VM-NR1677-01-6-a

VM-NR1677-01-6-a
NUREG/CR-1677: Volume 1, Benchmark Problem No. 6

Overview

Reference:P.Bezler, M. Hartzman & M. Reich, Dynamic Analysis of Uniform Support Motion Response Spectrum Method, (NUREG/CR-1677), Brookhaven National Laboratory, August 1980, Problem 2, Pages 48-80.
Analysis Type(s):
Modal analysis (ANTYPE = 2)
Spectral analysis (ANTYPE = 8)
Element Type(s):
Elastic straight pipe elements (PIPE16)
Elastic curved pipe elements (PIPE18)
Spring-Damper Element (COMBIN14)
Structural Mass element (MASS21)
Input Listing:

Test Case

This benchmark problem contains three-dimensional multi-branched piping systems (refer to Figure 624: FE Model of the Benchmark Problem). The total mass of the system is represented by structural mass element (MASS21) specified at individual nodes. Modal and response spectrum analysis is performed on the piping model. Frequencies obtained from modal solve and the nodal/element solution obtained from spectrum solve are compared against reference results. The NUREG intermodal/interspatial results are used for comparison.

Figure 624: FE Model of the Benchmark Problem

FE Model of the Benchmark Problem

Material PropertiesGeometric PropertiesLoading

Pipe Elements:

Material ID 1:

E = 2.99 x 108 psi
Nu = 0.3

Stiffness for Spring-Damper Elements (lb/in):

Since there are multiple Spring Supports at different locations, the Stiffness for the Spring Damper Elements are listed based on real constant set number.

Set 101:

K= 0.1 x 1020

Set 102:

K= 0.1 x 107

Set 103:

K= 0.25 x 106

Set 104:

K= 0.2 x 107

Set 105:

K= 0.45 x 106

Set 106:

K= 0.8 x 106

Set 107:

K= 0.1 x 1010

Set 108:

K= 0.1 x 1012

Mass Elements (lb-sec2/in):

(Isotropic Mass)

Set 11:

Mass @ Node 5 = 9.925

Set 12:

Mass @ Node 6 = 5.453

Set 13:

Mass @ Node 7 = 4.888

Set 14:

Mass @ Node 8 = 5.888

Set 15:

Mass @ Node 10 = 5.373

Set 16:

Mass @ Node 12 = 3.95

Set 17:

Mass @ Node 13 = 2.43

Set 18:

Mass @ Node 15 = 3.941

Set 19:

Mass @ Node 17 = 7.6092
Mass @ Node 19 = 7.6092

Set 20:

Mass @ Node 21 = 7.612

Set 21:

Mass @ Node 23 = 7.6111
Mass @ Node 25 = 7.6111
Mass @ Node 27 = 7.6111
Mass @ Node 29 = 7.6111
Mass @ Node 31 = 7.6111
Mass @ Node 33 = 7.6111

Set 22:

Mass @ Node 35 = 7.601

Set 23:

Mass @ Node 37 = 10.293

Set 24:

Mass @ Node 38 = 7.518

Set 25:

Mass @ Node 40 = 3.877

Set 26:

Mass @ Node 41 = 10.528

Straight Pipe Elements:

Set 6:

Outer Diameter = 30.0 in
Wall Thickness = 0.85 in

Set 8:

Outer Diameter = 32.0 in
Wall Thickness = 0.905 in

Bend Pipe Elements:

Set 7:

Outer Diameter = 30.0 in
Wall Thickness = 0.85 in
Radius of Curvature = 45.0 in

Set 9:

Outer Diameter = 32.0 in
Wall Thickness = 0.905 in
Radius of Curvature = 45.0 in

Set 10:

Outer Diameter = 30.0 in
Wall Thickness = 0.85 in
Radius of Curvature = 150 in

Acceleration Response Spectrum Curve defined by FREQ and SV commands.

Results Comparison

Table 49: Frequencies Obtained from Modal Solution:

ModeTargetMechanical APDLRatio
16.3916.3911.000
29.9939.9931.000
313.27013.2741.000
414.49014.4841.000
515.33015.3271.000
617.50017.4991.000
719.09019.0901.000
819.62019.6231.000
921.44021.4361.000
1028.71028.7071.000
1129.86029.8671.000
1231.48031.4841.000
1332.01032.0091.000
1436.37036.3651.000
1540.98040.9801.000
1641.37041.3671.000
1747.39047.3911.000
1849.77049.7651.000
1950.13050.1231.000
2052.93052.9281.000
2156.90056.8981.000
2258.51058.5061.000
2367.47067.4641.000
2470.46070.4571.000
2575.41075.4051.000
2679.18079.1791.000
2780.74080.7381.000
2886.11086.0991.000
2988.28088.2801.000
3092.74092.7301.000
3199.36099.3531.000

Table 50: Maximum Displacements and Rotations Obtained from Spectrum Solve

Result NodeTargetMechanical APDLRatio
UX at node330.02360.02360.999
UYat node390.08940.08941.000
UZ at node380.01510.01510.999
ROTX at node370.00030.00031.000
ROTY at node370.00010.00010.999
ROTZ at node410.00030.00031.000

Table 51: Element Forces and Moments Obtained from Spectrum Solve

ResultTargetMechanical APDLRatio
Element 1
PX(I)11711058.3750.904
VY(I)23982293.3190.956
VZ(I)12651181.9200.934
TX(I)6826063128.2960.925
MY(I)4807046262.8940.962
MZ(I)9174084887.3970.925
 
PX(J)11711058.3750.904
VY(J)23982293.3190.956
VZ(J)12651181.9200.934
TX(J)6826063128.2960.925
MY(J)4664044930.2700.963
MZ(J)8926082495.9140.924
Element 44
PX(I)1749.0001742.6860.996
VY(I)1990.0001966.4780.988
VZ(I)946.500928.7010.981
TX(I)100400.000100095.7840.997
MY(I)132700.000132608.3450.999
MZ(I)165900.000165698.9220.999
 
PX(J)1749.0001742.6860.996
VY(J)1990.0001966.4780.988
VZ(J)946.500928.7010.981
TX(J)100400.000100095.7840.997
MY(J)132700.000132612.9790.999
MZ(J)165900.000165716.9790.999
Element 37
PX(I)682.900666.3360.976
VY(I)258.100250.2430.970
VZ(I)1262.7001257.7770.996
TX(I)92360.00092342.3301.000
MY(I)49120.00048078.0850.979
MZ(I)108700.000108509.1400.998
 
PX(J)1187.0001177.9660.992
VY(J)258.100250.2430.970
VZ(J)804.200796.8510.991
TX(J)19480.00019308.9640.991
MY(J)78220.00078152.2380.999
MZ(J)134100.000134143.9721.000


Note:  PX (I) and PX (J) = Section axial force at node I and J.

VY (I) and VY (J) = Section shear forces along Y direction at node I and J.

VZ (I) and VZ (J) = Section shear forces along Z direction at node I and J.

TX (I) and TX (J) = Section torsional moment at node I and J.

MY (I) and MY (J) = Section bending moments along Y direction at node I and J.

MZ (I) and MZ (J) = Section bending moments along Z direction at node I and J.

The element forces and moments along Y and Z directions are flipped between Mechanical APDL and NRC results.