The model is a simply supported shaft. A rigid disk is located at 1/3 of its length. A bearing is located at 2/3 of its length. The rotational velocity varies with a constant slope from zero at t = 0 to 5000 RPM at t = 4 s.
The geometric properties of the shaft are as follows:
Length: 0.4 m |
Radius: 0.01 m |
The inertia properties of the disk are:
Mass = 16.47 kg |
Inertia (XX,YY) = 9.47e-2 kg·m2 |
Inertia (ZZ) = 0.1861 kg·m2 |
The material properties for this analysis are as follows:
Young's modulus (E) = 2.0e+11 N/m2 |
Poisson's ratio (υ) = 0.3 |
Density = 7800 kg/m3 |
The mass unbalance (0.1 g) is located on the disk at a distance of 0.15 m from the center line of the shaft. The mass unbalance transient forces are input using table array parameters. See Mass Unbalance Transient Forces in the Theory Reference for details of the equations. Note that the unbalance phase is 90 degrees in this example.
/prep7 ! ** parameters length = 0.4 ro_shaft = 0.01 ro_disk = 0.15 md = 16.47 id = 9.427e-2 ip = 0.1861 kxx = 2.0e+5 kyy = 5.0e+5 beta = 2.e-4 ! ** material = steel mp,ex,1,2.0e+11 mp,nuxy,1,.3 mp,dens,1,7800 ! ** elements types et,1,188 sect,1,beam,csolid secdata,ro_shaft,20 et,2,21 r,2,md,md,md,id,id,ip et,3,14,,1 r,3,kxx,beta*kxx et,4,14,,2 r,4,kyy,beta*kyy ! ** shaft type,1 secn,1 mat,1 k,1 k,2,,,length l,1,2 lesize,1,,,9 lmesh,all ! ** disk type,2 real,2 e,5 ! ** bearing n,21,-0.05,,2*length/3 type,3 real,3 e,8,21 type,4 real,4 e,8,21 ! ** constraints dk,1,ux,,,,uy dk,2,ux,,,,uy d,all,uz d,all,rotz d,21,all finish ! ** transient tabular force (unbalance) pi = acos(-1) spin = 5000*pi/30 tinc = 0.5e-3 tend = 4 spindot = spin/tend nbp = nint(tend/tinc) + 1 unb = 1.e-4 f0 = unb*ro_disk *dim,spinTab,table,nbp,,,TIME *dim,rotTab, table,nbp,,,TIME *dim,fxTab, table,nbp,,,TIME *dim,fyTab, table,nbp,,,TIME *vfill,spinTab(1,0),ramp,0,tinc *vfill,rotTab(1,0), ramp,0,tinc *vfill,fxTab(1,0), ramp,0,tinc *vfill,fyTab(1,0), ramp,0,tinc tt = 0 *do,iloop,1,nbp spinVal = spindot*tt ! omega use to compute coriolis force and omega^2 spinTab(iloop,1) = spinVal ! table of omega vs time spin2 = spinVal**2 ! omega^2 used to compute centrifugal force rotVal = spindot*tt**2/2 ! total rotation in radians rotTab(iloop,1) = rotVal ! table of rotation vs time sinr = sin(rotVal) ! direction of force based on rotVal cosr = cos(rotVal) fxTab(iloop,1)= f0*(-spin2*sinr + spindot*cosr) ! centrifugal force plus ! tangential force due to fyTab(iloop,1)= f0*( spin2*cosr + spindot*sinr) ! rotation acceleration tt = tt + tinc ! time used to compute omega ! and rotation *enddo fini ! ** transient analysis /solu antype,transient time,tend deltim,tinc,tinc/10,tinc*10 kbc,0 coriolis,on,,,on omega,,,spin f,5,fx,%fxTab% f,5,fy,%fyTab% outres,all,all solve fini ! ** generate response graphs /post26 nsol,2,5,U,X,UXdisk prod,3,2,2 nsol,4,5,U,Y,UYdisk prod,5,4,4 add,6,3,5 sqrt,7,6,,,Ampl_At_Disk /axlab,y,Displacement (m) /show,JPEG plvar,7 EXTREME,7 /show,CLOSE esol,8,4,5,smisc,32,Sy_At_Disk esol,9,4,5,smisc,34,Sz_At_Disk /axlab,y,Bending Stresses (N/m2) /show,JPEG plvar,8,9 EXTREME,8,9 /show,CLOSE
Figure 7.5: Transient Response – Displacement vs. Time shows displacement vs. time.
Figure 7.6: Transient Response - Bending Stress vs. Time shows bending stress vs. time.