VM-NR1677-02-3

VM-NR1677-02-3
NUREG/CR-1677: Volume 2, Benchmark Problem No. 3

Overview

Reference:

NUREG/CR-1677 Volume II Piping Benchmark Problems, Dynamic Analysis Independent Support Motion Response Spectrum Method, P. Bezler, M. Subudhi & M. Hartzman of Brookhaven National Laboratory, prepared for the U.S. Nuclear Regulatory Commission, August 1985, Problem 3, pages 138-243.

Analysis Type(s):
Modal analysis (ANTYPE = 2)
Spectral analysis (ANTYPE = 8)
Element Type(s):
Spring-Damper Elements (COMBIN14)
3D 3-Noded Pipe Elements (PIPE289)
3D 3-Noded Elbow Elements (ELBOW290)
Input Listing:

Test Case

For test case description, problem sketch, material properties, geometry properties and loadings refer to

VM-NR1677-02-3-a

Results Comparison

Table 130: Frequencies Obtained from Modal Solution

ModeFrequency
17.680
210.554
314.871
415.996
516.589
618.859
721.795
824.679
926.787
1029.395
1130.755
1232.092
1333.541
1434.924
1536.610

Case 1: Envelope Spectrum Excitation

Table 131: Maximum Displacements and Rotations Obtained from Spectrum Solve

Result_NodeValue
UX at node151 0.607
UY at node87 0.963
UZ at node92 0.709
ROTX at node92 1.052E-2
ROTY at node72 9.991E-3
ROTZ at node1601.217E-2

Table 132: Element Forces and Moments Obtained from Spectrum Solve

ResultMAPDL
Element 1
PX(I)1.0505E5
VY(I)74.696
VZ(I)1296.4
TX(I)15196
MY(I)94990
MZ(I)3232.8
  
PX(J) 1.0505E5
VY(J) 71.945
VZ(J) 1257.5
TX(J) 15176
MY(J) 40883
MZ(J) 552.37
Element 50
PX(I) 2122.9
VY(I) 481.51
VZ(I) 50.148
TX(I) 15194.0
MY(I) 4431.0
MZ(I) 45121.0
  
PX(J) 2115.6
VY(J) 491.85
VZ(J) 50.22
TX(J) 15243.0
MY(J) 4303.0
MZ(J)45680.0

Case 2: Independent Support Excitation with SRSS Combination

Table 133: Maximum Displacements and Rotations Obtained from Spectrum Solve

Result_NodeValue
UX at node63 5.416E-1
UY at node87 3.564E-1
UZ at node63 5.116E-1
ROTX at node58 8.109E-3
ROTY at node72 6.860E-3
ROTZ at node616.983E-3

Table 134: Element Forces and Moments Obtained from Spectrum Solve

ResultMAPDL
Element 1
PX(I)6.4759E4
VY(I)1.0495E2
VZ(I)1.622E3
TX(I)2.076E4
MY(I)1.109E5
MZ(I)4.9121E3
 
PX(J) 6.2814E4
VY(J) 1.0168E2
VZ(J) 1.5656E3
TX(J) 2.0729E4
MY(J) 4.5190E4
MZ(J)9.6992E2
Element 50
PX(I) 4650.3
VY(I) 584.09
VZ(I) 66.369
TX(I) 20497.0
MY(I) 6765.2
MZ(I) 61979.0
 
PX(J) 4636.9
VY(J) 650.58
VZ(J) 66.172
TX(J) 20510.0
MY(J) 6794.7
MZ(J)62182.0

Case 3: Independent Support Excitation with Absolute Sum Combination

Table 135: Maximum Displacements and Rotations Obtained from Spectrum Solve

Result_NodeValue
UX at node63 7.632E-1
UY at node87 4.772E-1
UZ at node63 7.228E-1
ROTX at node58 1.146E-2
ROTY at node52 9.350E-3
ROTZ at node619.866E-3

Table 136: Element Forces and Moments Obtained from Spectrum Solve

ResultMAPDL
Element 1
PX(I)8.7497E4
VY(I)1.6169E2
VZ(I)2.3389E3
TX(I)3.0557E4
MY(I)1.6159E5
MZ(I)7.7189E3
 
PX(J) 8.7496E4
VY(J) 1.5636E2
VZ(J) 2.2591E3
TX(J) 3.0507E4
MY(J) 6.6443E4
MZ(J)1.523E3
Element 50
PX(I) 6377.0
VY(I) 845.27
VZ(I) 96.42
TX(I) 29989.0
MY(I) 10427.0
MZ(I) 88235.0
 
PX(J) 6358.5
VY(J) 930.53
VZ(J) 96.04
TX(J) 29977.0
MY(J) 10563.0
MZ(J)88620.0


Note:  PX (I) and PX (J) = Section axial force at node I and J

VY (I) and VY (J) = Section shear forces along Y direction at node I and J

VZ (I) and VZ (J) = Section shear forces along Z direction at node I and J

TX (I) and TX (J) = Section torsional moment at node I and J

MY (I) and MY (J) = Section bending moments along Y direction at node I and J

MZ (I) and MZ (J) = Section bending moments along Z direction at node I and J