VM-NR1677-02-1-a

VM-NR1677-02-1-a
NUREG/CR-1677: Volume 2, Benchmark Problem No. 1

Overview

Reference:NUREG/CR-1677 Volume II Piping Benchmark Problems, Dynamic Analysis Independent Support Motion Response Spectrum Method, P. Bezler, M. Subudhi & M. Hartzman of Brookhaven National Laboratory, prepared for the U.S. Nuclear Regulatory Commission, August 1985, Problem 1, pages 18-76.
Analysis Type(s):
Modal analysis (ANTYPE = 2)
Spectral analysis (ANTYPE = 8)
Element Type(s):
Elastic straight pipe elements (PIPE16)
Elastic curved pipe elements (PIPE18)
Spring-Damper Element (COMBIN14)
Input Listing:

Test Case

This benchmark problem simulates a 3.5 inch diameter water line extending between two elevations and having two anchors and numerous intermediate supports. The system configuration is shown in Figure 626: FE Model of the Benchmark Problem. Modal and response spectrum analysis is performed on the piping model. Each solution has a fifteen frequency approximation with appropriate spectra and spectrum weighting factors of 1.0, 0.667, and 0.0 in the X, Y, and Z global directions respectively. Response spectrum solutions are done for three cases:

  • Case 1: Envelope spectrum excitation

  • Case 2: Independent support excitation with SRSS combination

  • Case 3: Independent support excitation with absolute sum combination

Frequencies obtained from modal solve and the nodal/element solution obtained from spectrum solve are compared against reference results.

Figure 626: FE Model of the Benchmark Problem

FE Model of the Benchmark Problem

Material PropertiesGeometric PropertiesLoading

Pipe Elements:

Material ID 1:

E = 0.258 x 108 psi
Nu = 0.3
G = 0.992x 107 psi
Density =1.042868 x 10-3 lb-sec2/in4

Stiffness for Spring-Damper Elements (lb/in):

Since there are multiple Spring Supports at different locations, the Stiffness for the Spring Damper Elements are listed based on real constant set number.

Set 3:

K = 0.2 x 108

Set 4:

K = 0.2 x 108

Set 5:

K = 0.2 x 108

Set 6:

K = 0.2 x 105

Set 7:

K = 0.2 x 105

Straight Pipe:

Set 1:

Outer Diameter = 3.5 in
Wall Thickness = 0.216 in

Bend Pipe:

Set 2:

Outer Diameter = 3.5 in
Wall Thickness = 0.216 in
Radius of Curvature = 48.003 in

Case 1:

Acceleration Response Spectrum Curve defined by FREQ and SV commands.

Case 2:

Acceleration Response Spectrum Curve defined by SPVAL and SPFREQ commands.

Case 3:

Acceleration Response Spectrum Curve defined by SPVAL and SPFREQ commands.

Results Comparison

Table 55: Frequencies Obtained from Modal Solution:

ModeTargetMechanical APDLRatio
16.0426.04761.000
26.2566.26921.000
37.7607.75931.000
48.9438.92271.000
512.44412.44191.000
612.83012.83001.000
714.30314.29741.000
815.48615.48421.000
916.37116.36911.000
1018.54318.54021.000
1119.49919.49661.000
1223.24323.22371.000
1324.10524.08041.000
1432.63632.63461.000
1533.83733.74911.000

Case 1: Envelope Spectrum Excitation

Table 56: Maximum Displacements and Rotations Obtained from Spectrum Solve

Result NodeTargetMechanical APDLRatio
UX at node5 0.05860.05810.992
UY at node33 0.11270.11210.994
UZ at node15 0.01030.01020.994
ROTX at node32 0.00150.00151.008
ROTY at node32 0.00110.00111.009
ROTZ at node50.00130.00131.002

Table 57: Reaction forces Obtained from Spectrum Solve

Result NodeTargetMechanical APDLRatio
FY at node38107.000108.0321.010
FX at node40234.000237.3771.014
FY at node4678.00077.7560.997
FY at node5089.00089.5031.006
FZ at node5356.00055.9540.999

Table 58: Element Forces and Moments Obtained from Spectrum Solve

ResultTargetMechanical APDLRatio
Element 35
PX(I)119.900120.7791.007
VY(I)56.63055.8320.986
VZ(I)55.95055.9531.000
TX(I)595.800600.4381.008
MY(I)675.000662.5300.982
MZ(I)606.200600.3800.990
 
PX(J)119.900120.7791.007
VY(J)56.63055.8320.986
VZ(J)55.95055.9531.000
TX(J)595.800600.4381.008
MY(J)2685.0002684.4951.000
MZ(J)3329.0003294.7610.990
Element 27
PX(I)183.700183.1040.997
VY(I)26.74026.8361.004
VZ(I)120.400118.9010.988
TX(I)265.800261.0240.982
MY(I)1308.0001310.9541.002
MZ(I)398.200387.4540.973
 
PX(J)120.400118.9220.988
VY(J)26.74026.8361.004
VZ(J)183.700183.0910.997
TX(J)1123.0001131.1981.007
MY(J)3095.0003099.1501.001
MZ(J)1496.0001497.4271.001

Case 2: Independent Support Excitation with SRSS Combination

Table 59: Maximum Displacements and Rotations Obtained from Spectrum Solve

Result NodeTargetMechanical APDLRatio
UX at node5 0.07830.07770.992
UY at node32 0.18990.18210.959
UZ at node32 0.19870.19150.964
ROTX at node5 0.00150.00151.000
ROTY at node30 0.00220.00220.967
ROTZ at node300.00210.0020.956

Table 60: Reaction forces Obtained from Spectrum Solve

Result NodeTargetMechanical APDLRatio
FX at node3786.00087.5541.018
FX at node4334.00033.8540.996
FX at node4753.00053.1041.002
FY at node5095.00094.8830.999
FZ at node5374.00073.6850.996

Table 61: Element Forces and Moments Obtained from Spectrum Solve

ResultTargetMechanical APDLRatio
Element 1
PX(I)92.71094.4581.019
VY(I)86.43087.5531.013
VZ(I)81.50082.8511.017
TX(I)1318.0001307.2600.992
MY(I)2885.0002869.2560.995
MZ(I)2775.0002779.4511.002
 
PX(J)92.71094.4581.019
VY(J)86.43087.5531.013
VZ(J)81.50082.8511.017
TX(J)1318.0001307.2600.992
MY(J)2041.0002039.9961.000
MZ(J)1907.001900.6330.997
Element 35
PX(I)84.20089.5261.063
VY(I)66.72065.6340.984
VZ(I)74.27073.6840.992
TX(I)431.300449.1331.041
MY(I)1169.0001134.7340.971
MZ(I)1119.0001072.0240.958
 
PX(J)84.20089.5261.063
VY(J)66.72065.6340.984
VZ(J)74.27073.6840.992
TX(J)431.300449.1331.041
MY(J)4724.0004634.8070.981
MZ(J)4484.0004376.9560.976
Element 27
PX(I)121.700129.3331.063
VY(I)30.01030.0841.002
VZ(I)90.72092.9321.024
TX(I)556.200536.8850.965
MY(I)1036.0001063.4321.026
MZ(I)989.200945.9280.956
 
PX(J)90.72092.9461.025
VY(J)30.01030.0841.002
VZ(J)121.700129.3231.063
TX(J)755.700813.0881.076
MY(J)2681.0002751.4041.026
MZ(J)1948.0001928.1350.990

Case 3: Independent Support Excitation with Absolute Sum Combination

Table 62: Maximum Displacements and Rotations Obtained from Spectrum Solve

Result NodeTargetMechanical APDLRatio
UX at node5 0.09080.09070.999
UY at node320.26340.25330.962
UZ at node32 0.27590.26680.967
ROTX at node28 0.00150.00150.97
ROTY at node30 0.00310.0030.97
ROTZ at node300.00280.00270.959

Table 63: Reaction forces Obtained from Spectrum Solution

Result NodeTargetMechanical APDLRatio
FX at node37117.000117.8441.007
FY at node38128.000129.4841.012
FZ at node39109.000110.6051.015
FY at node40278.000281.6751.013
FZ at node41100.000100.7431.007
FX at node42113.000114.5851.014
FZ at node4344.00044.2001.005
FX at node 4465.00070.4721.084
FZ at node4535.00034.8800.997
FX at node4663.00071.9701.142
FZ at node4772.00072.1371.002
FX at node48185.000187.5201.014
FY at node49204.000213.4581.046
FZ at node50131.000130.6830.998
FX at node51116.000121.9921.052
FY at node5292.00090.2260.981
FZ at node53103.000101.8800.989

Table 64: Element Forces and Moments Obtained from Spectrum Solve

ResultTargetMechanical APDLRatio
Element 1
PX(I)127.700129.4831.014
VY(I)116.500117.8431.012
VZ(I)109.000110.6041.015
TX(I)1522.0001520.9610.999
MY(I)3548.0003580.8521.009
MZ(I)3503.0003521.7431.005
 
PX(J)127.700129.4831.014
VY(J)116.500117.8431.012
VZ(J)109.000110.6041.015
TX(J)1522.0001520.9610.999
MY(J)2450.0002462.9091.005
MZ(J)2316.0002320.9981.002
Element 35
PX(I)115.600121.9911.055
VY(I)91.81090.2250.983
VZ(I)102.600101.8790.993
TX(I)582.500601.7751.033
MY(I)1615.0001572.4910.974
MZ(I)1544.0001482.2080.960
 
PX(J)115.600121.9911.055
VY(J)91.81090.2250.983
VZ(J)102.600101.8790.993
TX(J)582.500601.7751.033
MY(J)6548.0006438.9790.983
MZ(J)6198.0006052.1920.976
Element 27
PX(I)163.900172.4781.052
VY(I)41.34041.4011.001
VZ(I)123.300125.8151.020
TX(I)769.100744.4460.968
MY(I)1399.0001427.5471.020
MZ(I)1365.0001309.7610.960
 
PX(J)123.300125.8331.021
VY(J)41.34041.4011.001
VZ(J)163.900172.4641.052
TX(J)1034.0001103.5731.067
MY(J)3666.0003740.4421.020
MZ(J)2692.0002664.2080.990


Note:  PX (I) and PX (J) = Section axial force at node I and J.

VY (I) and VY (J) = Section shear forces along Y direction at node I and J.

VZ (I) and VZ (J) = Section shear forces along Z direction at node I and J.

TX (I) and TX (J) = Section torsional moment at node I and J.

MY (I) and MY (J) = Section bending moments along Y direction at node I and J.

MZ (I) and MZ (J) = Section bending moments along Z direction at node I and J.

The element forces and moments along Y and Z directions are flipped between Mechanical APDL and NRC results.