VM-NR1677-01-6-a
VM-NR1677-01-6-a
NUREG/CR-1677: Volume 1, Benchmark Problem No. 6
Overview
Test Case
This benchmark problem contains three-dimensional multi-branched piping systems (refer to Figure 624: FE Model of the Benchmark Problem). The total mass of the system is represented by structural mass element (MASS21) specified at individual nodes. Modal and response spectrum analysis is performed on the piping model. Frequencies obtained from modal solve and the nodal/element solution obtained from spectrum solve are compared against reference results. The NUREG intermodal/interspatial results are used for comparison.
Material Properties | Geometric Properties | Loading | |||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pipe Elements: Material ID 1:
Stiffness for Spring-Damper Elements (lb/in): Since there are multiple Spring Supports at different locations, the Stiffness for the Spring Damper Elements are listed based on real constant set number. Set 101:
Set 102:
Set 103:
Set 104:
Set 105:
Set 106:
Set 107:
Set 108:
Mass Elements (lb-sec2/in): (Isotropic Mass) Set 11:
Set 12:
Set 13:
Set 14:
Set 15:
Set 16:
Set 17:
Set 18:
Set 19:
Set 20:
Set 21:
Set 22:
Set 23:
Set 24:
Set 25:
Set 26:
| Straight Pipe Elements: Set 6:
Set 8:
Bend Pipe Elements: Set 7:
Set 9:
Set 10:
| Acceleration Response Spectrum Curve defined by FREQ and SV commands. |
Results Comparison
Table 49: Frequencies Obtained from Modal Solution:
Mode | Target | Mechanical APDL | Ratio |
---|---|---|---|
1 | 6.391 | 6.391 | 1.000 |
2 | 9.993 | 9.993 | 1.000 |
3 | 13.270 | 13.274 | 1.000 |
4 | 14.490 | 14.484 | 1.000 |
5 | 15.330 | 15.327 | 1.000 |
6 | 17.500 | 17.499 | 1.000 |
7 | 19.090 | 19.090 | 1.000 |
8 | 19.620 | 19.623 | 1.000 |
9 | 21.440 | 21.436 | 1.000 |
10 | 28.710 | 28.707 | 1.000 |
11 | 29.860 | 29.867 | 1.000 |
12 | 31.480 | 31.484 | 1.000 |
13 | 32.010 | 32.009 | 1.000 |
14 | 36.370 | 36.365 | 1.000 |
15 | 40.980 | 40.980 | 1.000 |
16 | 41.370 | 41.367 | 1.000 |
17 | 47.390 | 47.391 | 1.000 |
18 | 49.770 | 49.765 | 1.000 |
19 | 50.130 | 50.123 | 1.000 |
20 | 52.930 | 52.928 | 1.000 |
21 | 56.900 | 56.898 | 1.000 |
22 | 58.510 | 58.506 | 1.000 |
23 | 67.470 | 67.464 | 1.000 |
24 | 70.460 | 70.457 | 1.000 |
25 | 75.410 | 75.405 | 1.000 |
26 | 79.180 | 79.179 | 1.000 |
27 | 80.740 | 80.738 | 1.000 |
28 | 86.110 | 86.099 | 1.000 |
29 | 88.280 | 88.280 | 1.000 |
30 | 92.740 | 92.730 | 1.000 |
31 | 99.360 | 99.353 | 1.000 |
Table 50: Maximum Displacements and Rotations Obtained from Spectrum Solve
Result Node | Target | Mechanical APDL | Ratio |
---|---|---|---|
UX at node33 | 0.0236 | 0.0236 | 0.999 |
UYat node39 | 0.0894 | 0.0894 | 1.000 |
UZ at node38 | 0.0151 | 0.0151 | 0.999 |
ROTX at node37 | 0.0003 | 0.0003 | 1.000 |
ROTY at node37 | 0.0001 | 0.0001 | 0.999 |
ROTZ at node41 | 0.0003 | 0.0003 | 1.000 |
Table 51: Element Forces and Moments Obtained from Spectrum Solve
Result | Target | Mechanical APDL | Ratio |
---|---|---|---|
Element 1 | |||
PX(I) | 1171 | 1058.375 | 0.904 |
VY(I) | 2398 | 2293.319 | 0.956 |
VZ(I) | 1265 | 1181.920 | 0.934 |
TX(I) | 68260 | 63128.296 | 0.925 |
MY(I) | 48070 | 46262.894 | 0.962 |
MZ(I) | 91740 | 84887.397 | 0.925 |
PX(J) | 1171 | 1058.375 | 0.904 |
VY(J) | 2398 | 2293.319 | 0.956 |
VZ(J) | 1265 | 1181.920 | 0.934 |
TX(J) | 68260 | 63128.296 | 0.925 |
MY(J) | 46640 | 44930.270 | 0.963 |
MZ(J) | 89260 | 82495.914 | 0.924 |
Element 44 | |||
PX(I) | 1749.000 | 1742.686 | 0.996 |
VY(I) | 1990.000 | 1966.478 | 0.988 |
VZ(I) | 946.500 | 928.701 | 0.981 |
TX(I) | 100400.000 | 100095.784 | 0.997 |
MY(I) | 132700.000 | 132608.345 | 0.999 |
MZ(I) | 165900.000 | 165698.922 | 0.999 |
PX(J) | 1749.000 | 1742.686 | 0.996 |
VY(J) | 1990.000 | 1966.478 | 0.988 |
VZ(J) | 946.500 | 928.701 | 0.981 |
TX(J) | 100400.000 | 100095.784 | 0.997 |
MY(J) | 132700.000 | 132612.979 | 0.999 |
MZ(J) | 165900.000 | 165716.979 | 0.999 |
Element 37 | |||
PX(I) | 682.900 | 666.336 | 0.976 |
VY(I) | 258.100 | 250.243 | 0.970 |
VZ(I) | 1262.700 | 1257.777 | 0.996 |
TX(I) | 92360.000 | 92342.330 | 1.000 |
MY(I) | 49120.000 | 48078.085 | 0.979 |
MZ(I) | 108700.000 | 108509.140 | 0.998 |
PX(J) | 1187.000 | 1177.966 | 0.992 |
VY(J) | 258.100 | 250.243 | 0.970 |
VZ(J) | 804.200 | 796.851 | 0.991 |
TX(J) | 19480.000 | 19308.964 | 0.991 |
MY(J) | 78220.000 | 78152.238 | 0.999 |
MZ(J) | 134100.000 | 134143.972 | 1.000 |
Note: PX (I) and PX (J) = Section axial force at node I and J.
VY (I) and VY (J) = Section shear forces along Y direction at node I and J.
VZ (I) and VZ (J) = Section shear forces along Z direction at node I and J.
TX (I) and TX (J) = Section torsional moment at node I and J.
MY (I) and MY (J) = Section bending moments along Y direction at node I and J.
MZ (I) and MZ (J) = Section bending moments along Z direction at node I and J.
The element forces and moments along Y and Z directions are flipped between Mechanical APDL and NRC results.