VM-NR1677-02-1

VM-NR1677-02-1
NUREG/CR-1677: Volume 2, Benchmark Problem No. 1

Overview

Reference:NUREG/CR-1677 Volume II Piping Benchmark Problems, Dynamic Analysis Independent Support Motion Response Spectrum Method, P. Bezler, M. Subudhi & M. Hartzman of Brookhaven National Laboratory, prepared for the U.S. Nuclear Regulatory Commission, August 1985, Problem 1, pages 18-76.
Analysis Type(s):
Modal analysis (ANTYPE = 2)
Spectral analysis (ANTYPE = 8)
Element Type(s):
3D 3-Noded Elbow (ELBOW290)
3D 3-Noded Pipe (PIPE289)
Spring-Damper Element (COMBIN14)
Input Listing:

Test Case

For test case description, problem sketch, material properties, geometry properties and loadings refer to

VM-NR1677-02-1-a

Results Comparison

Table 116: Frequencies Obtained from Modal Solution

ModeFrequency
16.1125
26.3518
37.7648
48.7922
512.185
612.627
713.954
814.865
915.986
1018.059
1118.919
1221.600
1322.957
1424.934
1531.868

Case 1: Envelope Spectrum Excitation

Table 117: Maximum Displacements and Rotations Obtained from Spectrum Solve

Result_NodeValue
UX at node196.154E-1
UY at node2751.216E-1
UZ at node118.415E-2
ROTX at node2201.503E-3
ROTY at node111.315E-3
ROTZ at node2651.485E-3

Table 118: Element Forces and Moments Obtained from Spectrum Solve

ResultMAPDL
Element 120
PX(I)119.450
VY(I)61.770
VZ(I)57.027
TX(I)596.71
MY(I)1849.5
MZ(I)2815.8
  
PX(J) 119.450
VY(J) 61.897
VZ(J) 57.209
TX(J) 596.73
MY(J) 2572.5
MZ(J)3609.9
Element 131
PX(I) 230.56
VY(I) 63.22
VZ(I) 26.11
TX(I) 280.91
MY(I) 1035.7
MZ(I) 2216.7
  
PX(J) 193.14
VY(J) 145.13
VZ(J) 22.27
TX(J) 661.65
MY(J) 1315.1
MZ(J)1146.0

Case 2: Independent Support Excitation with SRSS Combination

Table 119: Maximum Displacements and Rotations Obtained from Spectrum Solve

Result_NodeValue
UX at node198.338E-2
UY at node2261.949E-1
UZ at node2241.835E-1
ROTX at node1961.828E-3
ROTY at node2082.168E-3
ROTZ at node2112.058E-3

Table 120: Element Forces and Moments Obtained from Spectrum Solve

ResultMAPDL
Element 120
PX(I)89.219
VY(I)68.747
VZ(I)68.736
TX(I)445.59
MY(I)3401.100
MZ(I)3655.000
 
PX(J) 89.220
VY(J) 68.840
VZ(J) 68.851
TX(J) 445.61
MY(J) 4269.500
MZ(J)4540.500
Element 131
PX(I) 163.43
VY(I) 46.140
VZ(I) 29.737
TX(I) 697.98
MY(I) 917.89
MZ(I) 2272.9
 
PX(J) 139.13
VY(J) 100.30
VZ(J) 26.675
TX(J) 548.38
MY(J) 1497.2
MZ(J)1971.3

Case 3: Independent Support Excitation with Absolute Sum Combination

Table 121: Maximum Displacements and Rotations Obtained from Spectrum Solve

Result_NodeValue
UX at node199.336E-2
UY at node2291.497E-1
UZ at node111.277E-1
ROTX at node2541.884E-3
ROTY at node111.998E-3
ROTZ at node2541.767E-3

Table 122: Element Forces and Moments Obtained from Spectrum Solve

ResultMAPDL
Element 120
PX(I)112.890
VY(I)68.622
VZ(I)62.717
TX(I)654.090
MY(I)2461.800
MZ(I)3240.700
  
PX(J) 112.890
VY(J) 68.758
VZ(J) 62.887
TX(J) 654.120
MY(J) 3241.100
MZ(J)4118.400
Element 131
PX(I) 226.91
VY(I) 64.766
VZ(I) 28.140
TX(I) 494.45
MY(I) 1032.1
MZ(I) 2466.8
  
PX(J) 189.13
VY(J) 144.40
VZ(J) 24.664
TX(J) 671.54
MY(J) 1411.7
MZ(J)1634.9


Note:  PX (I) and PX (J) = Section axial force at node I and J

VY (I) and VY (J) = Section shear forces along Y direction at node I and J

VZ (I) and VZ (J) = Section shear forces along Z direction at node I and J

TX (I) and TX (J) = Section torsional moment at node I and J

MY (I) and MY (J) = Section bending moments along Y direction at node I and J

MZ (I) and MZ (J) = Section bending moments along Z direction at node I and J