VM-NR1677-02-2

VM-NR1677-02-2
NUREG/CR-1677: Volume 2, Benchmark Problem No. 2

Overview

Reference:NUREG/CR-1677 Volume II Piping Benchmark Problems, Dynamic Analysis Independent Support Motion Response Spectrum Method, P. Bezler, M. Subudhi & M. Hartzman of Brookhaven National Laboratory, prepared for the U.S. Nuclear Regulatory Commission, August 1985, Problem 2, pages 77-137.
Analysis Type(s):
Modal analysis (ANTYPE = 2)
Spectral analysis (ANTYPE = 8)
Element Type(s):
Structural Mass Element (MASS21)
Spring-Damper Element (COMBIN14)
3D 3-Noded Pipe (PIPE289)
3D 3-Noded Elbow (ELBOW290)
Input Listing:

Test Case

For test case description, problem sketch, material properties, geometry properties and loadings refer to

VM-NR1677-02-2-a

Results Comparison

Table 123: Frequencies Obtained from Modal Solution

ModeFrequency
19.3401
212.738
315.372
417.276
521.652
625.445
732.279
838.296
941.16
1047.767
1156.304
1259.678
1361.054
1468.35
1580.058
1683.22
1799.549
18119.41
19124.47
20127.04
21131.48
22137.1
23140.85
24171.24
25191.79

Case 1: Envelope Spectrum Excitation

Table 124: Maximum Displacements and Rotations Obtained from Spectrum Solve

Result_NodeValue
UX at node959.604E-02
UY at node843.982E-02
UZ at node401.067E-01
ROTX at node61.039E-03
ROTY at node791.936E-03
ROTZ at node458.824E-04

Table 125: Element Forces and Moments Obtained from Spectrum Solve

ResultMAPDL
Element 1
PX(I)74.852
VY(I)93.143
VZ(I)185.41
TX(I)5204.7
MY(I)16709
MZ(I)6919.6
PX(J)74.737
VY(J)90.642
VZ(J)182.99
TX(J)5203.7
MY(J)11861
MZ(J)4745
Element 41
PX(I)457.39
VY(I)523.49
VZ(I)25.111
TX(I)3011.1
MY(I)851.6
MZ(I)12085
PX(J)535.51
VY(J)433.99
VZ(J)28.322
TX(J)2938.4
MY(J)1075.8
MZ(J)15272

Case 2: Independent Support Excitation with SRSS Combination

Table 126: Maximum Displacements and Rotations Obtained from Spectrum Solve

Result_NodeValue
UX at node956.04E-02
UY at node832.51E-02
UZ at node406.72E-02
ROTX at node66.53E-04
ROTY at node791.22E-03
ROTZ at node455.53E-04

Table 127: Element Forces and Moments Obtained from Spectrum Solve

ResultMAPDL
Element 1
PX(I)53.21
VY(I)52.413
VZ(I)117.17
TX(I)3267.1
MY(I)10496
MZ(I)4085.4
PX(J)53.12
VY(J)50.946
VZ(J)115.54
TX(J)3266.4
MY(J)7448.3
MZ(J)2867.6
  
Element 41
PX(I)271.98
VY(I)328.94
VZ(I)16.978
TX(I)1902.3
MY(I)768.53
MZ(I)7374.9
PX(J)321.68
VY(J)273.84
VZ(J)19.530
TX(J)1869.2
MY(J)822.25
MZ(J)9398.3

Case 3: Independent Support Excitation with Absolute Sum Combination

Table 128: Maximum Displacements and Rotations Obtained from Spectrum Solve

Result_NodeValue
UX at node958.48E-02
UY at node843.70E-02
UZ at node409.43E-02
ROTX at node69.17E-04
ROTY at node791.71E-03
ROTZ at node457.76E-04

Table 129: Element Forces and Moments Obtained from Spectrum Solve

ResultMAPDL
Element 1
PX(I)76.855
VY(I)77.164
VZ(I)162.53
TX(I)4576
MY(I)14676
MZ(I)5837
PX(J)76.759
VY(J)75.133
VZ(J)160.34
TX(J)4575.2
MY(J)10437
MZ(J)4051.9
Element 41
PX(I)378.41
VY(I)457.82
VZ(I)23.506
TX(I)2673.1
MY(I)1257.1
MZ(I)10361
PX(J)448.22
VY(J)380.34
VZ(J)28.547
TX(J)2634.3
MY(J)1286.7
MZ(J)13196


Note:  PX (I) and PX (J) = Section axial force at node I and J

VY (I) and VY (J) = Section shear forces along Y direction at node I and J

VZ (I) and VZ (J) = Section shear forces along Z direction at node I and J

TX (I) and TX (J) = Section torsional moment at node I and J

MY (I) and MY (J) = Section bending moments along Y direction at node I and J

MZ (I) and MZ (J) = Section bending moments along Z direction at node I and J