropic Heat Effects
32.2.3.6.9. Using the Thermal Abuse Model
32.2.3.6.9.1. One-Equation Kinetics Model
32.2.3.6.9.2. Four-Equation Kinetics Model
32.2.3.6.9.3. General N-Equation Kinetics Model
32.2.3.6.9.4. Standalone Thermal Abuse Model
32.2.3.6.9.5. Running the Thermal Abuse Model Only
32.2.3.7. Specifying External and Internal Short-Circuit Resistances
32.2.3.8. Setting a Battery Swelling Case
32.2.4. Using Parameter Estimation Tools
32.2.4.1. Using Parameter Estimation Tools in the GUI
32.2.4.2. Using Parameter Estimation Tools in the TUI
32.2.4.2.1. Using the Parameter Estimation Tool for the NTGK Model in the TUI
32.2.4.2.2. Using the Parameter Estimation Tool for the ECM Model in the TUI
32.2.4.2.3. Using the Parameter Estimation Tool for the Thermal Abuse Model in the TUI
32.2.5. Initializing the Battery Model
32.2.6. Modifying Material Properties
32.2.7. Solution Controls for the MSMD Battery Model
32.2.8. Predefined Report Definitions for the Battery Model
32.2.9. Postprocessing the MSMD Battery Model
32.2.9.1. Postprocessing for the CHT Coupling and FMU-CHT Coupling Solution Methods
32.2.9.2. Postprocessing for the Circuit Network Solution Method
32.2.9.3. Postprocessing for the MSMD Solution Method
32.2.9.4. Postprocessing the Thermal Abuse Model
32.2.9.5. Generating Vector Plots
33. Modeling Fuel Cells
33.1. Using the PEMFC Model
33.1.1. Overview and Limitations
33.1.2. Geometry Definition for the PEMFC Model
33.1.3. Installing the PEMFC Model
33.1.4. Loading the PEMFC Module
33.1.5. Workflow for Using the PEMFC Module
33.1.6. Setting Up the PEMFC Module
33.1.6.1. Specifying Model Options (Model Tab)
33.1.6.2. Specifying Model Parameters (Parameters Tab)
33.1.6.3. Specifying Anode Properties (Anode Tab)
33.1.6.3.1. Specifying Current Collector Properties for the Anode
33.1.6.3.2. Specifying Flow Channel Properties for the Anode
33.1.6.3.3. Specifying Porous Electrode Properties for the Anode
33.1.6.3.4. Specifying Catalyst Layer Properties for the Anode
33.1.6.3.5. Specifying Micro Porous Layer (Optional) Properties for the Anode
33.1.6.3.6. Specifying Cell Zone Conditions for the Anode
33.1.6.4. Specifying Electrolyte/Membrane Properties (Electrolyte Tab)
33.1.6.4.1. Specifying Cell Zone Conditions for the Membrane
33.1.6.5. Specifying Cathode Properties (Cathode Tab)
33.1.6.5.1. Specifying Current Collector Properties for the Cathode
33.1.6.5.2. Specifying Flow Channel Properties for the Cathode
33.1.6.5.3. Specifying Porous Electrode Properties for the Cathode
33.1.6.5.4. Specifying Catalyst Layer Properties for the Cathode
33.1.6.5.5. Specifying Micro Porous Layer (Optional) Properties for the Cathode
33.1.6.5.6. Specifying Cell Zone Conditions for the Cathode
33.1.6.6. Setting the External Electrical Tabs (Electrical Tabs Tab)
33.1.6.7. Setting Advanced Properties (Advanced Tab)
33.1.6.7.1. Setting Contact Resistivities for the PEMFC Model
33.1.6.7.2. Setting Coolant Channel Properties for the PEMFC Model (Optional)
33.1.6.7.3. Managing Stacks for the PEMFC Model
33.1.6.8. Customizing the PEM Fuel Cell Module
33.1.6.9. Reporting on the Solution (Reports Tab)
33.1.6.10. User-Defined Functions Hooked to the PEMFC Module
33.1.7. PEMFC Model Boundary Conditions
33.1.8. Solution Guidelines for the PEMFC Model
33.1.9. Postprocessing the PEMFC Model
33.1.10. User-Accessible Functions
33.2. Using the Fuel Cell and Electrolysis Model
33.2.1. Overview and Limitations
33.2.2. Geometry Definition for the Fuel Cell and Electrolysis Model
33.2.3. Installing the Fuel Cell and Electrolysis Model
33.2.4. Loading the Fuel Cell and Electrolysis Module
33.2.5. Workflow for Using the Fuel Cell and Electrolysis Module
33.2.6. Setting Up the Fuel Cell and Electrolysis Module
33.2.6.1. Specifying Model Options (Model Tab)
33.2.6.2. Specifying Model Parameters (Parameters Tab)
33.2.6.3. Specifying Anode Properties (Anode Tab)
33.2.6.3.1. Specifying Current Collector Properties for the Anode
33.2.6.3.2. Specifying Flow Channel Properties for the Anode
33.2.6.3.3. Specifying Porous Electrode Properties for the Anode
33.2.6.3.4. Specifying Catalyst Layer Properties for the Anode
33.2.6.3.5. Specifying Cell Zone Conditions for the Anode
33.2.6.4. Specifying Electrolyte/Membrane Properties (Electrolyte Tab)
33.2.6.4.1. Specifying Cell Zone Conditions for the Membrane
33.2.6.5. Specifying Cathode Properties (Cathode Tab)
33.2.6.5.1. Specifying Current Collector Properties for the Cathode
33.2.6.5.2. Specifying Flow Channel Properties for the Cathode
33.2.6.5.3. Specifying Porous Electrode Properties for the Cathode
33.2.6.5.4. Specifying Catalyst Layer Properties for the Cathode
33.2.6.5.5. Specifying Cell Zone Conditions for the Cathode
33.2.6.6. Setting Advanced Properties (Advanced Tab)
33.2.6.6.1. Setting Contact Resistivities for the Fuel Cell and Electrolysis Model
33.2.6.6.2. Setting Coolant Channel Properties for the Fuel Cell and Electrolysis Model
33.2.6.6.3. Managing Stacks for the Fuel Cell and Electrolysis Model
33.2.6.7. Customizing the Fuel Cell and Electrolysis Module
33.2.6.8. Reporting on the Solution (Reports Tab)
33.2.7. Modeling Current Collectors
33.2.8. Fuel Cell and Electrolysis Model Boundary Conditions
33.2.9. Solution Guidelines for the Fuel Cell and Electrolysis Model
33.2.10. Postprocessing the Fuel Cell and Electrolysis Model
33.2.11. User-Accessible Functions
33.3. Using the Solid Oxide Fuel Cell With Unresolved Electrolyte Model
33.3.1. Limitation on Modeling Solid Oxide Fuel Cells
33.3.2. Installing the Solid Oxide Fuel Cell With Unresolved Electrolyte Model
33.3.3. Loading the Solid Oxide Fuel Cell With Unresolved Electrolyte Module
33.3.4. Solid Oxide Fuel Cell With Unresolved Electrolyte Module Set Up Procedure
33.3.5. Setting the SOFC Model
33.3.5.1. Setting the Parameters for the SOFC With Unresolved Electrolyte Model
33.3.5.2. Setting Up the Electrochemistry Parameters
33.3.5.3. Setting Up the Electrode-Electrolyte Interfaces
33.3.5.4. Setting Up the Electric Field Model Parameters
33.3.5.5. Customizing the SOFC Module
33.3.6. User-Accessible Functions for the Solid Oxide Fuel Cell With Unresolved Electrolyte Model
34. Modeling Magnetohydrodynamics
34.1. Introduction
34.2. Implementation
34.2.1. Solving Magnetic Induction and Electric Potential Equations
34.2.2. Calculation of MHD Variables
34.2.3. MHD Interaction with Fluid Flows
34.2.4. MHD Interaction with Discrete Phase Model
34.2.5. General User-Defined Functions
34.3. Using the Ansys Fluent MHD Module
34.3.1. MHD Module Installation
34.3.2. Loading the MHD Module
34.3.3. MHD Model Setup
34.3.3.1. Enabling the MHD Model
34.3.3.2. Selecting an MHD Method
34.3.3.3. Applying an External Magnetic Field
34.3.3.4. Setting Up Boundary Conditions
34.3.3.5. Solution Controls
34.3.4. MHD Solution and Postprocessing
34.3.4.1. MHD Model Initialization
34.3.4.2. Iteration
34.3.4.3. Postprocessing
34.3.5. Limitations
34.4. Guidelines For Using the Ansys Fluent MHD Model
34.4.1. Installing the MHD Module
34.4.2. An Overview of Using the MHD Module
34.5. Definitions of the Magnetic Field
34.6. External Magnetic Field Data Format
35. Modeling Continuous Fibers
35.1. Installing the Continuous Fiber Module
35.2. Loading the Continuous Fiber Module
35.3. Getting Started With the Continuous Fiber Module
35.3.1. User-Defined Memory and the Adjust Function Setup
35.3.2. Source Term UDF Setup
35.4. Fiber Models and Options
35.4.1. Choosing a Fiber Model
35.4.2. Including Interaction With Surrounding Flow
35.4.3. Including Lateral Drag on Surrounding Flow
35.4.4. Including Fiber Radiation Interaction
35.4.5. Viscous Heating of Fibers
35.4.6. Drag, Heat and Mass Transfer Correlations
35.5. Fiber Material Properties
35.5.1. The Concept of Fiber Materials
35.5.2. Description of Fiber Properties
35.6. Defining Fibers
35.6.1. Overview
35.6.2. Fiber Injection Types
35.6.3. Working with Fiber Injections
35.6.3.1. Creating Fiber Injections
35.6.3.2. Modifying Fiber Injections
35.6.3.3. Copying Fiber Injections
35.6.3.4. Deleting Fiber Injections
35.6.3.5. Initializing Fiber Injections
35.6.3.6. Computing Fiber Injections
35.6.3.7. Print Fiber Injections
35.6.3.8. Read Data of Fiber Injections
35.6.3.9. Write Data of Fiber Injections
35.6.3.10. Write Binary Data of Fiber Injections
35.6.3.11. List Fiber Injections
35.6.4. Defining Fiber Injection Properties
35.6.5. Point Properties Specific to Single Fiber Injections
35.6.6. Point Properties Specific to Line Fiber Injections
35.6.7. Point Properties Specific to Matrix Fiber Injections
35.6.8. Define Fiber Grids
35.6.8.1. Equidistant Fiber Grids
35.6.8.2. One-Sided Fiber Grids
35.6.8.3. Two-Sided Fiber Grids
35.6.8.4. Three-Sided Fiber Grids
35.7. User-Defined Functions (UDFs) for the Continuous Fiber Model
35.7.1. UDF Setup
35.7.1.1. Linux Systems
35.7.1.2. Windows Systems
35.7.2. Customizing the fiber_fluent_interface.c File for Your Fiber Model Application
35.7.2.1. Example: Heat Transfer Coefficient UDF
35.7.2.2. Example: Fiber Specific Heat Capacity UDF
35.7.3. Compile Fiber Model UDFs
35.7.3.1. Linux Systems
35.7.3.2. NT/Windows Systems
35.7.4. Hook UDFs to the Continuous Fiber Model
35.8. Fiber Model Solution Controls
35.9. Postprocessing for the Continuous Fibers
35.9.1. Display of Fiber Locations and Grid Points
35.9.2. Exchange Terms of Fibers
35.9.3. Analyzing Fiber Variables
35.9.3.1. XY Plots
35.9.3.2. Fiber Display
35.9.4. Running the Fiber Module in Parallel
36. Creating Reduced Order Models (ROMs)
36.1. Defining a ROM
36.2. Reduced Order Model (ROM) Evaluation in Fluent
36.3. Exporting Reduced Order Model (ROM) Results from Fluent
36.4. ROM Limitations
37. Using the Solver
37.1. Overview of Using the Solver
37.1.1. Choosing the Solver
37.2. Choosing the Spatial Discretization Scheme
37.2.1. First-Order Accuracy vs. Second-Order Accuracy
37.2.1.1. First- to Higher-Order Blending
37.2.2. Other Discretization Schemes
37.2.3. Choosing the Pressure Interpolation Scheme
37.2.4. Choosing the Density Interpolation Scheme
37.2.5. High Order Term Relaxation (HOTR)
37.2.5.1. Limitations
37.2.6. User Inputs
37.3. Pressure-Based Solver Settings
37.3.1. Choosing the Pressure-Velocity Coupling Method
37.3.1.1. SIMPLE vs. SIMPLEC
37.3.1.2. PISO
37.3.1.3. Fractional Step Method
37.3.1.4. Coupled
37.3.1.5. User Inputs
37.3.2. Mass Flux Types
37.3.3. Setting Under-Relaxation Factors
37.3.3.1. User Inputs
37.3.4. Setting Solution Controls for the Non-Iterative Solver
37.3.4.1. User Inputs
37.3.4.2. Hybrid NITA for the VOF and Mixture Multiphase Models
37.3.4.3. NITA Expert Options
37.3.4.4. Compatibility of the NITA Scheme with Other Ansys Fluent Models
37.3.5. Equation Order
37.3.6. Using the Correction Form of Momentum Discretization
37.4. Density-Based Solver Settings
37.4.1. Changing the Courant Number
37.4.1.1. Courant Numbers for the Density-Based Explicit Formulation
37.4.1.2. Courant Numbers for the Density-Based Implicit Formulation
37.4.1.3. Courant Number Monitor
37.4.1.4. User Inputs
37.4.2. Convective Flux Types
37.4.3. Convergence Acceleration for Stretched Meshes (CASM)
37.4.3.1. Enhanced Convergence Acceleration for Stretched Meshes
37.4.4. Enabling High-Speed Numerics
37.4.5. Preventing Divergence Using Local Under-Relaxation
37.4.6. Specifying the Explicit Relaxation
37.4.7. Turning On FAS Multigrid
37.4.7.1. Setting Coarse Grid Levels
37.4.7.2. Using Residual Smoothing to Increase the Courant Number
37.4.8. Axis-stabilization for Axisymmetric Flows
37.5. Setting Algebraic Multigrid Parameters
37.5.1. Specifying the Multigrid Cycle Type
37.5.2. Setting the Termination and Residual Reduction Parameters
37.5.3. Setting the Stabilization Method
37.5.4. Additional Algebraic Multigrid Parameters
37.5.4.1. Fixed Cycle Parameters
37.5.4.2. Coarsening Parameters
37.5.4.3. Smoother Types
37.5.4.4. Flexible Cycle Parameters
37.5.4.5. Setting the Verbosity
37.5.4.6. Returning to the Default Multigrid Parameters
37.5.5. Setting FAS Multigrid Parameters
37.5.5.1. Combating Convergence Trouble
37.5.5.2. “Industrial-Strength” FAS Multigrid
37.6. Setting Solution Limits
37.6.1. Limiting the Values of Solution Variables
37.6.2. Adjusting the Positivity Rate Limit
37.6.3. Resetting Solution Limits
37.7. Setting Multi-Stage Time-Stepping Parameters
37.7.1. Changing the Multi-Stage Scheme
37.7.1.1. Changing the Coefficients and Number of Stages
37.7.1.2. Controlling Updates to Dissipation and Viscous Stresses
37.7.1.3. Resetting the Multi-Stage Parameters
37.8. Selecting Gradient Limiters
37.9. Initializing the Solution
37.9.1. Initializing the Entire Flow Field Using Standard Initialization
37.9.1.1. Saving and Resetting Initial Values
37.9.2. Patching Values in Selected Cells
37.9.2.1. Using Registers
37.9.2.2. Using Field Functions
37.9.2.3. Using Patching Later in the Solution Process
37.9.3. Flushing Profile Memory on Boundary Zones
37.10. Full Multigrid (FMG) Initialization
37.10.1. Steps in Using FMG Initialization
37.10.2. Convergence Strategies for FMG Initialization
37.10.3. Additional FMG Initialization Options with the Density-Based Solver
37.11. Hybrid Initialization
37.11.1. Steps in Using Hybrid Initialization
37.11.2. Solution Strategies for Hybrid Initialization
37.12. Performing Steady-State Calculations
37.12.1. Updating UDF Profiles and Named Expressions
37.12.2. Resetting Data
37.12.3. Data Sampling for Steady Statistics
37.13. Performing Time-Dependent Calculations
37.13.1. Inputs for Time-Dependent Problems
37.13.1.1. Additional Inputs
37.13.2. CFL-Based Time Stepping
37.13.2.1. The CFL-Based Time Stepping Algorithm
37.13.2.2. Specifying Parameters for CFL-Based Time Stepping
37.13.3. Error-Based Time Stepping
37.13.3.1. The Error-Based Time Stepping Algorithm
37.13.3.2. Specifying Parameters for Error-Based Time Stepping
37.13.4. Multiphase-Specific Time Stepping
37.13.4.1. The Multiphase-Specific Time Stepping Algorithm
37.13.4.2. Specifying Parameters for Multiphase-Specific Time Stepping
37.13.5. Postprocessing for Time-Dependent Problems
37.13.6. Runtime Discrete Fourier Transformation
37.13.6.1. Runtime DFT Formulation
37.13.6.2. Input Parameters for the Runtime DFT
37.13.6.3. DFT Field Variables for Postprocessing
37.14. Performing Calculations with a Pseudo Time Method
37.14.1. Local Time Step Method Setting
37.14.2. Global Time Step Method Settings
37.14.2.1. Pseudo Time Explicit Relaxation Factors
37.14.2.2. Advanced Solution Controls for the Pseudo Time Method
37.14.2.3. Pseudo Time Settings for the Calculation
37.15. Performing Calculations Using Ansys Cloud Burst Compute
37.15.1. Accessing Ansys Cloud
37.15.2. Submitting Your Ansys Fluent Jobs to Ansys Cloud
37.15.2.1. Specifying Job Details
37.15.2.2. Specifying Case Details for Cloud Jobs
37.15.2.3. Specifying Journal Details for Cloud Jobs
37.15.2.4. Specifying Output Files for Cloud Jobs
37.15.2.5. Viewing and Managing Existing Cloud Jobs Within Your Ansys Fluent Session
37.15.2.6. Viewing Your Job on Ansys Cloud
37.16. Monitoring Solution Convergence
37.16.1. Monitoring Residuals
37.16.1.1. Definition of Residuals for the Pressure-Based Solver
37.16.1.2. Definition of Residuals for the Density-Based Solver
37.16.1.3. Overview of Using the Residual Monitors Dialog Box
37.16.1.4. Printing and Plotting Residuals
37.16.1.5. Storing Residual History Points
37.16.1.6. Controlling Normalization and Scaling
37.16.1.7. Choosing a Convergence Criterion
37.16.1.8. Modifying Convergence Criteria
37.16.1.9. Disabling Monitoring
37.16.1.10. Plot Parameters
37.16.1.11. Postprocessing Residual Values
37.16.2. Monitoring Statistics
37.16.3. Monitoring Solution Quantities
37.17. Convergence Conditions
37.17.1. Setting Up the Convergence Conditions Dialog Box
37.18. Executing Commands During the Calculation
37.18.1. Defining Macros
37.18.2. Saving Files During the Calculation
37.19. Automatic Initialization of the Solution and Case Modification
37.20. Animating the Solution
37.20.1. Creating an Animation Definition
37.20.1.1. Guidelines for Creating an Animation Definition
37.20.2. Playing an Animation Sequence
37.20.2.1. Modifying the View
37.20.2.2. Modifying the Playback Speed
37.20.2.3. Playing Back an Excerpt
37.20.2.4. Adding Annotations to an Animation (HSF Animations Only)
37.20.2.5. “Fast-Forwarding” the Animation
37.20.2.6. Continuous Animation
37.20.2.7. Stopping the Animation
37.20.2.8. Advancing the Animation Frame by Frame
37.20.2.9. Deleting an Animation Sequence
37.20.3. Saving an Animation Sequence
37.20.3.1. Solution Animation File
37.20.3.2. Picture File
37.20.3.3. Video File
37.20.4. Reading an Animation Sequence
37.21. Checking Your Case Setup
37.21.1. Automatic Implementation
37.21.2. Manual Implementation
37.21.2.1. Checking the Mesh
37.21.2.2. Checking Model Selections
37.21.2.3. Checking Boundary and Cell Zone Conditions
37.21.2.4. Checking Material Properties
37.21.2.5. Checking the Solver Settings
37.22. Convergence and Stability
37.22.1. Judging Convergence
37.22.2. Step-by-Step Solution Processes
37.22.2.1. Selecting a Subset of the Solution Equations
37.22.2.2. Turning Reactions On and Off
37.22.3. Modifying Algebraic Multigrid Parameters
37.22.4. Modifying the Multi-Stage Parameters
37.22.5. Robustness with Meshes of Poor Quality
37.22.6. Warped-Face Gradient Correction
37.22.7. Numerical Noise Filter for the Energy Equation
37.23. Solution Steering
37.23.1. Overview of Solution Steering
37.23.2. Solution Steering Strategy
37.23.2.1. Initialization
37.23.3. Using Solution Steering
38. Using the Fluent Native GPU Solver
38.1. Introduction to the Fluent GPU Solver
38.2. Supported GPUs and Drivers
38.3. Basic Steps for CFD Analysis Using the Fluent GPU Solver
38.4. Starting the Fluent GPU Solver
38.4.1. Starting the Fluent GPU Solver Using the Fluent Launcher
38.4.2. Starting the Fluent GPU Solver from the Command Line
38.4.3. CPU/GPU Remapping
38.4.4. Asynchronous Outputting
38.5. Exiting the Fluent GPU Solver
38.6. Graphical User Interface (GUI)
38.7. Using CPU Processes for Setup and Postprocessing
38.8. Reading Fluent Case Files Into the Fluent GPU Solver
38.9. Features Supported by the Fluent GPU Solver
38.9.1. Models
38.9.1.1. Potential Model
38.9.1.2. Discrete Phase Model
38.9.2. Material Properties
38.9.3. Solver Settings
38.9.3.1. Solver Settings for the DPM
38.9.3.2. Optimized LES Numerics
38.9.4. Parametric Studies
38.9.5. Cell Zone and Boundary Conditions
38.9.5.1. Profiles and Expressions
38.9.5.2. Boundary Conditions for the DPM
38.9.6. Solution Monitors and Report Definitions
38.9.6.1. Postprocessing for the DPM
38.9.6.2. Using Expressions with Report Definitions and Unsteady Statistics
38.9.7. Exporting Solution Data as EnSight DVS Files
38.10. Fluent GPU Solver Limitations
38.10.1. Limitations for the DPM
38.11. Transitioning from a Steady-State Solution to a Transient Calculation
38.12. Troubleshooting Cases
38.13. Resolving GPU Solver Performance Issues
38.14. GPU Memory Usage
39. Adapting the Mesh
39.1. Using Adaption
39.1.1. Adaption Example
39.1.2. Adaption Guidelines
39.2. Refining and Coarsening
39.2.1. Predefined Criteria for Adaption
39.2.1.1. Boundary Layer Adaption Based on Cell Distance
39.2.1.2. Aerodynamics Adaption
39.2.1.3. Combustion Adaption
39.2.1.4. VOF Adaption
39.2.1.5. Overset Adaption
39.3. Adaption Examples
39.3.1. Boundary Cell Register
39.3.2. Region Cell Register
39.3.3. Field Variable Cell Registers (Gradients, Scaling, and So On)
39.3.4. Expression Adaption Refinement
39.4. Geometry-Based Adaption with the Hanging Node Method
39.4.1. Performing Geometry-Based Adaption with the Hanging Node Method
40. Creating Surfaces and Cell Registers for Displaying and Reporting Data
40.1. Using Surfaces
40.1.1. Zone Surfaces
40.1.2. Partition Surfaces
40.1.3. Imprint Surfaces
40.1.4. Point Surfaces
40.1.4.1. Using the Point Tool
40.1.5. Structural Point Surfaces
40.1.6. Line and Rake Surfaces
40.1.6.1. Using the Line Tool
40.1.6.1.1. Initializing the Line Tool
40.1.6.1.2. Translating the Line Tool
40.1.6.1.3. Rotating the Line Tool
40.1.6.1.4. Resizing the Line Tool
40.1.6.1.5. Resetting the Line Tool
40.1.7. Plane Surfaces
40.1.7.1. Using the Plane Tool
40.1.8. Quadric Surfaces
40.1.9. Iso-surfaces
40.1.10. Clipping Surfaces
40.1.11. Transforming Surfaces
40.1.12. Expression Volumes
40.1.13. Grouping, Prioritizing, Editing, Renaming, and Deleting Surfaces
40.1.13.1. Grouping Surfaces
40.1.13.2. Editing and Renaming Surfaces
40.1.13.3. Setting Surface Rendering Priority
40.1.13.4. Deleting Surfaces
40.1.13.5. Surface Statistics
40.2. Using Cell Registers
40.2.1. Region
40.2.1.1. Defining a Region
40.2.1.2. Setting Up a Region Cell Register
40.2.2. Boundary
40.2.3. Variable Limiter
40.2.4. Field Variable
40.2.4.1. Approaches For Deriving Field Values
40.2.4.2. Setting Up a Field Variable Cell Register
40.2.5. Residuals
40.2.6. Volume
40.2.6.1. Volume Cell Register Approach
40.2.6.2. Setting Up a Volume Cell Register
40.2.7. Yplus/Ystar
40.2.7.1. Yplus/Ystar Approach
40.2.7.2. Setting up a Yplus/Ystar Cell Register
40.2.8. Manage Cell Registers
40.2.9. Cell Register Operations
40.2.10. Copying and Renaming Cell Registers
41. Displaying Graphics
41.1. Basic Graphics Generation
41.1.1. Graphics Performance
41.1.2. Displaying the Mesh
41.1.2.1. Generating Mesh or Outline Plots
41.1.2.2. Modifying the Mesh Colors
41.1.2.3. Realistic Rendering of Materials
41.1.2.3.1. List of Default Realistic Materials
41.1.2.3.2. Creating Custom Realistic Materials
41.1.2.3.3. Limitations in Realistic Material Rendering
41.1.2.4. Controlling Mesh Transparency
41.1.2.5. Mesh and Outline Display Options
41.1.2.5.1. Adding Features to an Outline Display
41.1.2.5.2. Drawing Partition Boundaries
41.1.2.5.3. Shrinking Faces and Cells in the Display
41.1.2.6. Creating and Using Mesh Plot Definitions
41.1.3. Displaying Contours and Profiles
41.1.3.1. Quickly Coloring Surfaces by Field Variable Value
41.1.3.2. Generating Contour and Profile Plots
41.1.3.3. Contour and Profile Plot Options
41.1.3.3.1. Drawing Filled Contours or Profiles
41.1.3.3.2. Specifying the Range of Magnitudes Displayed
41.1.3.3.3. Including the Mesh in the Contour Plot
41.1.3.3.4. Choosing Node or Cell Values and Node or Boundary Values
41.1.3.3.5. Storing Contour Plot Settings
41.1.3.4. Creating and Using Contour Plot Definitions
41.1.4. Displaying Vectors
41.1.4.1. Generating Vector Plots
41.1.4.2. Displaying Relative Velocity Vectors
41.1.4.3. Vector Plot Options
41.1.4.3.1. Scaling the Vectors
41.1.4.3.2. Skipping Vectors
41.1.4.3.3. Drawing Vectors in the Plane of the Surface
41.1.4.3.4. Displaying Fixed-Length Vectors
41.1.4.3.5. Displaying Vector Components
41.1.4.3.6. Specifying the Range of Magnitudes Displayed
41.1.4.3.7. Changing the Scalar Field Used for Coloring the Vectors
41.1.4.3.8. Controlling 3D Vector Tessellation for Performance and Appearance
41.1.4.3.9. Displaying Vectors Using a Single Color
41.1.4.3.10. Including the Mesh in the Vector Plot
41.1.4.3.11. Changing the Arrow Characteristics
41.1.4.4. Creating and Managing Custom Vectors
41.1.4.4.1. Creating Custom Vectors
41.1.4.4.2. Manipulating, Saving, and Loading Custom Vectors
41.1.4.5. Creating and Using Vector Plot Definitions
41.1.5. Displaying Pathlines
41.1.5.1. Steps for Generating Pathlines
41.1.5.2. Options for Pathline Plots
41.1.5.2.1. Including the Mesh in the Pathline Display
41.1.5.2.2. Controlling the Pathline Style
41.1.5.2.3. Controlling Pathline Colors
41.1.5.2.4. “Thinning” Pathlines
41.1.5.2.5. Coarsening Pathlines
41.1.5.2.6. Reversing the Pathlines
41.1.5.2.7. Plotting Oil-Flow Pathlines
41.1.5.2.8. Controlling the Pulse Mode
41.1.5.2.9. Controlling the Accuracy
41.1.5.2.10. Plotting Relative Pathlines
41.1.5.2.11. Generating an XY Plot Along Pathline Trajectories
41.1.5.2.12. Saving Pathline Data
41.1.5.2.12.1. Standard Type
41.1.5.2.12.2. Geometry Type
41.1.5.2.12.3. EnSight Type
41.1.5.2.13. Choosing Node or Cell Values
41.1.5.3. Creating and Using Pathline Definitions
41.1.6. Displaying Line Integral Convolutions (LICs)
41.1.6.1. Generating an LIC Plot
41.1.7. Displaying a Scene
41.1.7.1. Generating a Scene
41.1.8. Displaying Results on a Sweep Surface
41.1.8.1. Steps for Generating a Plot Using a Sweep Surface
41.1.8.2. Animating a Sweep Surface Display
41.1.9. Hiding the Graphics Window Display
41.2. Customizing the Graphics Display
41.2.1. Embedded Graphics Window Dashboards
41.2.1.1. Automatically Embedding Windows in the Solution View
41.2.1.2. Embedding Windows with the Dashboard Definition Dialog Box
41.2.1.3. Manually Embedding Windows
41.2.1.4. Animating Embedded Window Dashboards
41.2.1.5. Limitations for Embedded Windows
41.2.2. Advanced Graphics Overlays
41.2.3. Managing Multiple Graphics Windows
41.2.3.1. Setting the Active Window
41.2.3.2. Synchronizing Window Views
41.2.4. Interactively Clipping the Display
41.2.5. Showing Boundary Markers
41.2.6. Changing the Legend Display
41.2.6.1. Controlling the Titles, Axes, Ruler, Logo, and Colormap
41.2.6.2. Editing the Legend
41.2.6.3. Adding a Title to the Caption
41.2.6.4. Enabling/Disabling the Axes
41.2.6.5. Enabling/Disabling the Ruler
41.2.6.6. Modifying and Displaying/Hiding the Logo
41.2.6.7. Colormap Alignment
41.2.7. Adding Text to the Graphics Window
41.2.7.1. Adding Text Using the Annotate Dialog Box
41.2.7.2. Editing Existing Annotation Text
41.2.7.3. Hiding Annotation Text
41.2.7.4. Associating Annotations with a Graphics Object
41.2.8. Changing the Colormap and Range
41.2.8.1. Colormap Nomenclature
41.2.8.2. Predefined Colormaps
41.2.8.3. Selecting a Colormap
41.2.8.3.1. Specifying the Colormap Size and Scale
41.2.8.3.2. Changing the Number Format
41.2.8.4. Displaying Colormap Labels and Titles
41.2.8.5. Creating a Customized Colormap
41.2.8.6. Colormap References
41.2.9. Adding Lights
41.2.9.1. Controlling Lighting Effects with the Display Options Dialog Box
41.2.9.2. Controlling Lighting Effects with the Lights Dialog Box
41.2.9.3. Defining Light Sources
41.2.9.3.1. Removing a Light
41.2.9.3.2. Resetting the Light Definitions
41.2.10. Modifying the Rendering Options
41.2.10.1. Graphics Device Information
41.3. Enhanced Graphics Visual Effects
41.3.1. Optimizing Graphical Priorities
41.3.2. Graphics Effects Options
41.4. Realistic Rendering Using Raytracing
41.4.1. Animating with Realistic Raytracer Images
41.4.1.1. Realistic Raytracer Images Captured at Runtime
41.4.1.2. Raytracer Image Conversion Using the Playback Dialog Box
41.4.2. Saving Pictures with Realistic Raytracer Images
41.4.3. Listing of Realistic Environments and Backplates
41.4.4. Limitations with Realistic Raytracing
41.5. Controlling the Mouse Button Functions
41.6. Viewing the Application Window
41.7. Measuring Distance and Angle
41.8. Controlling the Display State and Modifying the View
41.8.1. Specifying a Display State
41.8.2. Selecting a View
41.8.3. Manipulating the Display
41.8.3.1. Scaling and Centering
41.8.3.2. Rotating the Display
41.8.3.2.1. Spinning the Display with the Mouse
41.8.3.3. Translating the Display
41.8.3.4. Zooming the Display
41.8.4. Controlling Perspective and Camera Parameters
41.8.4.1. Perspective and Orthographic Views
41.8.4.2. Modifying Camera Parameters
41.8.5. Saving and Restoring Views
41.8.5.1. Restoring the Default View
41.8.5.2. Returning to Previous Views
41.8.5.3. Saving Views
41.8.5.4. Reading View Files
41.8.5.5. Deleting Views
41.8.6. Mirroring and Periodic Repeats
41.8.6.1. Periodic Repeats for Graphics
41.8.6.2. Mirroring for Graphics
41.9. Advanced Scene Composition
41.9.1. Selecting the Object(s) to be Manipulated
41.9.2. Changing an Object’s Display Properties
41.9.2.1. Controlling Visibility
41.9.2.2. Controlling Object Color and Transparency
41.9.3. Transforming Geometric Objects in a Scene
41.9.3.1. Translating Objects
41.9.3.2. Rotating Objects
41.9.3.3. Scaling Objects
41.9.3.4. Displaying the Meridional View
41.9.4. Modifying Iso-Values
41.9.4.1. Steps for Modifying Iso-Values
41.9.5. Modifying Pathline Attributes
41.9.6. Deleting an Object from the Scene
41.9.7. Adding a Bounding Frame
41.10. Animating Graphics
41.10.1. Creating an Animation
41.10.1.1. Deleting Key Frames
41.10.2. Playing an Animation
41.10.2.1. Playing Back an Excerpt
41.10.2.2. "Fast-Forwarding" the Animation
41.10.2.3. Continuous Animation
41.10.2.4. Stopping the Animation
41.10.2.5. Advancing the Animation Frame by Frame
41.10.3. Saving an Animation
41.10.3.1. Animation File
41.10.3.2. Picture File
41.10.3.3. MPEG File
41.10.4. Reading an Animation File
41.10.5. Notes on Animation
41.11. Histogram and XY Plots
41.11.1. Plot Types
41.11.1.1. XY Plots
41.11.1.2. Histograms
41.11.1.3. Enhanced Interactive Plots
41.11.2. XY Plots of Solution Data
41.11.2.1. Steps for Generating Solution XY Plots
41.11.2.2. Options for Solution XY Plots
41.11.2.2.1. Including External Data in the Solution XY Plot
41.11.2.2.2. Choosing Node or Cell Values
41.11.2.2.3. Saving the Plot Data to a File
41.11.3. Creating an XY Plot From Multiple Data Sources (Including Files)
41.11.3.1. Steps for Generating XY Plots of Data from Multiple Sources
41.11.4. XY Plots of Profiles
41.11.4.1. Steps for Generating Plots of Profile Data
41.11.4.2. Steps for Generating Plots of Interpolated Profile Data
41.11.5. XY Plots of Circumferential Averages
41.11.5.1. Steps for Generating an XY Plot of Circumferential Averages
41.11.5.2. Customizing the Appearance of the Plot
41.11.6. XY Plot File Format
41.11.7. Residual Plots
41.11.8. Histograms
41.11.8.1. Steps for Generating Histogram Plots
41.11.8.2. Options for Histogram Plots
41.11.8.2.1. Specifying the Range of Values Plotted
41.11.8.2.2. Adding Histograms to Your Simulation Reports
41.11.9. Modifying Axis Attributes
41.11.9.1. Using the Axes Dialog Box
41.11.9.1.1. Changing the Axis Title and Font Size
41.11.9.1.2. Changing the Format of the Data Labels
41.11.9.1.3. Choosing Logarithmic or Decimal Scaling
41.11.9.1.4. Resetting the Range of the Axis
41.11.9.1.5. Controlling the Major and Minor Gridlines
41.11.10. Modifying Curve Attributes
41.11.10.1. Using the Curves Dialog Box
41.11.10.1.1. Changing the Line Style
41.11.10.1.2. Changing the Marker Style
41.11.10.1.3. Previewing the Curve Style
41.12. Fast Fourier Transform (FFT) Postprocessing
41.12.1. Limitations of the FFT Algorithm
41.12.2. Windowing
41.12.3. Fast Fourier Transform (FFT)
41.12.4. Using the FFT Utility
41.12.4.1. Loading Data for Spectral Analysis
41.12.4.2. Customizing the Input and Defining the Spectrum Smoothing
41.12.4.2.1. Customizing the Input Signal Data Set
41.12.4.2.2. Spectrum Smoothing Through Signal Segmentation
41.12.4.2.3. Viewing Data Statistics
41.12.4.2.4. Customizing Titles and Labels
41.12.4.2.5. Applying the Changes in the Input Signal Data
41.12.4.3. Customizing the Output
41.12.4.3.1. Specifying a Function for the Y Axis
41.12.4.3.2. Specifying a Function for the X Axis
41.12.4.3.3. Specifying Output Options
41.12.4.3.4. Specifying a Windowing Technique
41.12.4.3.5. Specifying Labels and Titles
41.12.4.4. Performing an Ansys Sound Analysis
41.13. Cumulative Force, Moment, and Coefficients Plots
41.13.1. Steps for Generating Cumulative Plots
41.14. Transient Postprocessing
41.14.1. Functional Overview
41.14.2. Creating Transient Animations
41.14.3. Creating Transient Monitors and Reports
41.14.4. Comparing and Differencing
41.14.5. Limitations with Transient Postprocessing
42. Reporting Alphanumeric Data
42.1. Reporting Conventions
42.2. Monitoring and Reporting Solution Data
42.2.1. Creating Report Definitions
42.2.1.1. Surface Report Definitions
42.2.1.2. Volume Report Definitions
42.2.1.3. Force and Moment Report Definitions
42.2.1.4. Flux Report Definition
42.2.1.5. Mesh Report Definitions
42.2.1.6. Aerodamping (Travelling Wave Method) Report Definition
42.2.1.7. DPM Report Definition
42.2.1.8. User Defined Report Definition
42.2.1.8.1. User Defined Report Definition Function
42.2.1.8.2. User Defined Report Definition Function Hooking
42.2.1.9. Expression Report Definition
42.2.2. Report Files and Report Plots
42.2.2.1. Creating Report Files
42.2.2.2. Creating Report Plots
42.2.2.3. Moving Average Monitors
42.2.2.4. Clearing File and Plot Histories
42.3. Creating Output Parameters
42.4. Fluxes Through Boundaries
42.4.1. Generating a Flux Report
42.4.2. Flux Reporting for Reacting Flows
42.4.3. Flux Reporting with Particles
42.4.4. Flux Reporting with Multiphase
42.4.5. Flux Reporting with the DDPM
42.4.6. Flux Reporting with the Potential Solver
42.4.7. Flux Reporting with Other Volumetric Sources
42.5. Forces on Boundaries
42.5.1. Generating a Force, Moment, or Center of Pressure Report
42.5.1.1. Example
42.6. Projected Surface Area Calculations
42.7. Surface Integration
42.7.1. Generating a Surface Integral Report
42.8. Volume Integration
42.8.1. Generating a Volume Integral Report
42.9. Efficiency Calculations
42.9.1. Device Efficiency
42.9.2. Calculating Efficiency using Named Expressions
42.9.3. Limitations
42.10. Histogram Reports
42.11. Discrete Phase
42.12. S2S Information
42.13. Reference Values
42.13.1. Setting Reference Values
42.13.2. Setting the Reference Zone
42.14. Summary Reports of Case Settings
42.14.1. Modified Settings Summary
42.14.2. Generating a Summary Report
42.15. System Resource Usage
42.15.1. Processor Information
42.15.2. Memory Information
42.15.3. Process and Model Timers
43. Field Function Definitions
43.1. Node, Cell, and Facet Values
43.1.1. Cell Values
43.1.2. Node Values
43.1.2.1. Vertex Values for Points That Are Not Mesh Nodes
43.1.3. Facet Values
43.1.3.1. Facet Values on Zone Surfaces
43.1.3.2. Facet Values on Postprocessing Surfaces
43.2. Velocity Reporting Options
43.3. Field Variables Listed by Category
43.4. Alphabetical Listing of Field Variables and Their Definitions
43.5. Custom Field Functions
43.5.1. Creating a Custom Field Function
43.5.1.1. Using the Calculator Buttons
43.5.1.2. Using the Field Functions List
43.5.2. Manipulating, Saving, and Loading Custom Field Functions
43.5.3. Sample Custom Field Functions
44. Parallel Processing
44.1. Introduction to Parallel Processing
44.1.1. Recommended Usage of Parallel Ansys Fluent
44.2. Starting Parallel Ansys Fluent Using Fluent Launcher
44.2.1. Setting Parallel Scheduler Options in Fluent Launcher
44.2.2. Setting Additional Options When Running on Remote Linux Machines
44.2.2.1. Setting Job Scheduler Options When Running on Remote Linux Machines
44.3. Starting Parallel Ansys Fluent on a Windows System
44.3.1. Starting Parallel Ansys Fluent on a Windows System Using Command Line Options
44.3.1.1. Starting Parallel Ansys Fluent with the Microsoft Job Scheduler
44.4. Starting Parallel Ansys Fluent on a Linux System
44.4.1. Starting Parallel Ansys Fluent on a Linux System Using Command Line Options
44.4.2. Setting Up Your Secure Shell Clients
44.4.2.1. Configuring the ssh Client
44.5. Mesh Partitioning and Load Balancing
44.5.1. Overview of Mesh Partitioning
44.5.2. Partitioning the Mesh Automatically
44.5.2.1. Preferences for Advanced Auto-Partitioning Methods
44.5.2.2. Reporting During Auto Partitioning
44.5.3. Partitioning the Mesh Manually and Balancing the Load
44.5.3.1. Guidelines for Partitioning the Mesh
44.5.4. Using the Partitioning and Load Balancing Dialog Box
44.5.4.1. Partitioning
44.5.4.1.1. Example of Setting Selected Cell Registers to Specified Partition IDs
44.5.4.1.2. Partitioning Within Zones or Registers
44.5.4.1.3. Reporting During Partitioning
44.5.4.1.4. Resetting the Partition Parameters
44.5.4.2. Load Balancing
44.5.5. Mesh Partitioning Methods
44.5.5.1. Partition Methods
44.5.5.2. Optimizations
44.5.5.3. Pretesting
44.5.5.4. Using the Partition Filter
44.5.6. Checking the Partitions
44.5.6.1. Interpreting Partition Statistics
44.5.6.2. Examining Partitions Graphically
44.5.7. Load Distribution
44.5.8. Troubleshooting
44.6. Controlling the Threads
44.7. Checking Network Connectivity
44.8. Checking and Improving Parallel Performance
44.8.1. Parallel Check
44.8.2. Checking Parallel Performance
44.8.2.1. Checking Latency and Bandwidth
44.8.3. Optimizing the Parallel Solver
44.8.3.1. Increasing the Report Interval
44.8.3.2. Accelerating Discrete Ordinates (DO) Radiation Calculations
44.8.3.2.1. Accelerated DO Model Limitations
44.8.4. Clearing the Linux File Cache Buffers
45. Running Ansys Fluent on Arm Compute Nodes
45.1. Setting up Fluent for Arm
45.2. Message Passing Interface (MPI) Supported with Fluent for Arm
45.3. Starting Fluent for Arm
45.4. Running Fluent for Arm with a Job Scheduler
45.5. Fluent for Arm Known Limitations
46. Using Simulation Reports
46.1. Overview of Simulation Reports
46.1.1. Limitations for Simulations Reports
46.2. Preparing Simulation Reports
46.2.1. Setting General Report Properties
46.2.2. Organizing Your Simulation Report
46.3. Generating Simulation Reports
46.4. Viewing Simulation Reports
46.4.1. Viewing System Information
46.4.2. Viewing Geometry and Mesh Information
46.4.3. Viewing Simulation Setup Information
46.4.4. Viewing Run Information
46.4.5. Viewing Solution Status
46.4.6. Viewing Named Expression Information
46.4.7. Viewing Report Definition Information
46.4.8. Viewing Plot Information
46.4.9. Viewing Contours, Vectors, Pathlines, LICs, XY Plots, Scenes, Histograms, and Animations
46.5. Saving Simulation Reports
46.6. Additional Simulation Report Options
46.7. Customizing Simulation Reports
46.7.1. Customizing Your Report Image Settings
46.7.2. Changing the Layout of Your Results
46.7.3. Customizing Your Report Settings Using Templates
46.7.4. Adding Additional Graphics to Your Report
46.7.5. Hiding and Showing Report Sections
46.8. Generating Reports Using the Text User Interface (TUI)
47. Performing Parametric Studies
47.1. Prerequisites
47.2. Limitations
47.3. Getting Started With Your Parametric Study
47.4. Using the Parametric Ribbon
47.5. Automatically Setting Design Point Report Options
47.6. Using the Outline View for Parametric Studies
47.7. Working With the Design Point Table
47.7.1. Customizing the Design Point Table
47.7.2. Updating Design Points
47.7.2.1. Updating Design Points in the Same Session Versus a New Session
47.7.2.1.1. Submitting Concurrent Parametric Jobs to Remote or Local Compute Resources
47.7.2.1.1.1. Configuring Remote Concurrent Parametric Sessions
47.7.2.1.1.2. Configuring Local Parametric Sessions
47.7.2.1.1.3. Specifying License Settings for Concurrent Parametric Job Submissions
47.7.2.1.1.4. Monitoring Existing Concurrent Parametric Submitted Jobs
47.7.2.1.1.5. Viewing Your Remote Concurrent Parametric Jobs on the HPC Platform
47.7.2.1.2. Running Locally Concurrent Design Point Updates with GPUs
47.7.2.2. Updating the Current Design Point
47.7.2.3. Updating All Design Points
47.7.3. Adding Design Points
47.7.3.1. Manually Adding Design Points
47.7.3.2. Automatically Adding Design Points
47.7.3.2.1. Creating Designs of Experiments for optiSLang
47.7.3.2.2. Creating and Optimizing Designs of Experiments for optiSLang
47.7.3.2.2.1. Configuring optiSLang AMOP Settings
47.7.3.2.2.2. Configuring optiSLang One-Click Settings
47.7.4. Operating on Design Points
47.7.5. Generating Design Point Reports
47.7.6. Importing and Exporting Design Point Tables
47.7.7. Saving Journals When Updating Design Points
47.7.8. Accounting for Mesh Morphing During Parametric Updates
47.7.9. Parametric Design Point Process Details and Case Change Considerations
47.7.9.1. Initializing Design Point Data
47.7.9.2. Reusing Your Case File
47.7.9.3. Managing Case File Changes
47.7.9.4. Managing Case Changes During Design Point Updates
47.8. Monitoring and Viewing Design Point Update Status
47.8.1. Exporting Parametric Designs to optiSLang
47.8.2. Visualizing Your Parametric Study Data Using optiSLang
47.8.3. Comparing Parametric Plots
47.8.4. Customizing Graphical Plots
47.9. Creating Simulation Reports for Design Points and Parametric Studies
47.9.1. Creating Design Point Reports for Your Simulation
47.9.1.1. Accessing Design Point Report Settings
47.9.1.2. Overview of Design Point Report Settings
47.9.1.3. Generating, Viewing, and Saving Your Design Point Reports
47.9.1.3.1. Managing Out-of-Date Design Point Reports
47.9.2. Creating Parametric Reports for Your Simulation
47.9.2.1. Accessing Parametric Report Settings
47.9.2.2. Overview of Parametric Report Settings
47.9.2.3. Comparing Parametric Results
47.9.2.4. Generating, Viewing, and Saving Your Parametric Reports
47.9.2.4.1. Enhancing Exported PowerPoint Parametric Reports
47.9.2.4.2. Managing Out-of-Date Parametric Reports
47.10. Setting Preferences for Parametric Studies
47.11. Viewing the Current Case Parameters
47.12. Managing Files for Your Parametric Studies
47.12.1. Organizing Parametric Studies Using Projects
47.12.1.1. Reading and Writing Project Files
47.12.1.2. Using the Parametric Project View
47.12.2. Managing Design Point Files
47.12.3. Using Lightweight Parametric Projects
48. Design Analysis and Optimization
48.1. The Adjoint Solver
48.1.1. General Observables
48.1.2. General Operations
48.1.3. Discrete Versus Continuous Adjoint Solver
48.1.4. Discrete Adjoint Solver Overview
48.1.5. Adjoint Solver Stabilization
48.1.6. Solution-Based Adaption
48.1.7. Using The Data To Improve A Design
48.1.7.1. Smoothing and Mesh Morphing
48.1.7.1.1. Polynomials-Based Approach
48.1.7.1.2. Direct Interpolation Method
48.1.7.1.3. Radial Basis Function
48.2. Using the Adjoint Solver
48.2.1. Model Considerations for Using Adjoint Solver
48.2.1.1. Basic Assumptions and Consistency Checks
48.2.1.2. User-Defined Sources
48.2.2. Defining Observables
48.2.2.1. Creating New Observables
48.2.2.2. Editing Observable Definitions
48.2.2.3. Defining Observables Using Expressions
48.2.2.4. Selecting an Observable for Sensitivity Calculation
48.2.2.5. Defining Observables for Turbulence Model Optimization
48.2.3. Solving the Adjoint
48.2.3.1. Using the Adjoint Solution Methods Dialog Box
48.2.3.2. Using the Adjoint Solution Controls Dialog Box
48.2.3.2.1. Stabilization Strategies, Schemes, and Settings
48.2.3.2.1.1. Dissipation Scheme
48.2.3.2.1.2. Residual Minimization Scheme
48.2.3.3. Working with Adjoint Residual Monitors
48.2.3.4. Printing and Postprocessing the Adjoint Equation Residuals
48.2.3.5. Running the Adjoint Calculation
48.2.3.5.1. Automatic Saving of Case and Data Files During an Adjoint Calculation
48.2.4. Postprocessing of Adjoint Solutions
48.2.4.1. Using the Adjoint Postprocess Options Dialog Box
48.2.4.2. Field Data
48.2.4.3. Scalar Data
48.2.5. Modifying the Geometry Using the Design Tool
48.2.5.1. Defining the Region for the Design Change
48.2.5.2. Defining Region Conditions
48.2.5.3. Defining Observable Objectives
48.2.5.4. Defining Conditions for the Deformation
48.2.5.5. Design Tool Numerics
48.2.5.6. Shape Modification
48.2.6. Using the Gradient-Based Optimizer
48.2.6.1. Using the Turbulence Model Design Tool
48.2.6.1.1. Turbulence Model Optimization Strategies
48.2.6.1.1.1. Online Mode Optimization
48.2.6.1.1.2. Offline Mode Optimization
48.2.6.1.2. Defining the Design Region
48.2.6.1.3. Defining Optimizer Design Variable Settings
48.2.6.1.3.1. Defining Design Variables for Optimization
48.2.6.1.3.2. Defining the Model for Design Variables
48.2.6.1.3.2.1. Defining Neural Network Model Settings
48.2.6.1.3.2.2. Defining Offline Training Settings
48.2.6.1.3.3. Verifying the Trained Turbulence Model
48.2.6.1.3.4. Managing Trained Turbulence Models
48.3. Geometry Parameterization and Exploration
48.4. The Mesh Morpher/Optimizer
48.4.1. Limitations
48.4.2. The Optimization Process
48.4.3. Optimizers
48.4.3.1. The Compass Optimizer
48.4.3.2. The NEWUOA Optimizer
48.4.3.3. The Simplex Optimizer
48.4.3.4. The Torczon Optimizer
48.4.3.5. The Powell Optimizer
48.4.3.6. The Rosenbrock Optimizer
48.5. Using the Mesh Morpher/Optimizer
49. Performing System Coupling Simulations Using Fluent
49.1. Supported Capabilities and Limitations
49.2. Performing System Coupling in the GUI or CLI
49.2.1. Generating a System Coupling Setup File
49.2.2. Using Custom Input Files in System Coupling's User Interfaces
49.2.2.1. Setting the Fluent Input Option
49.2.2.2. Generating a Fluent Journal Script
49.3. Performing System Coupling in Ansys Workbench
49.4. Variables Available for System Coupling
49.4.1. Force transferred to System Coupling from a Wall Boundary
49.4.2. Force transferred to System Coupling from a Porous Jump Boundary
49.4.3. Displacement transferred from System Coupling
49.4.4. Displacement transferred from System Coupling to a Sliding Mesh Zone
49.4.5. Absolute Pressure Example
49.5. System Coupling Related Settings in Fluent
49.6. FSI Setup Recommendations for Fluent-Mechanical Couplings
49.6.1. Using Contact Detection for Fluent-Mechanical FSI Problems
49.6.2. Recommendations for Dynamic Mesh Settings for Fluent-Mechanical FSI
49.6.3. Pathologies & Candidate Resolutions for Fluent-Mechanical FSI
49.6.3.1. Mesh Folds within the First Coupling Steps
49.6.3.2. Deformed Prism Layers
49.6.3.2.1. Using Boundary Layer Smoothing and Region Face Remeshing
49.6.3.2.2. Overset Meshes
49.6.3.3. Interior Elements have High Skewness or Are Too Large/small
49.6.3.4. Divergence if Flow Block-Off is Established at the Beginning of a Run
49.7. How Fluent's Execution is Affected by System Couplings
49.8. Restarting Fluent Analyses as Part of System Couplings
49.8.1. Generating Fluent Restart Files
49.8.2. Specify a Restart Point in Fluent
49.8.3. Making Setup Changes Before Restarting
49.8.4. Recovering the Fluent Restart Point after a Workbench Crash
49.9. System Coupling case with Fluent using Patched Data
49.10. Running Fluent as a Participant from System Coupling's GUI or CLI
49.11. Troubleshooting Two-Way Coupled Analysis Problems
49.12. Product Licensing Considerations when using System Coupling
50. Customizing Fluent
51. Task Page Reference Guide
51.1. Meshing Task Page
51.2. Setup Task Page
51.3. General Task Page
51.3.1. Scale Mesh Dialog Box
51.3.2. Mesh Display Dialog Box
51.3.3. Set Units Dialog Box
51.3.4. Define Unit Dialog Box
51.3.5. Mesh Colors Dialog Box
51.4. Models Task Page
51.4.1. Multiphase Model Dialog Box
51.4.2. Energy Dialog Box
51.4.3. Viscous Model Dialog Box
51.4.4. Radiation Model Dialog Box
51.4.5. View Factors and Clustering Dialog Box
51.4.6. Participating Boundary Zones Dialog Box
51.4.7. Solar Calculator Dialog Box
51.4.8. Heat Exchanger Model Dialog Box
51.4.9. Dual Cell Heat Exchanger Dialog Box
51.4.10. Set Dual Cell Heat Exchanger Dialog Box
51.4.11. Heat Transfer Data Table Dialog Box
51.4.12. NTU Table Dialog Box
51.4.13. Copy From Dialog Box
51.4.14. Ungrouped Macro Heat Exchanger Dialog Box
51.4.15. Velocity Effectiveness Curve Dialog Box
51.4.16. Core Porosity Model Dialog Box
51.4.17. Macro Heat Exchanger Group Dialog Box
51.4.18. Species Model Dialog Box
51.4.19. Coal Calculator Dialog Box
51.4.20. Integration Parameters Dialog Box
51.4.21. Flamelet 3D Surfaces Dialog Box
51.4.22. Flamelet 2D Curves Dialog Box
51.4.23. Unsteady Flamelet Parameters Dialog Box
51.4.24. Flamelet Fluid Zones Dialog Box
51.4.25. Select Transported Scalars Dialog Box
51.4.26. Distribution of Points Dialog Box
51.4.27. PDF Table Dialog Box
51.4.28. Spark Ignition Dialog Box
51.4.29. Set Spark Ignition Dialog Box
51.4.30. Autoignition Model Dialog Box
51.4.31. Inert Dialog Box
51.4.32. NOx Model Dialog Box
51.4.33. Soot Model Dialog Box
51.4.34. Sticking Coefficients Dialog Box
51.4.35. Mechanism Dialog Box
51.4.36. Reactor Network Dialog Box
51.4.37. Decoupled Detailed Chemistry Dialog Box
51.4.38. Reacting Channel Model Dialog Box
51.4.39. Reacting Channel 2D Curves Dialog Box
51.4.40. Discrete Phase Model Dialog Box
51.4.41. DEM Collisions Dialog Box
51.4.42. Create Collision Partner Dialog Box
51.4.43. Copy Collision Partner Dialog Box
51.4.44. Rename Collision Partner Dialog Box
51.4.45. DEM Collision Settings Dialog Box
51.4.46. Solidification and Melting Dialog Box
51.4.47. Acoustics Model Dialog Box
51.4.48. Acoustic Sources Dialog Box
51.4.49. Acoustic Receivers Dialog Box
51.4.50. Basic Shapes Dialog Box
51.4.51. Integration Surface Dialog Box
51.4.52. Interior Cell Zone Selection Dialog Box
51.4.53. Structural Model Dialog Box
51.4.54. Eulerian Wall Film Dialog Box
51.4.55. Battery Model Dialog Box
51.4.56. Standalone Echem Model Dialog Box
51.4.57. Potential/Electrochemistry Dialog Box
51.5. Materials Task Page
51.5.1. Create/Edit Materials Dialog Box
51.5.2. Fluent Database Materials Dialog Box
51.5.3. GRANTA MDS Materials Dialog Box
51.5.4. Open Database Dialog Box
51.5.5. User-Defined Database Materials Dialog Box
51.5.6. Copy Case Material Dialog Box
51.5.7. Material Properties Dialog Box
51.5.8. Edit Property Methods Dialog Box
51.5.9. New Material Name Dialog Box
51.5.10. Polynomial Profile Dialog Box
51.5.11. Piecewise-Linear Profile Dialog Box
51.5.12. Piecewise-Polynomial Profile Dialog Box
51.5.13. NASA-9-Coefficient Piecewise-Polynomial Profile Dialog Box
51.5.14. Model Options Dialog Box
51.5.15. Compressible Liquid Dialog Box
51.5.16. User-Defined Functions Dialog Box
51.5.17. Sutherland Law Dialog Box
51.5.18. Power Law Dialog Box
51.5.19. Non-Newtonian Power Law Dialog Box
51.5.20. Carreau Model Dialog Box
51.5.21. Cross Model Dialog Box
51.5.22. Herschel-Bulkley Dialog Box
51.5.23. Biaxial Conductivity Dialog Box
51.5.24. Cylindrical Orthotropic Conductivity Dialog Box
51.5.25. Orthotropic Conductivity Dialog Box
51.5.26. Anisotropic Conduction - Principal Components Dialog Box
51.5.27. Anisotropic Conductivity Dialog Box
51.5.28. Species Dialog Box
51.5.29. Reactions Dialog Box
51.5.30. Backward Reaction Parameters Dialog Box
51.5.31. Third-Body Efficiency Dialog Box
51.5.32. Pressure-Dependent Reaction Dialog Box
51.5.33. Coverage-Dependent Reaction Dialog Box
51.5.34. Reference Molar Concentrations Dialog Box
51.5.35. Reaction Mechanisms Dialog Box
51.5.36. Site Parameters Dialog Box
51.5.37. Mass Diffusion Coefficients Dialog Box
51.5.38. Thermal Diffusion Coefficients Dialog Box
51.5.39. UDS Diffusion Coefficients Dialog Box
51.5.40. WSGGM User Specified Dialog Box
51.5.41. Gray-Band Absorption Coefficient Dialog Box
51.5.42. Delta-Eddington Scattering Function Dialog Box
51.5.43. Gray-Band Refractive Index Dialog Box
51.5.44. Single Rate Model Dialog Box
51.5.45. Secondary Rate Model Dialog Box
51.5.46. Two Competing Rates Model Dialog Box
51.5.47. CPD Model Dialog Box
51.5.48. Kinetics/Diffusion-Limited Combustion Model Dialog Box
51.5.49. Intrinsic Combustion Model Dialog Box
51.5.50. Multiple Surface Reactions Dialog Box
51.5.51. Edit Material Dialog Box
51.6. Cell Zone Conditions Task Page
51.6.1. Fluid Dialog Box
51.6.2. Solid Dialog Box
51.6.3. Copy Conditions Dialog Box
51.6.4. Operating Conditions Dialog Box
51.6.5. Dual-Potential Electrochemistry Zones Dialog Box
51.6.6. Select Input Parameter Dialog Box
51.6.7. Profiles Dialog Box
51.6.8. Replicate Profile Dialog Box
51.6.9. Orient Profile Dialog Box
51.6.10. Write Profile Dialog Box
51.6.11. Select Profiles for Writing
51.7. Boundary Conditions Task Page
51.7.1. Axis Dialog Box
51.7.2. Degassing Dialog Box
51.7.3. Exhaust Fan Dialog Box
51.7.4. Fan Dialog Box
51.7.5. Inlet Vent Dialog Box
51.7.6. Intake Fan Dialog Box
51.7.7. Interface Dialog Box
51.7.8. Interior Dialog Box
51.7.9. Mass-Flow Inlet Dialog Box
51.7.10. Mass-Flow Outlet Dialog Box
51.7.11. Outflow Dialog Box
51.7.12. Outlet Vent Dialog Box
51.7.13. Overset Dialog Box
51.7.14. Periodic Dialog Box
51.7.15. Porous Jump Dialog Box
51.7.16. Pressure Far-Field Dialog Box
51.7.17. Pressure Inlet Dialog Box
51.7.18. Pressure Outlet Dialog Box
51.7.19. Radiator Dialog Box
51.7.20. RANS/LES Interface Dialog Box
51.7.21. Symmetry Dialog Box
51.7.22. Velocity Inlet Dialog Box
51.7.23. Wall Dialog Box
51.7.24. Periodic Conditions Dialog Box
51.7.25. Perforated Walls Dialog Box
51.8. Overset Interfaces Task Page
51.8.1. Create/Edit Overset Interfaces Dialog Box
51.9. Dynamic Mesh Task Page
51.9.1. Mesh Method Settings Dialog Box
51.9.2. Mesh Smoothing Parameters Dialog Box
51.9.3. Advanced Remeshing Settings Dialog Box
51.9.4. Mesh Scale Info Dialog Box
51.9.5. Options Dialog Box
51.9.6. In-Cylinder Output Controls Dialog Box
51.9.7. Six DOF Properties Dialog Box
51.9.8. Periodic Displacement Group Dialog Box
51.9.9. Periodic Displacement Properties Dialog Box
51.9.10. Flow Control Settings Dialog Box
51.9.11. Dynamic Mesh Events Dialog Box
51.9.12. Define Event Dialog Box
51.9.13. Events Preview Dialog Box
51.9.14. Dynamic Mesh Zones Dialog Box
51.9.15. Orientation Calculator Dialog Box
51.9.16. Zone Scale Info Dialog Box
51.9.17. Zone Motion Dialog Box
51.9.18. Mesh Motion Dialog Box
51.9.19. Autosave Case During Mesh Motion Preview Dialog Box
51.10. Reference Values Task Page
51.11. Solution Task Page
51.12. Solution Methods Task Page
51.12.1. Relaxation Options Dialog Box
51.13. Solution Controls Task Page
51.13.1. Equations Dialog Box
51.13.2. Solution Limits Dialog Box
51.13.3. Advanced Solution Controls Dialog Box
51.14. Solution Initialization Task Page
51.14.1. Acoustics Initialization Dialog Box
51.14.2. Patch Dialog Box
51.14.3. Full-Multigrid (FMG) Initialization Dialog Box
51.14.4. Hybrid Initialization Dialog Box
51.15. Calculation Activities Task Page
51.15.1. Autosave Dialog Box
51.15.2. Data File Quantities Dialog Box
51.15.3. Automatic Export Dialog Box
51.15.4. Automatic Particle History Data Export Dialog Box
51.15.5. Execute Commands Manager Dialog Box
51.15.6. Execute Commands Dialog Box
51.15.7. Define Macro Dialog Box
51.15.8. Case Modification Manager Dialog Box
51.15.9. Auto Initialization Method Dialog Box
51.15.10. Modify Case Dialog Box
51.16. Run Calculation Task Page
51.16.1. Case Check Dialog Box
51.16.2. Adaptive Time Stepping Dialog Box
51.16.3. Simulation Status Dialog Box
51.16.4. Solution Steering Dialog Box
51.16.5. Acoustic Sources FFT Dialog Box
51.16.6. Acoustic Signals Dialog Box
51.16.7. Sampling Options Dialog Box
51.16.8. Zone-Specific Sampling Options Dialog Box
51.17. Results Task Page
51.18. Graphics and Animations Task Page
51.18.1. Profile Options Dialog Box
51.18.2. Vector Options Dialog Box
51.18.3. Custom Vectors Dialog Box
51.18.4. Vector Definitions Dialog Box
51.18.5. Path Style Attributes Dialog Box
51.18.6. Ribbon Attributes Dialog Box
51.18.7. Particle Filter Attributes Dialog Box
51.18.8. Reporting Variables Dialog Box
51.18.9. Track Style Attributes Dialog Box
51.18.10. Particle Sphere Style Attributes Dialog Box
51.18.11. Particle Vector Style Attributes Dialog Box
51.18.12. Sweep Surface Dialog Box
51.18.13. Create Surface Dialog Box
51.18.14. Animate Dialog Box
51.18.15. Save Picture Dialog Box
51.18.16. Playback Dialog Box
51.18.17. Video Options Dialog Box
51.18.18. Advanced Video Quality Options Dialog Box
51.18.19. Display Options Dialog Box
51.18.20. Scene Description Dialog Box
51.18.21. Display Properties Dialog Box
51.18.22. Transformations Dialog Box
51.18.23. Iso-Value Dialog Box
51.18.24. Pathline Attributes Dialog Box
51.18.25. Bounding Frame Dialog Box
51.18.26. Views Dialog Box
51.18.27. Write Views Dialog Box
51.18.28. Mirror Planes Dialog Box
51.18.29. Periodic Instancing Dialog Box
51.18.30. Camera Parameters Dialog Box
51.18.31. Lights Dialog Box
51.18.32. Colormap Dialog Box
51.18.33. Colormap Editor Dialog Box
51.18.34. Annotate Dialog Box
51.19. Plots Task Page
51.19.1. Solution XY Plot Dialog Box
51.19.2. Histogram Dialog Box
51.19.3. Plot Data Sources Dialog Box
51.19.4. Plot Profile Data Dialog Box
51.19.5. Plot Interpolated Data Dialog Box
51.19.6. Fourier Transform Dialog Box
51.19.7. Ansys Sound Analysis Dialog Box
51.19.8. Cumulative Plot Dialog Box
51.19.9. Plot/Modify Input Signal Dialog Box
51.19.10. Axes Dialog Box
51.19.11. Curves Dialog Box
51.20. Reports Task Page
51.20.1. Flux Reports Dialog Box
51.20.2. Force Reports Dialog Box
51.20.3. Projected Surface Areas Dialog Box
51.20.4. Surface Integrals Dialog Box
51.20.5. Volume Integrals Dialog Box
51.20.6. Sample Trajectories / Compute Erosion Dialog Box
51.20.7. Trajectory Sample Histograms Dialog Box
51.20.8. Particle Summary Dialog Box
51.20.9. Heat Exchanger Report Dialog Box
51.20.10. Parameters Dialog Box
51.20.11. Use Input Parameter in Scheme Procedure Dialog Box
51.20.12. Use Input Parameter for UDF Dialog Box
51.20.13. Rename Dialog Box
51.20.14. Parameter Expression Dialog Box
51.20.15. Save Output Parameter Dialog Box
51.21. Parameters and Customization Task Page
52. Ribbon Reference Guide
52.1. File Ribbon Tab
52.1.1. File/Read/Mesh...
52.1.1.1. Read Mesh Options Dialog Box
52.1.2. File/Read/Case...
52.1.3. File/Read/Data...
52.1.4. File/Read/Case & Data...
52.1.5. File/Read/Case/Mesh Lightweight...
52.1.6. File/Read/Case/Mesh Info...
52.1.7. File/Read/PDF...
52.1.8. File/Read/ISAT Table...
52.1.9. File/Read/DTRM Rays...
52.1.10. File/Read/View Factors...
52.1.11. File/Read/Profile...
52.1.12. File/Read/Scheme...
52.1.13. File/Read/Journal...
52.1.14. File/Write/Case...
52.1.15. File/Write/Data...
52.1.16. File/Write/Case & Data...
52.1.17. File/Write/PDF...
52.1.18. File/Write/ISAT Table...
52.1.19. File/Write/Flamelet...
52.1.20. File/Write/Profile...
52.1.21. File/Write/Autosave...
52.1.22. File/Write/Boundary Mesh...
52.1.23. File/Write/Start Journal...
52.1.24. File/Write/Stop Journal
52.1.25. File/Write/Start Transcript...
52.1.26. File/Write/Stop Transcript
52.1.27. File/Import/ABAQUS/Input File...
52.1.28. File/Import/ABAQUS/Filbin File...
52.1.29. File/Import/ABAQUS/ODB File...
52.1.30. File/Import/CFX/Definition File...
52.1.31. File/Import/CFX/Result File...
52.1.32. File/Import/CGNS/Mesh...
52.1.33. File/Import/CGNS/Data...
52.1.34. File/Import/CGNS/Mesh & Data...
52.1.35. File/Import/EnSight...
52.1.36. File/Import/FIDAP...
52.1.37. File/Import/GAMBIT...
52.1.38. File/Import/HYPERMESH ASCII...
52.1.39. File/Import/LSTC/Input File...
52.1.40. File/Import/LSTC/State File...
52.1.41. File/Import/Marc POST...
52.1.42. File/Import/NASTRAN/Bulkdata File...
52.1.43. File/Import/NASTRAN/Op2 File...
52.1.44. File/Import/PLOT3D/Grid File...
52.1.45. File/Import/PLOT3D/Result File...
52.1.46. File/Import/Tecplot...
52.1.47. File/Import/Partition/Metis...
52.1.48. File/Import/Partition/Metis Zone...
52.1.49. File/Import/CHEMKIN Mechanism...
52.1.49.1. Import CHEMKIN Format Mechanism Dialog Box
52.1.50. File/Import/FMU...
52.1.51. File/Export/Solution Data...
52.1.51.1. Export Dialog Box
52.1.52. File/Export/Particle History Data...
52.1.52.1. Export Particle History Data Dialog Box
52.1.53. File/Export/During Calculation/Solution Data...
52.1.54. File/Export/During Calculation/Particle History Data...
52.1.55. File/Export to CFD-Post...
52.1.55.1. Export to CFD-Post Dialog Box
52.1.56. File/Table File Manager...
52.1.57. File/Solution Files...
52.1.57.1. Solution Files Dialog Box
52.1.58. File/Interpolate...
52.1.58.1. Interpolate Data Dialog Box
52.1.59. File/FSI Mapping/Volume...
52.1.59.1. Volume FSI Mapping Dialog Box
52.1.60. File/FSI Mapping/Surface...
52.1.60.1. Surface FSI Mapping Dialog Box
52.1.61. File/Save Picture...
52.1.62. File/Data File Quantities...
52.1.63. File/Batch Options...
52.1.63.1. Batch Options Dialog Box
52.1.64. File/Idle Timeout...
52.1.64.1. Set Idle Timeout Dialog Box
52.1.65. File/Exit
52.2. Dialog Boxes Available from the Ribbon or Graphics
52.2.1. 1D Simulation Library Dialog Box
52.2.2. Activate Cell Zones Dialog Box
52.2.3. Adaption Criteria Settings Dialog Box
52.2.4. Adjacency Dialog Box
52.2.5. Advanced Options Dialog Box
52.2.6. Aerodamping (Influence Coefficient Method) Report Definition Dialog Box
52.2.7. Aerodamping (Travelling Wave Method) Report Definition Dialog Box
52.2.8. Animation Definition Dialog Box
52.2.9. Annotations Dialog Box
52.2.10. Application About to Exit Dialog Box
52.2.11. Auto Partition Mesh Dialog Box
52.2.12. Automatic Mesh Adaption Dialog Box
52.2.13. Boundary name Dialog Box
52.2.14. Cell Count Report Definition Dialog Box
52.2.15. Cell Register Display Options Dialog Box
52.2.16. Clipping Planes Dialog Box
52.2.17. Compiled UDFs Dialog Box
52.2.18. Conduction Layers Dialog Box
52.2.19. Conduction Manager Dialog Box
52.2.20. Contours Dialog Box
52.2.21. Convergence Conditions Dialog Box
52.2.22. Create Interface Dialog Box
52.2.23. Create Mesh Interfaces Dialog Box
52.2.24. Create/Edit Mesh Interfaces Dialog Box
52.2.25. Create/Edit Turbo Interfaces Dialog Box
52.2.26. Create Transient Animation Dialog Box
52.2.27. Curvilinear Coordinate System Dialog Box
52.2.28. Custom Field Function Calculator Dialog Box
52.2.29. Custom Laws Dialog Box
52.2.30. Dashboard Definition Dialog Box
52.2.31. Deactivate Cell Zones Dialog Box
52.2.32. Define Control Points Dialog Box
52.2.33. Delete Cell Zones Dialog Box
52.2.34. Display Options - Adaption Dialog Box
52.2.35. Display States Dialog Box
52.2.36. DPM Report Definition Dialog Box
52.2.37. DPM Source Report Definition Dialog Box
52.2.38. Drag Report Definition Dialog Box
52.2.39. DTRM Graphics Dialog Box
52.2.40. DTRM Rays Dialog Box
52.2.41. Edit Gap Region Dialog Box
52.2.42. Edit Interface Dialog Box
52.2.43. Edit Physics Location Dialog Box
52.2.44. Edit Mesh Interfaces Dialog Box
52.2.45. Edit Report File Dialog Box
52.2.46. Edit Report Plot Dialog Box
52.2.47. Execute on Demand Dialog Box
52.2.48. Expression Dialog Box
52.2.49. Expression Editor Dialog Box
52.2.50. Expression Manager Dialog Box
52.2.51. Expression Report Definition Dialog Box
52.2.52. Expression Volume Dialog Box
52.2.53. Face Count Report Definition Dialog Box
52.2.54. Field Function Definitions Dialog Box
52.2.55. Flux Report Definition Dialog Box
52.2.56. Force Report Definition Dialog Box
52.2.57. Fuse Face Zones Dialog Box
52.2.58. Gap Model Dialog Box
52.2.59. General Adaption Controls Dialog Box
52.2.60. Generalized/Modal Force Report Definition Dialog Box
52.2.61. Geometry Based Adaption Controls Dialog Box
52.2.62. Geometry Based Adaption Dialog Box
52.2.63. Import Particle Data Dialog Box
52.2.64. Imprint Surface Dialog Box
52.2.65. Improve Mesh Dialog Box
52.2.66. Injections Dialog Box
52.2.67. Input Summary Dialog Box
52.2.68. Interface Creation Options Dialog Box
52.2.69. Interpreted UDFs Dialog Box
52.2.70. Iso-Clip Dialog Box
52.2.71. Iso-Surface Dialog Box
52.2.72. Lift Report Definition Dialog Box
52.2.73. Line Integral Convolutions Dialog Box
52.2.74. Line/Rake Surface Dialog Box
52.2.75. Manual Mesh Adaption Dialog Box
52.2.76. Manage Adaption Criteria Dialog Box
52.2.77. Manage Geometry-Based Adaption Dialog Box
52.2.78. Manage Interfaces Dialog Box
52.2.79. Manage Sponge Layers Dialog Box
52.2.80. Mapped Interface Options Dialog Box
52.2.81. Material Editor Dialog Box
52.2.82. Measure Dialog Box
52.2.83. Merge Zones Dialog Box
52.2.84. Mesh Interfaces Dialog Box
52.2.85. Mesh Morpher/Optimizer Dialog Box
52.2.86. Mixing Planes Dialog Box
52.2.87. Moment Report Definition Dialog Box
52.2.88. Motion Settings Dialog Box
52.2.89. Multi Edit Dialog Box
52.2.90. New Physics Location Dialog Box
52.2.91. New Report File Dialog Box
52.2.92. New Report Plot Dialog Box
52.2.93. Objective Function Definition Dialog Box
52.2.94. Optimization History Monitor Dialog Box
52.2.95. Parallel Connectivity Dialog Box
52.2.96. Parameter Bounds Dialog Box
52.2.97. Particle Tracks Dialog Box
52.2.98. Partition Surface Dialog Box
52.2.99. Partitioning and Load Balancing Dialog Box
52.2.100. Pathlines Dialog Box
52.2.101. PCB Model Dialog Box
52.2.102. Plane Surface Dialog Box
52.2.103. Point Surface Dialog Box
52.2.104. Quadric Surface Dialog Box
52.2.105. Raytracing Display Dialog Box
52.2.106. Reduced Order Model Dialog Box
52.2.107. Reference Frame Dialog Box
52.2.108. Replace Cell Zone Dialog Box
52.2.109. Report Definitions Dialog Box
52.2.110. Report File Definitions Dialog Box
52.2.111. Report Plot Definitions Dialog Box
52.2.112. Residual Monitors Dialog Box
52.2.113. Rotate Mesh Dialog Box
52.2.114. S2S Information Dialog Box
52.2.115. Save Reports Dialog Box
52.2.116. Select UDM Zones Dialog Box
52.2.117. Select Window Dialog Box
52.2.118. Separate Cell Zones Dialog Box
52.2.119. Separate Face Zones Dialog Box
52.2.120. Set Injection Properties Dialog Box
52.2.121. Set Multiple Injection Properties Dialog Box
52.2.122. Split Dialog Box
52.2.123. Sponge Layer Dialog Box
52.2.124. Structural Point Surface Dialog Box
52.2.125. Surface Meshes Dialog Box
52.2.126. Surface Rendering Properties Dialog Box
52.2.127. Surface Report Definition Dialog Box
52.2.128. Surfaces Dialog Box
52.2.129. Thread Control Dialog Box
52.2.130. Time Averaged Explicit Thermal Coupling Dialog Box
52.2.131. Timestep Selector Dialog Box
52.2.132. Transient Display Dialog Box
52.2.133. Transient Result Compare Dialog Box
52.2.134. Transform Surface Dialog Box
52.2.135. Translate Mesh Dialog Box
52.2.136. Turbo 2D Contours Dialog Box
52.2.137. Turbo Averaged Contours Dialog Box
52.2.138. Turbo Averaged XY Plot Dialog Box
52.2.139. Turbo Options Dialog Box
52.2.140. Turbo Report Dialog Box
52.2.141. Turbo Topology Dialog Box
52.2.142. UDF Library Manager Dialog Box
52.2.143. User-Defined Fan Model Dialog Box
52.2.144. User-Defined Function Hooks Dialog Box
52.2.145. User-Defined Memory Dialog Box
52.2.146. User Defined Report Definition Dialog Box
52.2.147. User-Defined Scalars Dialog Box
52.2.148. Vectors Dialog Box
52.2.149. Volume name Dialog Box
52.2.150. Volume Report Definition Dialog Box
52.2.151. Warning Dialog Box
52.2.152. Zone Surface Dialog Box
52.2.153. Zone Type Color and Material Assignment Dialog Box
A. Ansys Fluent Model Compatibility
B. Ansys Fluent File Formats
B.1. CFF File Format
B.1.1. CFF Case File Layout
B.1.2. CFF Solution Data File Layout
B.1.3. Variable Sized Data on Collected Element / Node Sets
B.2. Legacy Case and Data File Formats
B.2.1. Guidelines
B.2.2. Formatting Conventions in Binary and Formatted Files
B.2.3. Grid Sections
B.2.3.1. Comment
B.2.3.2. Header
B.2.3.3. Dimensions
B.2.3.4. Nodes
B.2.3.5. Periodic Shadow Faces
B.2.3.6. Cells
B.2.3.7. Faces
B.2.3.8. Face Tree
B.2.3.9. Cell Tree
B.2.3.10. Interface Face Parents
B.2.3.11. Example Files
B.2.3.11.1. Example 1
B.2.3.11.2. Example 2
B.2.3.11.3. Example 3
B.2.4. Other (Non-Grid) Legacy Case Sections
B.2.4.1. Zone
B.2.4.2. Partitions
B.2.5. Data Sections
B.2.5.1. Grid Size
B.2.5.2. Data Field
B.2.5.3. Residuals
B.3. Mesh Morpher/Optimizer File Formats
B.4. Conduction Settings File Format
B.5. 3D Fan Curve File Format
C. Controlling CHEMKIN-CFD Solver Parameters Using Text Commands
C.1. Advanced Parameters Used in the Steady-State Solution Algorithm
C.2. Setting Up Monitor Cells for the Ansys CHEMKIN-CFD Chemistry Solver
C.3. Diagnostic Files and Error Messages
C.4. Error Messages Printed in the Ansys Fluent Graphical User Interface
C.5. Diagnostic Messages in the KINetics-log.txt File
D. Nomenclature
Bibliography
IV. Web Interface
1. Introduction to Ansys Fluent's Web Interface
1.1. Overview
1.1.1. Requirements
1.1.2. Limitations
1.2. Getting Started With Ansys Fluent's Web Interface
1.2.1. Specifying Web Server Details
1.2.2. Connecting to Your Simulation Web Sessions
1.3. Using Ansys Fluent's Web Interface
1.3.1. Overview of the Graphical Interface
1.3.2. The Main Menu
1.3.3. The Outline View
1.3.4. The Graphics Window
1.3.5. The View Arc
1.3.6. Color Maps
1.3.7. The Status Bar
1.3.8. The Stage Navigator
1.3.9. The Console Panel
1.3.9.1. Using the Console to Interact with Your Session Using Python
1.3.10. The Results Arc
1.3.11. The Plots View
1.3.12. Setting Permissions and Sharing Your Web Sessions
1.3.13. Property Panels
1.3.14. Working with Model Topology
1.3.15. Working with Units
1.3.16. Working with Expressions
1.3.17. Editing Multiple Objects at Once
1.3.18. Managing Objects of the Same Type
1.3.19. Working With Parameters
1.4. Setting Up Your Environment (System Administrators)
1.4.1. Supporting HTTPS
2. Interacting with Your Computational Mesh
2.1. Overview of the Meshing-Based Graphical Interface
3. Interacting with Your Simulation Setup
3.1. Accessing General Settings
3.2. Accessing Model Settings
3.3. Accessing Material Settings
3.4. Accessing Cell Zone Settings
3.5. Accessing Boundary Condition Settings
3.6. Accessing Mesh Interface Settings
3.7. Accessing Dynamic Mesh Settings
3.8. Accessing Reference Values Settings
3.9. Accessing Reference Frame Settings
3.10. Accessing Named Expression Settings
3.11. Accessing Turbo Model Settings
3.12. Accessing User-Defined Functions
4. Interacting with Your Solution Settings
4.1. Setting Solution Methods
4.2. Setting Solution Controls
4.3. Setting Report Definitions
4.4. Setting Solution Monitors
4.5. Defining Cell Registers
4.6. Initializing the Solution
4.7. Performing Calculation Activities
4.8. Running the Calculations
4.9. Interrupting and Pausing Calculations
5. Interacting with the Results of Your Simulation
5.1. Working With Surfaces and Your Simulation Results
5.1.1. Creating and Displaying Point Surfaces
5.1.2. Creating and Displaying Line Surfaces
5.1.3. Creating and Displaying Rake Surfaces
5.1.4. Creating and Displaying Plane Surfaces
5.1.4.1. Creating and Displaying Multiple Zone Surfaces
5.1.4.2. Creating and Displaying Multiple Iso-surfaces
5.1.4.3. Creating and Displaying Multiple Plane Surfaces
5.1.5. Creating and Displaying Iso Surfaces
5.1.6. Creating and Displaying Iso-Clip Surfaces
5.1.7. Creating and Displaying Transform Surfaces
5.1.8. Creating and Displaying Plane Slice Surfaces
5.1.9. Creating and Displaying Sphere Slice Surfaces
5.1.10. Creating and Displaying Quadric Surfaces
5.1.11. Creating and Displaying Expression Volume Surfaces
5.1.12. Creating and Displaying Group Surfaces
5.2. Working With Graphics Objects and Your Simulation Results
5.2.1. Creating and Displaying Mesh Objects
5.2.2. Creating and Displaying Contours Objects
5.2.3. Creating and Displaying Vector Objects
5.2.4. Creating and Displaying Pathline Objects
5.2.5. Creating and Displaying Particle Track Objects
5.2.5.1. Creating Injections for Particle Tracks
5.2.6. Creating and Displaying Periodic Instances
5.2.7. Creating Display Objects
5.2.8. Rendering Realistic Materials
5.2.9. Running Saved Animations
5.2.10. Animating Pathlines and Particle Tracks
5.2.11. Creating and Displaying Mirror Plane Objects
5.3. Working With Plots and Your Simulation Results
5.3.1. Creating and Displaying XY Plots
5.3.2. Generating Histogram Data
5.3.3. Generating Cumulative Data
5.3.4. Viewing Residual Plots
5.3.5. Viewing Report Definition Plots
5.3.6. Displaying Multiple Plots
5.3.7. Analyzing Data in Plots
5.4. Creating and Displaying Scenes and Your Simulation Results
5.5. Creating and Displaying Reports for Your Simulation Results